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ABSTRACT 

Plants forage soil for water and nutrients, whose distribution is patchy and often dynamic. To improve 

their foraging activities, plants have evolved mechanisms to modify the physicochemical properties and 

microbial communities of the rhizosphere, i.e. the soil compartment under the influence of the roots. This 

dynamic interplay in root-soil-microbiome interactions creates emerging properties that impact plant 

nutrition and health. As a consequence, the rhizosphere can be considered an extended root phenotype, a 

manifestation of the effects of plant genes on their environment inside and/or outside of the organism. 

Here, we review current understanding of how plants shape the rhizosphere and the benefits it confers to 

plant fitness. We discuss future research challenges and how applying their solutions in crops will enable 

us to harvest the benefits of the extended root phenotype.  

 

 

Keywords: Root, soil, microbiome, biocontrol, plant nutrition, drought, salinity, rhizosphere, 

exudates. 

  

  

  

  

  

	

  

	  



INTRODUCTION 

  

Plants, as sessile organisms, have evolved strategies to successfully address the challenges they face from 

a changing and unpredictable environment. In particular, plants need to mine the soil for resources such 

as water and nutrients, whose distribution is patchy and changes dynamically. Plants do so by modulating 

their root system architecture and root anatomy in response to environmental clues to explore different 

soil horizons and detect and exploit water and nutrient-rich patches (recently reviewed in Morris et al., 

2017 and Lynch, 2019). Besides these, plants have evolved mechanisms to modify soil physicochemical 

properties and microbial communities under the influence of roots (the rhizosphere) to improve their 

foraging activities (York et al., 2016). Reciprocally, soil microbes that live on and/or in the plant root 

together with the changes in soil properties caused by the root, trigger important functional adjustments 

in the plant such as modification of root development and physiology. This dynamic interplay in the root-

soil-microbiome interactions creates emerging properties that impact plant nutrition and health.  

In this review, we will consider three habitats as integral parts of the rhizosphere continuum: the 

rhizospheric soil, the rhizoplane and the root endosphere (see York et al., 2016 for terms definition), as 

the apoplastic spaces in the root cortex (root endosphere) form a continuum of microbial colonization with 

the surrounding soil and the root surface (rhizoplane). Due to the properties of the rhizosphere that are 

largely influenced by the plant genotype, this could be regarded as an ‘extended root phenotype’ as defined 

by Dawkins (1982) i.e. a manifestation of the effects of plant genes on their environment inside and/or 

outside the organism. This extended root phenotype has a profound impact on plant fitness and is likely 

to be under strong selection (Pérez-Jaramillo et al., 2016, Schmidt et al., 2016). Hence, a better 

understanding of the principles that govern the formation of the rhizosphere, critical in the interaction with 

the soil and the microbiota, could contribute to the development of more resilient crop varieties and the 

optimization of agricultural practices. However, while root architecture and anatomy traits are starting to 

become an integral target of crop breeding programmes (Wissuwa et al., 2016, Lynch 2019), root-soil-



microbiome interactions that configure rhizosphere traits are not yet considered. The delay in the use of 

these new root-soil-microbiome traits is due to two major factors: a) the majority of the root microbiome 

research has focused on characterising only one side of the interaction, the microbiota structure or the 

impact of edaphic factors on plant-microbe interaction, without paying attention to how plants shape these 

complex microbial communities, soil properties, their feedbacks on plant fitness, and ultimately, on 

agronomy; b) the methods that fully capture and measure the impact of roots on plant-soil-microbiome 

interactions are not well developed yet	 as it mobilizes knowledge from multiple disciplines (soil 

biogeochemistry, plant biology, microbial ecology). This bottleneck limits our ability to define 

corresponding plant root ideotypes.  

Here, we review our current knowledge on how plants (focusing on annual plants) create an 

extended phenotype by changing rhizosphere traits through root-soil-microbiome interactions and the 

benefits it confers to plant fitness. While the rhizosphere is shaped by many others factors including the 

physicochemical properties of the soil and the environmental changes, in this review we only consider the 

influence of the plant on the rhizosphere formation and dynamic. We also highlight open questions and 

future challenges to be addressed (Box2) in order to reap the benefits of these extended root phenotypes.  

 

CREATING AN EXTENDED ROOT PHENOTYPE: HOW PLANTS SHAPE A BELOW-

GROUND NICHE 

Root development changes the physical properties of the surrounding soil 

Root growth in a new region of the soil contributes mechanically to the formation of a rhizosphere 

(Bengough et al., 2011, Jin et al., 2013, Kolb et al., 2017). Growing roots displace soil particles in the 

vicinity of the root surface as the axial and radial growth pressures exerted at the root tip overcome the 

impedance of the surrounding soil. The recent advances in non-invasive techniques for soil and plant 

imaging opened new avenues for the study of soil-root interactions in natural soils at very fine (micron 

scale) resolution. For instance, X-ray computed tomography (XRCT) allowed in vivo dynamic 



visualisation and quantification of soil deformation around a growing root tip (Keyes et al., 2016). It 

showed that soil particles displacement at the root tip occurs approximately perpendicular to the root 

surface. XRCT was also used recently to explore the interaction among root growth, soil structure, and 

soil porosity in different plant species (Helliwell et al., 2017; Helliwell et al., 2019). These studies 

revealed the formation of a gradient of soil porosity from the proximity of the root surface, with high 

presence of pores, to a dense soil area a few millimetres away from the root (Helliwell et al., 2017; 

Helliwell et al., 2019). The size of the soil densification zone varies according to plant species and soil 

structure, but is independent of root thickness.  

Likewise, root hairs influence rhizosphere porosity depending on soil texture. In coarse textured soils 

with heterogeneous pore size distribution, root hairs favour large pores formation in the vicinity of the 

root surface. This is particularly evident in dry soils (Koebernick et al., 2017). Surprisingly, root hair 

formation has no effect on finer textured soils with a more homogeneous pore structure (Koebernick et 

al., 2019). Therefore, root hairs tend to influence soil inter-aggregates rather than intra-aggregates 

arrangement in the formation of soil pores in the vicinity of the roots.  

