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Functional selectivity, biased signaling

§ Ligand-specific activity in one
receptor

Exp. Biology 2005 (ASPET, San Diego)
Simmons, Mol. Interventions (2005)
Urban et al., J Pharmacol Exp Ther
(2007)



Functional selectivity, biased signaling

§ Several potential pathways
associate to a given receptor

Exp. Biology 2005 (ASPET, San Diego)
Simmons, Mol. Interventions (2005)
Urban et al., J Pharmacol Exp Ther
(2007)



Functional selectivity, biased signaling

§ Differential activation of certain
pathways

Exp. Biology 2005 (ASPET, San Diego)
Simmons, Mol. Interventions (2005)
Urban et al., J Pharmacol Exp Ther
(2007)



Key concept in pharmacology

˛ Biased agonism is a key concept to be distinguish from

§ Partial or full agonist.
§ Antagonist, inverse agonist.
§ Affinity (Kd), potency pEC50q, efficacy (Emax).
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Key concept in pharmacology

˛ Biased agonism is a key concept to be distinguish from

§ Partial or full agonist.
§ Antagonist, inverse agonist.
§ Affinity (Kd), potency pEC50q, efficacy (Emax).

˛ A bias might be context-dependent (cell type, physiological
state, etc.)

˛ Biased agonism is becoming a major tool in drug discovery.

ñ Candidate screening requires to accurately quantify bias.



Theoretical foundation

A receptor may adopt several spatial conformations, each of which
has different activation pathway profiles.

§ Conformational selectivity =
Ligand-specific modification
of the energetic landscape,
changing affinities and
efficacies of signaling
patways.

Kenakin, J Pharmacol Exp Ther (2011)



Theoretical foundation

A receptor may adopt several spatial conformations, each of which
has different activation pathway profiles.

§ Conformational selectivity =
Ligand-specific modification
of the energetic landscape,
changing affinities and
efficacies of signaling
patways.

§ Similar concept : modulating
bias

Kenakin and Christopoulos, Nat. Rev. Drug Discov. (2013)



Summary so far

To speak about signaling bias, one necessarily needs two ligands
and two responses, in a same cellular context.

ñ We always compare a ligand with respect to a reference one.
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Serotonine receptor 5 ´ HT2C

§ Quipazine is biaised
towards PI
accumulation with
respect to AA
production, compared
to the reference
agonist DOI.

§ LSD is not biased.

Berg et al., Mol.
Pharmacol. (1998)



Serotonine receptor 5 ´ HT2C

§ Quipazine is biaised
towards PI
accumulation with
respect to AA
production, compared
to the reference
agonist DOI.

§ LSD is not biased.

§ Bias due to an Emax

difference.

Berg et al., Mol.
Pharmacol. (1998)



Serotonine receptor 5 ´ HT2A

pRq ´ 2C ´ B ´ CB is biaised towards PI accumulation with
respect to AA production, compared to the reference agonist
DOB.

Urban et al., J Pharmacol Exp Ther (2007)



Serotonine receptor 5 ´ HT2A

pRq ´ 2C ´ B ´ CB is biaised towards PI accumulation with
respect to AA production, compared to the reference agonist
DOB.

§ Bias due to an EC50 difference.

Urban et al., J Pharmacol Exp Ther (2007)



Steroidogenesis modeulated by NAM

Some negative allosteric
modulators (NAM) can
biased Progesterone
production with respect to
Testosterone production,
under stimulation of
LH/CG receptor by hCG.

Ayoub et al., Mol. Cell.
Endocrinol (2016)



Steroidogenesis modeulated by NAM

Some negative allosteric
modulators (NAM) can
biased Progesterone
production with respect to
Testosterone production,
under stimulation of
LH/CG receptor by hCG.

§ Selective (biased)
allosteric modulation

Ayoub et al., Mol. Cell.
Endocrinol (2016)



GPCR

Many GPCR’s are known
to have biased ligands
( G / β-arrestin)

Kenakin, J Pharmacol
Exp Ther (2011)

Kenakin, Chem Rev
(2017)
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Operational model

Dose-response data are fitted with the function

y “ Etot
τnrLsn

prLs ` KAq
n ` τnrLsn

.

§ Response at equilibrium of a
Michaelis-Menten type
model.

§ KA “ Dissociation
constant of the couple
Ligand/Receptor

§ τ “ Rtot{KE , Efficacy
coefficient (KE is
dissociation constant of the
ternary complex)

Black and Leff, Proc. R.
Soc. Lond. B (1983)
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Operational model

Dose-response data are fitted with the function

y “ Etot
τnrLsn

prLs ` KAq
n ` τnrLsn

.

