Low effective population sizes in *Amblyomma variegatum* in West Africa: implication for the sustainability of acaricide-based control programs

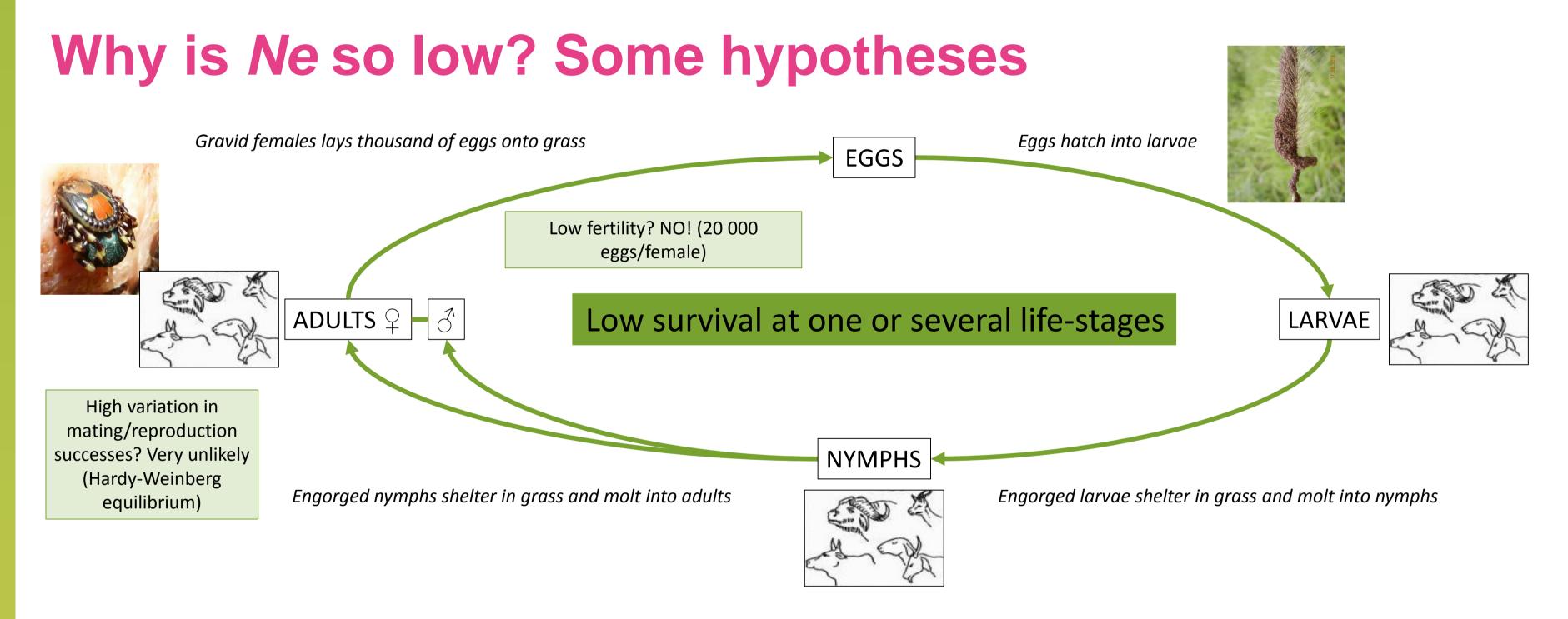
K. Huber¹, S. Jacquet^{2,1}, R. Rivallan^{3,4}, H. Adakal^{1,2,5}, N. Vachiery^{2,1}, AM Risterucci^{3,4}, C. Chevillon⁶ Contact: karine.huber@cirad.fr