These changes in soil density and porosity have a strong impact on plant water and nutrient accessibility 

and on soil microbial community composition. Indeed, Kravchenko et al., 2019 using X-ray micro-

tomography combined with micro-scale enzyme mapping have demonstrated that the soil pore formation 

driven by the plant is the main factor modulating carbon storage in soil. These pores define regions with 

high microbial activity related to carbon turnover and sequestration. Hence, root development modifies 

soil structure around the root and thus contributes to the formation of the rhizosphere (Figure 1).  

 

Rhizodeposition: plants invest carbon to shape the rhizosphere physicochemical properties 

Living roots release a wide range of organic compounds to the soil (i.e. rhizodeposits) that transform the 

physicochemical properties of the rhizosphere (Hinsinger et al., 2009, Sasse et al., 2018; Figure 1). 

Rhizodeposits include primary and secondary metabolism products, volatile organic carbon compounds, 



cells debris derived from the root cap (i.e. border cells) and metabolites originating from senescence of 

root epidermal cells as well as root turnover (Nguyen 2003, Jones et al., 2009, Oburger and Jones, 2018). 

Therefore, rhizodeposition leads to a net carbon flux from the plant root into the soil estimated at 15% of 

the total plant belowground carbon allocation which may range between 17% and 40% of the total 

photosynthetically fixed carbon (Nguyen 2003, Badri and Vivanco 2009; Sasse et al., 2018, Pausch and 

Kuzyakov, 2018). The quantity and composition of rhizodeposits vary considerably depending on the 

diversity of plant communities, plant species, genotypes, plant age and growing conditions (Hütch et al., 

2002, Nguyen 2003, Chaparro et al., 2013, Oburger and Jones, 2018). Root tips are the first plant tissue 

sensing new soil environments and are major hotspots for exudation in diverse ways. Primary and 

secondary plant-derived metabolites either diffuse or are actively transported from root cells to soil. Low 

molecular weight compounds such as sugar, amino and organic acids flow out from root cells to the 

rhizosphere driven by concentration gradients. The absence of an apoplastic barrier (i.e. Casparian strip, 

suberin or schlerenchyma) in undifferentiated root tip tissues favours passive diffusion of hydrophilic 

compounds through the plasma membrane, as well as being mediated by specific transporters. Exudation 

of high molecular weight compounds such as polysaccharides, proteins, alkaloids and phenolics requires 

transmembrane primary active transporters (ATP-dependent transporters) such as ABC transporters or 

secondary active transporters (coupled with H+ pumps). Other complex molecules such as mucilage 

(polymerized sugars) are actively excreted from root cap cells, forming a gelatinous layer around the root 

tip which, together with root cap morphology, are major drivers defining root-soil mechanical interaction 

and consequently root tip penetration ability (Oleghe et al., 2017; Keyes et al., 2017). Root exudation 

mechanisms and the key transporters involved have recently been exhaustively reviewed (Canarini et al., 

2019; Sasse et al., 2018). 

Exudates and mucilaginous polymers released by plant roots (mucilage) and root associated 

microorganisms (mucigel) impact the mechanical stability and hydraulic processes in the rhizosphere. The 

intricate interplay between the physical properties of the secreted mucilage (high viscosity, low surface 



tension and capacity to adsorb water) and the porosity and texture of the granular media defines the spatial 

configuration and connectivity of the liquid phase in the rhizosphere (Carminati et al., 2017, Kroener et 

al., 2018, Benard et al., 2019a). Water retention capacity and nutrient diffusion in the soil-root interface 

is defined by this complex interaction and it becomes particularly important in dry soils where the 

mucilage network reinforce the soil matric potential around the root, helping to keep the rhizosphere wet 

and preventing sudden drops in water flow particularly around the root tip (Carminati et al., 2013 and 

2016). Techniques such as neutron radiography have been used to monitor the changes in rhizosphere 

water content at the whole root system level (Carminati et al., 2010). Furthermore, this technique in 

combination with experimental systems using chia seed mucilage combined with diverse soil mixtures aid 

to reproduce rhizosphere analogues where the dynamics of biophysical processes in response to changes 

in water content can be assessed at smaller scale. In this regard, recent work suggests that the increased 

water retention associated with mucilage secretion sustains higher soil enzymatic activity and the diffusion 

of the rhizospheric solutes in dry soils (Zarebanadkouki et al., 2019). Importantly, the mucilage life-span 

extends significantly in response to low water availability ensuring a source of carbon that preserves the 

necessary microbial activity in the rhizosphere (Ahmed et al., 2018, Benard et al., 2019b).  

The exudation of organic acid anions such as malate, citrate and oxalate, change the redox state and 

pH of the soil. This has strong repercussion for instance on the mobilisation of inorganic phosphorus (P) 

from P deprived soils. These organic acids may also act as chelates to improve aluminium toxicity 

tolerance in acid soils (Chen et al., 2016). Fluctuation in the amount of rhizodeposition to the rhizosphere 

responds to changes in soil properties. For instance, amino acids exudation is influenced by the nitrogen 

concentration in the plant-soil interface and it is the signal for root N uptake (Kiba and Krapp, 2016, 

Canarini et al., 2019). Similarly, rhizosphere acidification is tightly controlled by A. thaliana  in response 

to phosphate limitation (increased acidification associated to miR156 gene, Lei et al., 2016) or lead 

toxicity (reduced acidification linked to nitrate transporter NTR1.1, Zhu et al., 2019).  

Altogether, rhizodeposition has a profound effect on the physicochemical properties of the rhizosphere. 