For n “ 1,

§ EC50 “
KA
τ`1

§ Efficacy y8{Etot “
τ

τ`1

Then, we define

§ Transduction coefficient :

R :“ log

ˆ

τ

KA

˙

Black and Leff, Proc. R.
Soc. Lond. B (1983)



Bias definition With the operational model

Two ligands (j “ 1, 2) and two measured responses (i “ 1, 2) :
Each dose-response data is fitted with the operational model :

yij “ Ei

τniij rLs
ni

prLs ` Kaijqni ` τ
ni
ij rLs

ni
.
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Bias definition With the operational model

Two ligands (j “ 1, 2) and two measured responses (i “ 1, 2) :
Each dose-response data is fitted with the operational model :

yij “ Ei

τniij rLs
ni

prLs ` Kaijqni ` τ
ni
ij rLs

ni
.

For a given response i , we calculate
∆i logpτ{Kaq “ logpτi2{Kai2q ´ logpτi1{Kai1q.

The Bias is then defined by

∆∆ logpτ{Kaq “ ∆2 logpτ{Kaq ´∆1 logpτ{Kaq



Statistical consideration

Raue A., et al. Bioinformatics (2015)



Is bias calculation intuitive ? (simulated data)

§ A strong bias is usually ’apparent’ on dose-response curves or
bias plot
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Is bias calculation intuitive ? (simulated data)

§ But there may be counter-intuitive situation...



§ ... and those situations occur in real life !
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Time-dependent bias

§ Bias value may change
according to the response
time after stimulation.

§ Kinetic explanation :
Ligands with a slow binding
kinetics may have changing
bias value according to time.

Klein Herenbrink et al., Nat.
Commun (2016)



Other extensions

§ Dose-dependent bias

Barak and Peterson et al.,
Biochem. (2012)

§ Extension of the operational
model

Kenakin, Chem. Rev. (2017)

§ Method based on Intrinsic
activities and rank ordering

Onaran et al., Sci. Rep.
(2017)
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Dynamic data (on FHSR in HEK cells)

Instead of focusing on dose-response curves, we deal with several
doses kinetic experiments (here : induced BRET data)
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Dynamic data (on FHSR in HEK cells)

Instead of focusing on dose-response curves, we deal with several
doses kinetic experiments (here : induced BRET data)
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(”trick” to minimize variance...)

Original ”raw” data
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(”trick” to minimize variance...)

”Adjusted” data
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(”trick” to minimize variance...)

”Adjusted” data
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+ adjusting the number of data points ...



Principle

I)We start with a sufficiently detailed chemical reaction network



Principle

I)We start with a sufficiently detailed chemical reaction network to
accurately fit the data (one separate model for each Ligand)
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Principle

II) We fit all data at once, using some common parameters (initial
concentration of molecules, measurement parameters...) and some
different ones (kinetic parameters...)



Principle

II) We fit all data at once, using some common parameters (initial
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Principle

III) We use L1-penalization to find the needed ligand specific
parameters

Steiert, Timmer and Kreutz, Bioinformatics (2016)



Principle

III) We use L1-penalization to find the needed ligand specific
parameters, keeping the fit ’as good as before’
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Principle

IV) After re-optimization, the set of distinct (ligand-specific)
kinetic parameters gives us an accurate description of ligand
specificity.



Principle

V) Significant differences between parameters is assessed by PLE
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Practical problems...
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Practical problems...
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With a ”simpler” model

Kinetic model without G-protein



With a ”simpler” model

We obtain a slightly worse fit
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With a ”simpler” model

But consistent results



With a ”simpler” model

And ”better” parameter identifiability
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With a ”simpler” model
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Comparison with dose-response (on FHSR in HEK cells)

We systematically calculate bias value using standard method
(operational model on dose-response curves :)

Bias=2.3 : C1 is biased towards β-arr, compared to cAMP, in
comparison to FSH.



Comparison with dose-response (on FHSR in HEK cells)

We systematically calculate bias value using standard method
(operational model on dose-response curves :)

Bias=2.64 : C1 is biased towards β-arr, compared to cAMP, in
comparison to FSH.



Comparison with dose-response (on FHSR in HEK cells)

We systematically calculate bias value using standard method
Different times gives (slightly) different bias values

C1 is biased towards β-arr, compared to cAMP, in comparison to
FSH.



Comparison with dose-response (on FHSR in HEK cells)

We systematically calculate bias value using standard method
Uncertainty can be large according to the time of measurement



Thanks for your attention !

§ Notion of signaling bias to quantify differential activation of
several pathways by a Ligand at a given receptor.

§ Standard quantification has several drawbacks (no time,
limited to sigmoid scenario,..).

§ We gave a kinetic interpretation of Ligand biased, which rely
on dynamic (ODE) modeling and parameter estimation with
L1 penalization.



Thanks for your attention !

§ Notion of signaling bias to quantify differential activation of
several pathways by a Ligand at a given receptor.

§ Standard quantification has several drawbacks (no time,
limited to sigmoid scenario,..).

§ We gave a kinetic interpretation of Ligand biased, which rely
on dynamic (ODE) modeling and parameter estimation with
L1 penalization.

§ Any other ideas how to define bias ?

§ How to deal with ”fuzzy/noisy” PLE ?

§ How to deal with non uniqueness of the penalized solution ?

§ How to perform a model reduction that would lead to both a
satisfactory fit and identifiable parameters ?
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