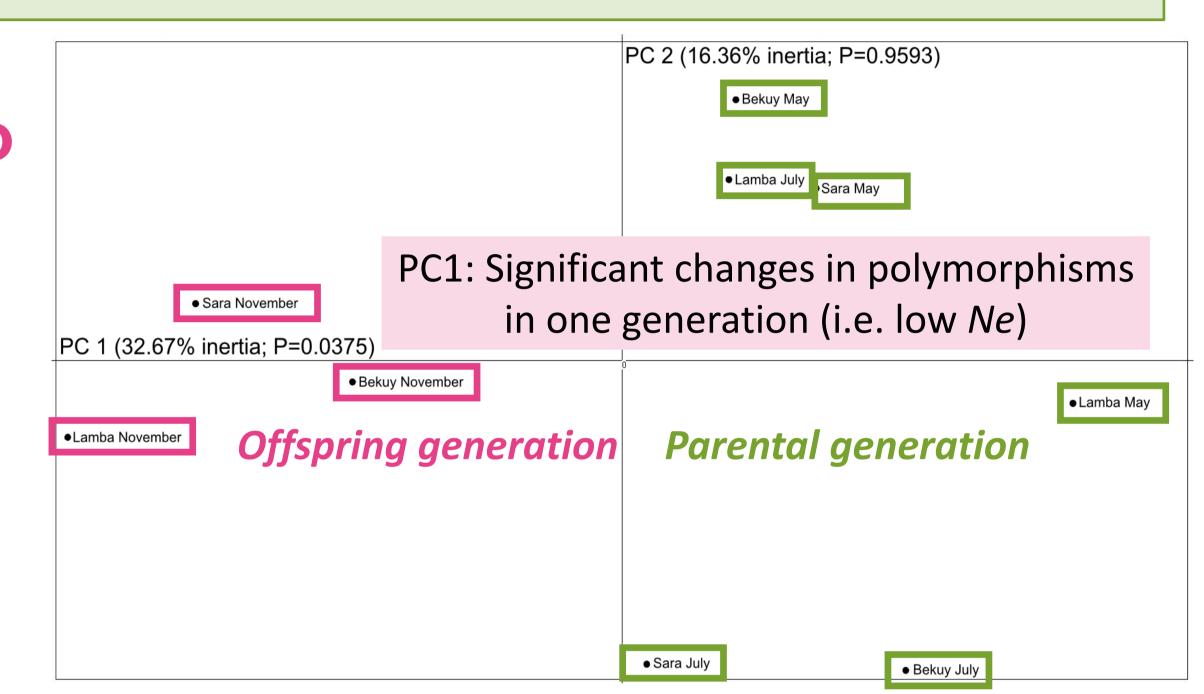
Amblyomma variegatum: a tick species of major veterinary importance for livestock

- Causes substantial economic losses by blood predation (low live weight gain, reduced milk yield) and physical injury (wound)
- Associated with dermatophilosis, and vector of *Ehrlichia ruminantium*, the agent of heartwater
- The use of acaricides is still the most accurate way to protect cattle from all deleterious effects of *A. variegatum*

The effective population size (Ne), an important parameter in population genetics

It translates census sizes of a real population into the size of an idealized population showing the same rate of loss of genetic diversity as the real population under study


- The acquisition of new alleles (via mutation or migration) is proportional to Ne
- 1/Ne measures the impact of drift, i.e. the extant in loss/change in polymorphism per generation; selection (s) overcomes the impact of drift if and only if $s \gg 1/Ne$


Low effective population sizes observed in Burkina Faso

The effective population sizes was estimated in three neighbor villages in Burkina Faso (Bekuy, Lamba, Sara)

- Development of a new set of eight microsatellite markers
- Two successive tick generations were sampled
- Estimation of *Ne* with two methods (a temporal based method and a method based on linkage disequilibrium)

Ne estimates for *A. variegatum* in Burkina Faso : $11 \le Ne \le 23$ per village and generation^a

Because of short geographic distances between the three villages (~10 km) and cattle sharing grazing areas, low geographic genetic differentiation is observed (PC2)

Principal component analysis (PCA) of multilocus genotypic composition

Two contrasting situations regarding acaricide resistance

	Amblyomma variegatum	Rhipicephalus microplus ^{b,c}
Country	Burkina Faso	New Caledonia
Ne	≤ 23 per village per generation	~ 1000 per cattle herd
Probability of apparition by mutation of a new allele conferring acaricide resistance ∝ <i>Ne</i>	+	+++
Acaricide selection pressure (s)	Moderate	High
Probability that an allele conferring acaricide resistance may disappear from tick population $\propto 1/Ne$ unless $s >> 1/Ne$	+++	+
Observed acaricide resistance	Not reported	Frequently reported

(a) HUBER, K., JACQUET, S., RIVALLAN, R., ADAKAL, H., VACHIERY, N., RISTERUCCI, A.M., CHEVILLON, C. (2018), Low effective population sizes in *Amblyomma variegatum*, the tropical bont tick. Ticks and Tick-borne Diseases. https://doi.org/10.1016/j.ttbdis.2018.08.019 (b) KOFFI, B. B., DE MEEÛS, T., BARRÉ, N., DURAND, P., ARNATHAU, C. and CHEVILLON, C. (2006), Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Molecular Ecology, 15: 4603-4611. doi: 10.1011/j.1365-294X.2006.03098.x (c) CHEVILLON, C., DUCORNEZ, S., DE MEEÛS, T., KOFFI, B. B., GAÏA, H., DELATHIÈRE, J.-M., BARRÉ, N. (2007), Accumulation of acaricide resistance mechanisms in *Rhipicephalus* (*Boophilus*) *microplus* (Acari: Ixodidae) populations from New Caledonia Island. Veterinary Parasitology, 147: 276-288. https://doi.org/10.1016/j.vetpar.2007.05.003.