	

The rhizobiome: plant roots influence microbial communities  

Roots influence soil microbial communities leading to a very specific rhizosphere microbiome 

characterized in general by a larger active microbial community, but exhibiting reduced diversity 

compared to bulk soil (Alegria Terrazas et al., 2016, Lopes et al., 2019). This microbial rhizosphere 

assembly is extremely dynamic and is mostly influenced by rhizodeposits that can act as major carbon 

sources for microbes, signalling molecules or antimicrobial agents (Figure 1). Indeed, different studies 

have shown the important role of some root exudates such as organic acids (Kandaswamy et al., 2017), 

amino acids (Feng et al., 2018) and sugars (Zhang et al., 2015) as chemo-attractant for beneficial bacteria 

in different plant models favouring root colonisation (Chaparro et al., 2013). In addition, some secondary 

metabolites such as coumarins, well known iron mobilising exudates, shape the rhizosphere microbiome 

in Arabidopsis (Stringlis et al., 2019) through their antimicrobial effect on fungal pathogens (Stringlis et 

al., 2018; Voges et al., 2019). Similar functions have been inferred for other secondary metabolites like 

benzoxazinoids and canavanine from root exudates of crops like maize (Cotton et al., 2019) and legumes 

(Cai et al., 2009), respectively. Root system architectural traits such as root type (Kawasaki et al., 2016) 

and root hairs (Robertson-Albertynm et al., 2017) have also been found to significantly influence the 

composition of rhizosphere microbial communities in Brachypodium and barley, respectively. 

Microbial colonisation along growing roots is shaped by differential exudation patterns, that change 

the distribution of microbial biomass along the root, and the kinematics of root tip growth through soil 

profiles (Lugtenberg and Kamilova, 2009; Compant et al., 2010; Dupuy and Silk, 2016). Chemotaxis 

towards root secreted signalling molecules attracts microbes to the proximity of root surfaces whilst root 

elongation rate influences the dynamics of root surface adhesion and longitudinal transport along 

elongating roots. Generally, larger and varied number of active bacteria tends to accumulate around the 

root tip whereas fewer microbial taxa are associated with the root elongation zone (Watt et al., 2006; 

Massalha et al., 2017). Bacterial density decreases progressively from the elongation zone towards mature 



root zone. This is likely to reflect the rapid expansion in root epidermal cell size (up to thirty times in six 

hours as cells transit the elongation zone) which will, in effect, ‘dilute’ microbial cells resident on the root 

surface until they divide and create a continuous biofilm in the maturation zone. Dispersion of rhizosphere 

bacteria and chemotactic movements may also govern the shifts in rhizosphere communities favouring the 

occurrence of bacterial decomposers (DeAngelis et al., 2009; Dupuy and Silk, 2016; Massalha et al., 

2017).  

Additionally, plant life cycle imposes a temporal pattern in exudates secretion that sculpts the dynamics 

of root associated microbiota. For instance, recent studies have investigated the distinctive root microbiota 

associated with early and late stages of plant development in Arabidopsis (Chaparro et al., 2013), rice 

(Edwards et al., 2018) and oats (Zhalnina et al., 2018). In oats, the increased abundance of sucrose at the 

seedling stage has been suggested to facilitate the establishment of symbiotic interactions with soil 

microorganisms, whereas shifts to aromatic compounds and amino acids during the vegetative phase may 

reflect enhanced plant defence responses. Cumulative secretion of amino acids in Arabidopsis has been 

suggested to be crucial for bacterial root colonisation (Chaparro et al., 2013). These studies suggest the 

important coordination between plant developmental stage and changes in root associated microbiota to 

counterbalance plant immunity and nutrition needs. 

Microbial communities in the rhizosphere can in return induce systemic adjustments in the root 

exudates (Korenblum et al., 2020). Microbes colonising the root induce profound changes in the shoot 

and systemic root metabolomes, and transcriptomes (Korenblum et al., 2020).  Glycosylated azelaic acid 

was identified as putative microbiota-induced signalling compound that is later exuded as azelaic acid. 

Local microbial effects on root would therefore influence the exudation in other distant parts of the root 

system conditioning the rhizosphere (Korenblum et al., 2020).   

While many studies indicate a strong interdependence between plant genotype and rhizosphere 

microbiome composition (Jacoby et al., 2017), very little is known about the plant genes underlying this 

process. In the study of Mwafulirwa et al., (2016), closely related barley genotypes from a biparental cross 



between an elite and a wild accession were found to greatly differ in rhizosphere microbial activity as a 

consequence of genotypic variation in rhizodeposition. This study not only provided evidence of plant 

genetic control and heritability of the barley root microbiome, but also revealed the large potential of un-

tapped exotic germplasm to contribute to enhanced plant-soil interactions. In addition, an interesting 

recent study using Avena barbata revealed that the fluctuations in chemical composition of root exudates 

during plant growth respond to the substrate metabolite preferences of rhizosphere associated 

microorganisms (Zhalnina et al., 2018). The authors highlight the significant role of organic acids (and 

genes controlling their transport) in the establishment of the rhizosphere microbiome. Studies comparing 

current crops with landraces and its wild relatives highlight the risks that domestication and breeding 

programs have had on rhizosphere functions and diversity (Mwafulirwa et al., 2016; Pérez-Jaramillo et 

al., 2016). Domestication of crops and intensive agricultural practices have altered the plant carbon source 

and sink dynamics to favour aboveground allocation of photo-assimilates in the form of yield. This process 

has impacted the extended root phenotype by altering plant-soil feedbacks including plastic responses to 

heterogeneous and changing environments (Milla et al., 2017; Carrillo et al., 2019). For instance, recent 

studies on wild and domesticated beans (Pérez-Jaramillo et al., 2017) and tomato (Carrillo et al., 2019) 

reveal clear shifts in rhizosphere bacterial community composition and assembly between the two 

genepools. In barley, introducing genetic variation from wild accession into a modern cultivar promoted 

beneficial plant – soil interactions associated with soil carbon dynamics (Mwafulirwa et al., 2016). These 

studies not only demonstrate the genetic basis underpinning root microbiome assembly but also the 

potential genetic loss in modern cultivars for beneficial associations in plant - root microbial communities 

for particular habitats.  

 

BENEFITS OF THE EXTENDED ROOT PHENOTYPE 

Plants invest carbon and energy in building a belowground niche, essentially because it comes with a large 

number of benefits for its overall fitness, and it facilitates plant's adaptation to a changing environment 



(Turner et al., 2013). The description of the rhizosphere effect on plant fitness is not new, and it is intuitive 

to assume that the specific conditions that the rhizosphere provides (e.g. higher soil moisture or organic 

matter content and microbial activities or biomass) are beneficial for plant fitness. However, the 

mechanisms operating at finer scales in close proximity to the root and the strength of the relationships 

among the rhizosphere traits and plant fitness remains in large part unknown. This section describes the 

current relations that have been established between the extended root phenotype and plant health and 

productivity (Figure 2). 

 

Physicochemical changes linked to the extended root phenotype impact plant fitness 

As described in detail above, plants act as ecosystem engineers that modify the physical and chemical 

properties of the soil surrounding their roots. Major advances have been done in characterizing the effects 

of plants on soil redox potential, pH, aggregation, water or nutrient availability (Hinsinger et al., 2009). 

However, explicit testing of the feedback effects of plant-induced changes in soil abiotic conditions on 

plant fitness are more limited.  

Some studies report that rhizosheath  (defined as a sheath of soil particles that adhere strongly to the 

root on excavation; George et al., 2014; York et al., 2016) is a key trait for plant fitness under water and 

nutrient-stressed conditions by improving phosphate and water uptake (George et al., 2014; Liu et al., 

2019). Recently, Rabbi et al., (2018) found that a drought-tolerant chickpea variety had a greater 

rhizosphere moisture storage linked to larger rhizosheaths resulting from greater mucilage exudation. 

Also, rhizosheath formation was related with increased water stress levels in foxtail millet and enhanced 

exploration of deeper soil horizons to access water (Liu et al., 2019). Similarly, larger rhizosheath 

formation was found to correlate with greater shoot biomass in wheat and suggested to respond to an 

improved water uptake regardless of the nutrient stress imposed in the experiment (James et al., 2016). 

Soil aggregation in the rhizosphere is highly variable between plant genotypes (Ndour et al., 2017) and 



represents a rhizosphere emerging property crucial for plant water and nutrient uptake on which crop 

varieties could be selected. 

Additionally, the modification of soil pH in the rhizosphere induced by root exudation and (micro)-

organisms' respiration (1-2 pH units above or below the bulk soil) influences soil nutrient availability 

(Neumann and Römheld, 2012). Rhizosphere acidification potential differs between species and 

genotypes and thus represents a currently neglected trait to consider in the context of crop breeding or 

crop rotation and intercropping to improve nutrient acquisition or pollution resistance.  

Similarly, the role of genes controlling the expression of transport channels involved in the efflux of 

root exudates should be considered as significant targets for sustainable breeding programmes. In recent 

field evaluations, alleles conferring Al-tolerance were found concomitantly associated with a yield QTL 

displaying additive effect on grain yield in acid soils. The absence of yield penalties in non-stress 

conditions highlights the breeding value of the locus for improving sorghum grain yield on acid soils 

(Carvalho et al., 2016). The rhizosphere is a unique biophysical and biogeochemical environment shaped 

by plant evolution to maximize plant fitness and more attention should be given to rhizosphere abiotic 

traits (e.g. acidification, aggregation, rhizosheath mass) to improve crop selection and production. 

 

Role of the rhizosphere microbiome for plant nutrition and water uptake 

Endosymbioses - Plants have evolved mechanisms to interact and support the growth of large numbers of 

beneficial microbial taxa that live in the proximity of the root or inside the root tissues. The nature of the 

beneficial root-microbial interactions ranges from symbiotic to commensalistic, and they are critical for 

plant nutrition. Two of these interactions have been thoroughly mechanistically explored: plant association 

with symbiotic mycorrhizal fungi (e.g. arbuscular mycorrhiza, ectomycorrhiza) and with nodule forming 

nitrogen-fixing bacteria (e.g. Rhizobium, Frankia). 

Mycorrhizal fungi form symbiotic associations with almost all land plants, with current estimates of 50 

000 fungal species forming associations with 250 000 plant species (van der Heijden et al., 2015), with 



the most common association being established with arbuscular mycorrhizal fungi (AMF, phylum 

Glomeromycota, 74% of all land plants, Smith and Read 2008). AMF symbiosis plays a key role in plant 

P nutrition through a more efficient solubilization and uptake of orthophosphate (i.e. only form available 

to plants) by the extended fungal network that can contribute to up to 90% of plant P uptake (Ferrol et al., 

2019). This symbiotic interaction is especially relevant in ecosystems with low soil nutrient availability. 

Although, the abundance of AM fungi is often reduced in heavily managed agroecosystems due to 

fertilization and soil perturbation, most of the crops can form symbiotic associations with AM fungi (e.g. 

cereals, legumes, potato, tomato) with a significant impact on crop productivity. Experiments using a set 

of maize mutants able to establish a beneficial relationship with AM fungi but deprived of the mycorrhiza-

specific orthophosphate transporter presented large decreases in aboveground biomass and reduced grains 

production when grown in agroecosystems with low phosphorus availability (Willmann et al., 2013). 

AMF influences plant nitrogen nutrition at a lower extent than phosphorus, and it is highly context 

dependent (van der Heijden et al., 2015). Plants associated with AMF present a higher water uptake and 

more effective scavenging for water in soil micropores. AMF network also promote a higher moisture 

retention and aggregation in soils (Augé, 2001; Augé, 2004), that sometimes are combined to a higher 

plant water-use efficiency (Birhane et al., 2012). Indeed, AMF influence maize plant aquaporins activity 

resulting in higher water transport under water deficit that led to an improved photosynthetic capacity in 

the shoots (Quiroga et al., 2019). Overall, these combined nutritional and non-nutritional effects of AMF 

generate increases in plant yield and seed protein mass in greenhouse and field conditions that has justified 

the use of AMF inocula in agriculture for decades (Berruti et al., 2016). 

Legume plants (family Fabaceae) and the so-called actinorhizal plants (orders Fagales, Rosales, 

Curbitales) rely on their associations with nitrogen fixing microorganisms (e.g. Rhizobium, 

Bradyrhizobium, Frankia) for nitrogen nutrition. The association between plants and nitrogen fixers 

microbes are characterized by the formation of specialized root organs called nodules colonized by the 

nitrogen-fixing microbes where the atmospheric nitrogen  is converted into a reduced nitrogen form and 



become available for the host plant (Masson-Boivin and Sachs, 2018). In this symbiosis, the plant provides 

the nitrogen fixers bacteroids with dicarboxylates (e.g. l-malate, succinate, fumarate), used as energy and 

carbon sources by the microorganism, and in return, bacteroids provide ammonium to the plant (Poole et 

al., 2018). Across many plant hosts and Rhizobium symbionts a clear fitness alignment exists between the 

two members of the symbiotic relationship with a robust positive correlations between plant aboveground 

biomass and the number of nodules or nodules biomass (Friesen, 2012).  

Additionally, as these symbiotic species always evolve in complex microbial communities with which 

they strongly interact, sometimes the establishment of a functional symbiosis may require the presence of 

other symbionts or microbial helpers present in the rhizosphere (Frey-Klett et al., 2007). For instance, it 

has been reported in soybean that AMF inoculation improved both nodulation and nitrogen-fixation, 

especially because nodulation requires high phosphorus demand that can be addressed by an established 

symbiosis with AMF (Meena et al., 2018). Also, nitrogen-fixing symbioses for legume trees from the 

Piptadenia genus in Brazil are efficient only in the presence of an AMF (Bournaud et al., 2018). Hence, 

the plant can form multiple symbiosis with diverse microorganisms that can provide more than half of the 

plant nutrient demands and synergistically stimulate its fitness (van der Heijden et al., 2016). Still, the 

AMF and nitrogen fixer symbiosis are extreme examples of strong associations between the plant and its 

rhizospheric microbes and they represent only a very small fraction of the rhizosphere microbiome 

abundance and diversity.  

 

Beneficial activities of rhizosphere functional groups - Out of the myriad of microbes that live in the 

rhizosphere, only a small proportion can establish symbiotic interactions with the plant, mainly due to the 

tight control plant exert on the colonization of the endosphere. Non-symbiotic microorganisms can form 

less strict mutualistic or commensalistic relationships with the plant that still provide clear benefits for the 

plant nutrition. For instance, saprophytic microorganisms facilitate plant nutrient uptake by mineralizing 

soil organic matter and solubilizing non-bioavailable soil nutrients. The most studied nutritional functions 



performed by rhizosphere microbiomes are phosphate solubilization, organic phosphorus mineralization, 

and siderophore production (Vacheron et al., 2013). Many bacteria (e.g. Pseudomonas, Bacillus) and fungi 

(e.g. Penicillium, Aspergillus) are able to solubilize soil mineral phosphate through excretion of organic 

acids (e.g. oxalic acids, citric acids) causing a local acidification or the chelation of the cations to which 

phosphate is bound (Richardson et al., 2009). Additionally, a large diversity of microorganisms (e.g. 

Proteobacteria, AMF, ectomycorrhizal fungi), through extracellular phosphatase activities, can mineralize 

soil organic phosphorus and make it available for the plant (Spohn et al., 2015; Menezes-Blackburn et al., 

2018). Rhizospheric microorganisms also contribute to plant iron uptake through the production of 

siderophores, small organic molecules, that chelate the ferric form of iron, normally not bioavailable, and 

make it absorbable by the plants (Saha et al., 2013). Other microbial mechanisms modulate plant nutrition 

indirectly by the microbial production of phytohormones and other signals that stimulate lateral root 

branching and root hair growth, maximizing the soil exploratory capacity of the plant (Vacheron et al., 

2013).  

The microorganisms harbouring these beneficial functions are known as Plant Growth Promoting 

(PGP) microbes and some culturable species are used as biofertilizers (e.g. Pseudomonas fluorescens, 

Azospirillum brasilense). Microorganisms harbouring the same PGP functions (e.g. phosphate 

solubilization, siderophore production) can be categorized as functional groups that can be studied 

together and not as single strains using sequencing and qPCR on functional genes or high-throughput 

cultivable approaches (Vacheron et al., 2013). These PGP functional groups can be seen as biotic traits of 

the extended root phenotype that when better characterized (e.g. size, composition, structure, activity of 

the group) could help us understand the importance of these functions under variable environmental 

conditions (e.g. low nutrient availability, soil or climatic disturbance, plant life stage). These approaches 

have been well developed to characterize the nitrogen-fixer functional group in the rhizosphere using the 

nifH gene (Tan et al., 2003; Coelho et al., 2009; Bouffaud et al., 2016) but it needs to be developed for 

other important microbial functions performed by rhizospheric microorganisms.  



Currently, this field of research is transitioning from studying a single PGP strain inoculated alone on 

the plant, in axenic conditions or on the field, to testing the effects of an assemblage of PGP strains 

(Vorholt et al., 2017, Finkel et al., 2017). The goal is to determine if complex inocula with diverse or 

redundant functions provide more efficient plant growth promotion and improve our understanding of the 

collective effects of the hundreds of PGP microorganisms that live and interact naturally in the 

rhizosphere. Some studies that inoculated a consortium of PGP strains reported higher increases in crop 

biomass and yield as compared with a single strain inoculum, suggesting additive or synergistic effects 

associated to microbial interactions and niche complementarity (Nain et al., 2010; Lally et al., 2017). 

However, in other studies strain consortia performed similarly or worse than single strains (Lampis et al., 

2015) or even caused bacterial community collapse and a loss of plant protection (Becker et al., 2012). 

These findings highlight the necessity to develop a better understanding of microbe-microbe interactions 

in complex communities to design efficient microbial-based solutions for agriculture. 

 

Microbiome level - Overall at the rhizosphere microbiome level, rhizodeposition stimulates the growth of 

hundreds of heterotrophic microbial species. These microbes do not necessarily harbour PGP traits but 

contribute in making the rhizosphere a nutrient hotspot for the plant through the degradation of soil organic 

matter (e.g. litter degradation). The definition and interpretation of the overall impact these microbes have 

on plant nutrient acquisition and use is challenging. It requires the development of synthetic plant 

microbiomes, that through the assemblage of multiple microbial strains simulate realistic rhizosphere 

microbial communities. Reductionist approaches based on synthetic plant microbiomes offer incredible 

opportunities to establish causality between microbiome characteristics (e.g. structure, composition, 

functions) and plant phenotypes under variable biotic and abiotic conditions (Vorholt et al., 2017). 

Synthetic ecology approaches have already been successfully used on the model plant A. thaliana where 

the reproducibility and flexibility of these systems have been demonstrated under in vitro plant growth 

conditions (Bodenhausen et al., 2014; Finkel et al., 2019).  



Pioneering work on rice synthetic microbiomes reveals bacterial consortia enriched in the indica 

genotypes contribute to higher nitrogen use efficiency than in japonica genotypes and also resulting in 

higher growth rates (Zhang et al., 2019). In A. thaliana, the colonization of a synthetic bacterial 

community under in vitro conditions led to a 20-to-40-fold increase in orthophosphate concentration in 

shoots of phosphate starved plants after 3 days of supplementation with phosphate (Castrillo et al., 2017). 

Subsequent work showed that bacterial synthetic communities modulate plant phenotypes, like 

orthophosphate content, root elongation and shoot surface area in a predictable way (Herrera-Paredes et 

al., 2018).  

Beneficial effects of plant microbiota are highly context dependent where, abiotic conditions or plant 

genotypes, may cause them to become neutral or negative for plant fitness. Using a 185-member bacterial 

synthetic community representative of the A. thaliana rhizosphere, Finkel et al. (2019) observed 

contrasted effects of the synthetic community on rosette size and orthophosphate accumulation in shoots, 

depending on orthophosphate concentration in the medium and the presence of specific taxonomic groups 

(e.g. Burkholderia). When the plant was phosphate-stressed, Burkholderia strains exacerbated plant 

phosphate starvation (Finkel et al., 2019). These findings demonstrate that many rhizospheric 

microorganisms can either have beneficial or detrimental effects on plant fitness depending on the 

dynamic of multiple biotic and abiotic parameters that remain to be uncovered (Haney et al., 2015; 

Hacquard et al., 2017). 

 

Role of the rhizosphere microbiome for abiotic and biotic stress tolerance 

Plants face multiple abiotic and biotic stressors during their lifetime and they use a large repertoire of 

mechanisms to mitigate the effects on their fitness. Emerging evidence suggests that rhizospheric 

microbiota can enhance plant tolerance to drought, salt stress, pollutants, pathogen outbreak, herbivory or 

competition with other plants. In this section, we will detail how root-associated microbes and their 



functions provide a diverse arsenal to help the plant survive under stressful conditions and act as an 

extended immunity.  

Tolerance to abiotic stressors (drought, salinity, pollution...) 

A large number of studies on stress tolerance mediated by the rhizosphere microbiome focused on drought 

stress that is one of the most destructive abiotic stressors for plants in both natural and agricultural 

ecosystems. PGP microbes are known to play a role in drought stress alleviation for various crops through 

the production of exopolysaccharides, different phytohormones, 1-aminocyclopropane- 1-carboxylate 

(ACC) deaminase or volatile compounds (reviewed in Naylor and Coleman-Derr, 2018). At the 

microbiome level, it was found that an increase in endospheric Actinobacteria and especially of the 

Streptomycetaceae family was associated to higher drought tolerance across 30 phylogenetically diverse 

host plant species in a common garden experiment (Fitzpatrick et al., 2018). 

Hence, the presence of specific PGP microbes or families can lead to higher drought tolerance but these 

beneficial effects are dependent on different historical factors, like previous exposure to drought or the 

host plant. Lau and Lennon (2012) demonstrated that adaptive plant responses to drought were mainly 

driven by the responses of soil microbiomes and highlighted that microbial communities pre-adapted to 

drought maintained a higher fitness for Brassica rapa in a mesocosm experiment. This is consistent with 

the finding that soil microbiomes from more constant environments are more sensitive to change and have 

a poorer functional acclimatisation compared to microbiomes from more fluctuating environments 

(Hawkes and Keitt, 2015). Additionally, Zolla et al. (2013) demonstrated that microbiomes historically 

exposed to the host plant (i.e. sympatric communities) provided higher drought tolerance than 

microbiomes previously exposed to other plant species. The presence of these sympatric microbiomes 

reduced the expression of drought response marker genes in the host plant and plant biomass was 

significantly increased compared to non-sympatric microbiomes conditions. These results highlight that 

plants benefit from their associated microbiomes to resist drought stress, especially when the microbial 

communities have been pre-exposed to this stressor and the host plant in previous seasons. These findings 



encourage more research to determine the adaptive potential of plants and their microbiomes to rapid 

changing climates but also in agriculture in the context of transition to new cropping systems or rotations. 

Another abiotic stress that plants face frequently is soil salinity, especially in arid or coastal areas, that 

leads to large decreases in plant growth and yield. Some halotolerant PGP microbes, like Halomonas 

strains have been shown to promote plant growth under salt stress (Mapelli et al., 2013) and this higher 

salt tolerance was often linked to the bacterial production of ACC deaminase or volatile organic 

compounds (VOC) that helps the plant determine its sodium homeostasis (Yang et al., 2009; Siddikee, 

2010). Additionally, anthropogenic activities are causing a large release of organic and metallic pollutants 

in the atmosphere and in soils that can cause oxidative stress in plants and decrease their fitness. Many 

rhizospheric microorganisms are able to accumulate or detoxify heavy metals and are playing a crucial 

role for the management of heavy metal stress in plants (Mishra et al., 2017). In particular, mycorrhizal 

fungi through their hyphal networks and the secretion of organic acids (e.g. oxalic acid, citric acid, 

gluconic acid, acetic acid) can solubilize, chelates and absorb heavy metals in soil and reduce their 

bioavailability for plants (Gube, 2016).  

In conclusion, rhizosphere microorganisms are able to enhance plant tolerance to a wide array of abiotic 

stressors and to illustrate this phenomenon the umbrella concept of Induced Systemic Tolerance (IST) was 

proposed to describe all physical and chemical changes induced in plants by microorganisms that result 

in higher abiotic stress tolerance (Yang et al., 2009). 

 

Rhizosphere microbiomes provide an extended immunity against biotic stressors       

The commensal and mutualistic microorganisms of the rhizosphere also provide an extended immunity to 

the plant when exposed to biotic stressors, like pathogens, parasites or herbivores. In particular, many 

studies are available on the role of plant microbiota in mediating disease resistance (Vannier et al., 2019). 

For instance, it was demonstrated that the resistance of a tomato variety to the soil borne pathogen 

Ralstonia solanacearum was driven by a native bacterial strain affiliated to the genus Flavobacterium 



(Kwak et al., 2018). Interestingly, for the same pathogen it was also demonstrated that the pathogen 

success was influenced by the microbial network structure, particularly when communities presented a 

higher stability and niche overlap with the pathogen (Wei et al., 2015). These two examples highlight that 

microbiota-mediated disease resistance operate at multiple levels in the microbiome, from single strains 

to emerging properties at the community level. This can be explained by the fact that microbiomes provide 

an extended immunity to their hosts through multiple mechanisms. Microorganisms can stimulate the 

plant innate immunity through a mechanism called induced systemic resistance (ISR) or priming, which 

is dependent of jasmonic acid and ethylene signalling (Pieterse et al., 2014). Recent studies show that 

plants modify their exudation pattern when exposed to pathogens as a "call for help" that enable the 

recruitment of beneficial ISR-inducing bacteria (Berendsen et al., 2018; Yuan et al., 2018). Second, the 

plant microbiota can decrease pathogen success through direct microbial competition that complement 

plant innate immunity (Vannier et al., 2019). Native microorganisms can decrease pathogen invasion and 

fitness through resource and space competition, the production of antimicrobial compounds or 

hyperparasitism. Several studies show that the entire microbial community or the presence of a microbial 

consortium can act collectively as a barrier to pathogen invasion or emergence that are at the origin of 

disease-suppressive soils (Yin et al., 2013; Santhanam et al., 2015; Hacquard et al., 2017). Hence, some 

studies encourage to apply well established ecological theory to plant microbiome research on the 

relationships between biodiversity and ecosystem functioning that suggest that resistance to pathogen 

invasion increases with species diversity (i.e. diversity-resistance relationship, Hu et al., 2016; Mallon et 

al., 2015; Mallon et al., 2018). For instance, Hu et al., (2016) showed in simplified conditions that 

pathogen density and disease incidence decreased with increasing Pseudomonas diversity due to an 

intensification of resource competition and interference with the pathogen. Additionally, pioneer work 

considering multi-kingdom microbial consortia shows that A. thaliana survival in agar-based growth 

medium depends on the presence of a community of bacteria with redundant biocontrol traits to protect 

against fungi and oomycetes that are not kept at bay by the plant immune system alone (Durán et al., 



2018). Thus, plant microbiota plays a crucial role for plant fitness during pathogen invasion and 

emergence through competitive exclusion that constitutes the first barrier for pathogens to circumvent and 

then through a modulation of plant immunity.  

Similar findings on the role of plant-associated microorganisms for the suppression of aboveground 

insect pests through direct (e.g. pathogenicity against herbivores) and indirect mechanisms (e.g. microbial 

ISR against insects, modification of the leaf metabolome) are currently emerging (Pineda et al., 2017). 

For instance, the root-endophytic fungus Trichoderma atroviride can induce resistance in maize against 

the herbivore insect Spodoptera frugiperda through an activation of plant defence responses and the 

production of volatile terpenes that reduces foliar consumption (Contreras-Cornejo et al., 2018). At the 

microbiome level, a study that performed inoculations of contrasted soil microbiomes on the roots of A. 

thaliana showed that most microbiomes induced inhibition of Trichoplusia ni larvae herbivory compared 

to non-inoculated plants, that was likely associated with changes in the leaf metabolome (Badri et al., 

2013). Altogether, these findings show that plants can survive to diverse biotic stressors with the help of 

their associated microbiomes harbouring a large repertoire of protective mechanisms that offers promising 

research perspectives to improve plant protection.     

     

 

Rhizosphere microbiomes influence plant phenology 

The association of plants with microorganisms starts as soon as seed formation and germination. The 

composition of the seed microbiome can impact seed viability and this has been particularly well studied 

in the context of negative impacts of seed pathogens on germination and emergence. In contrast, limited 

work has been conducted to investigate the beneficial role of seed microbiota on germination rates and 

seedling growth, despite potential important implications for agricultural production (Truyens et al., 2015; 

Shade et al., 2017; Lamichhane et al., 2018). For instance, quinoa seeds harbour consistently Bacillus 

endophytes that have high catalase activities and superoxide contents that help the host during cell 



expansion and induce a priming of the immune system. This association with Bacillus strains helps to 

explain in part the incredible capacities of quinoa seeds to germinate in minutes under hostile conditions, 

to regenerate when broken or even resuscitate (Pitzschke, 2016). Yet, despite these promising findings, to 

date no experimental evidence using seed microbiome manipulations (e.g. synthetic communities) has 

been performed to assess the influence of seed microbiota on seed germination rates or seedling emergence 

(Lamichhane et al., 2018). Hence, exciting research perspectives exist to determine the influence of seed 

microbiota on plant phenology during these critical stages of the plant's life cycle that can have profound 

impacts on plant health and productivity. 

The impact of rhizospheric microbes on plant flowering has been more extensively studied on various 

plant species and environmental conditions (e.g. soil types, drought, plant competition). Using natural soil 

microbial communities or manipulated communities inoculated into different sterile soils, several studies 

demonstrated that soil microbiota can alter flowering time of A. thaliana or Boechera stricta by 1 to 5 

days (Lau and Lennon, 2012; Wagner et al., 2014; Lu et al., 2018; Fitzpatrick et al., 2019). In addition, 

Panke-Buisse et al., (2015) provided an elegant demonstration using a multi-generation experiment with 

A. thaliana that specific soil microbiomes can induce earlier or later flowering times. The inoculation of 

these microbiomes to the soil of different A. thaliana genotypes or Brassica rapa led to similar changes 

in flowering time, indicating that microbiome effects on plant fitness can be reproducible across plant 

hosts. These results demonstrate that microbiomes at different stages of the plant life play a role in the 

phenotypic plasticity of their host and thus contribute to their rapid adaptation to new colonized 

environments or local disturbed conditions. 

 

Conclusion/perspectives/future directions 

Plant roots are constantly interacting with the soil they grow in and the complex biodiversity it 

harbours. Plants have therefore evolved mechanisms to shape this environment to increase their foraging 



capacity and control bioagressors. This extended root phenotype provides the plants with new functions 

or redundant functions (additive effects), and can have priming effects. 

Much more research is needed to characterize the genetic control of the extended root phenotype such 

as soil acidification or soil aggregation that represent emerging properties resulting from the complex 

abiotic and biotic transformations operating in the rhizosphere impacting plant fitness under different 

environmental conditions. This requires researchers to bridge soil sciences, plant sciences and microbial 

ecology to fully understand the rhizosphere, a complex and dynamic environment. For instance, the 

majority of the rhizosphere microbiome, and its contribution to the extended root phenotype of the host, 

is not well defined. Important components of the rhizosphere biodiversity (e.g. protists, viruses) are also 

currently largely overlooked while they could have large contributions to microbiome structure and 

function (Henkes et al., 2018; Kuppardt et al., 2018; Pratama and van Elsas, 2018; Gao et al., 2019; 

Roossinck, 2019).  

Importantly, the microbiome is strongly influenced by the plant genome and may be considered as an 

extension to form a second genome or collectively to form a pan-genome (Turner 2013). We need to better 

characterize the extra functions provided by the rhizosphere and under which conditions they are 

expressed to improve plant fitness. Currently, very few studies have uncovered the links between 

rhizosphere traits and plant fitness, yield, stress tolerance or disease resistance and this constitutes a major 

knowledge gap in our understanding of plant biology and ecology. Future research should address these 

gaps and aim at quantifying the cumulative effects of this extended root phenotype on plant fitness to 

determine the most crucial functions to select for. Altogether, the consideration of the rhizosphere as an 

extended root phenotype could lead to a completely new paradigm in sustainable agriculture. 

 

 

Box 1: Summary 



• The rhizosphere is a unique biophysical and biogeochemical environment shaped by plant roots 

in their interdependent and dynamic interaction with soil microbial communities. 

• Plants genotype influence root biomechanical interactions with the soil and rhizodeposition and 

thus, the rhizosphere physico-chemical properties mediating root growth and access to soil 

resources. 

• Beneficial root-microbial interactions range from symbiotic to commensalistic and are critical 

not only for plant nutrition and water acquisition but also confer plant with an extended 

immunity  

• Rhizosphere microbiota play a role in the phenotypic plasticity of their host and contribute to 

their adaptation to new environments or locally disturbed conditions  

• The genetics controlling extended root phenotype remain as a huge untapped genetic resource 

that needs to be explored in the transition to more sustainable production systems  

 

 

Box 2: Open Questions 

• What is the best strategy to quantify and rank the relative contribution of each rhizosphere 

trait to a specific plant phenotype?  

• What are the key evolutionary trade-offs faced by plants during rhizosphere niche 

construction that ultimately drives the variability observed between genotypes? 

• How do rhizosphere viruses and protists influence the structure and function of the 

rhizosphere microbiome and plant fitness? 

• Can plant breeding based on rhizosphere traits (soil aggregation, acidification, exudation 

profiles, microbiome structure) improve crop productivity and resistance to biotic and 

abiotic stressors? 



• What are the most efficient solutions to manipulate the rhizosphere microbiome to improve 

plant productivity and health? 
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FIGURE LEGENDS 

 

Figure 1. Rhizosphere establishment and increased complexity throughout plant life cycle. 

Key physical, chemical and biological processes and traits conforming the extended phenotype 

 



 

Figure 2. Main benefits provided by the extended root phenotype to the host plant. Changes induced 

by the plant in the rhizosphere cause major modifications of soil abiotic conditions and microbial 

communities. The reshaping of the soil environment surrounding the roots have positive feedbacks on 

nutrient and water acquisition by the plant, on the plant resistance to abiotic and biotic stressors, and also 

it modifies plant phenology. * Nodulation is observed only in a limited number of plant species (Fabaceae, 

Fagales, Rosales, Curbitales).  
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