Recent algorithmic advances for combinatorial optimization in graphical models
David Allouche, Simon de Givry, Georgios Katsirelos, Thomas Schiex, Matthias Zytnicki, Abdelkader Ouali, Samir Loudni

To cite this version:
David Allouche, Simon de Givry, Georgios Katsirelos, Thomas Schiex, Matthias Zytnicki, et al.. Recent algorithmic advances for combinatorial optimization in graphical models. 23rd International Symposium on Mathematical Programming (ISMP-18), Jul 2018, Bordeaux, France. 80 p. hal-02785380

HAL Id: hal-02785380
https://hal.inrae.fr/hal-02785380
Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Recent algorithmic advances for combinatorial optimization in graphical models

Simon de Givry, Thomas Schiex, David Allouche, George Katsirelos, Matthias Zytnicki, MIAT – INRA, Toulouse, France

Abdelkader Ouali, Samir Loudni, GREYC, University of Caen, France
Plan

- Graphical models
 - Examples and definitions
- Local reasoning techniques
 - Bounding, clique cut, pruning
- Complete search methods
 - Hybrid search, iterative search, large neighborhood search
- Experimental results
 - Open-source C++ exact solver **toulbar2 v1.0.0**

https://github.com/toulbar2/toulbar2
Earth Observation Satellite Management (SPOT5)

(Bensana et al, Constraints 1999 ; IJCAI09)

\[n \leq 364, \ d=4, \ e(2-3) \leq 10,108 \]
Radio Link Frequency Assignment (CELAR)

(Cabon et al, Constraints 1999 ; CP97 – AAAI06 – IJCAI07 – IJCAI09 – CP10)

\[n \leq 458, \ d=44, \ e(2) \leq 5,000 \]
Mendelian error correction in complex pedigree (MendelSoft)

n ≤ 20,000, d ≤ 66, e(3) ≤ 30,000
Genetic Linkage Analysis

(Marinescu & Dechter, AAAI 2006; IJCAI 11)

\[n \leq 1,200, \ d \leq 7, \ e(2-5) \leq 2,000 \]
Protein Design

(CP12 – Bioinformatics13 - AIJ14 – JCTC15 – ISMP18)

n ≤ 120, d ≤ 190, e(2) ≤ 7,260
Graph Matching (worms segmentation)

(Kainmueller et al, Med Image Comput 2014 ; Haller et al, AAAI 2018)

\[n \leq 558, \ d \leq 128, \ e(2) \leq 23,407 \]
Graphical Model

Definition (Graphical model)

- Let $X = (X_1, \ldots, X_n)$ be a set of variables.
- X_i takes values in $\Lambda_i \subseteq \mathbb{R}$.
- A realization of X is denoted $x = (x_1, \ldots, x_n)$, with $x_i \in \Lambda_i$.
- A graphical model over X is a function $\psi : \prod_i \Lambda_i \to \mathbb{R}$, which writes, $\forall x \in X$:

$$\psi(x) = \bigotimes_{B \in \mathcal{B}} \psi_B(x_B),$$

where \mathcal{B} is a set of subsets of $V = \{1, \ldots, n\}$, $\psi_B : \prod_{i \in B} \Lambda_i \to \mathbb{R}$ and $\bigotimes \in \{\prod, \sum, \min, \max \ldots\}$ is a combination operator.
Definition (Markov chain)

- $X = (X_1, \ldots, X_n)$ is a set of variables, with finite domains $\{\Lambda_i\}_{i=1,\ldots,n}$.

$$P(x_1, \ldots, x_n) = \frac{P(x_1)}{\psi_1(x_1)} \times \frac{P(x_2|x_1)}{\psi_{12}(x_1,x_2)} \times \ldots \times \frac{P(x_n|x_{n-1})}{\psi_{(n-1)n}(x_{n-1},x_n)}$$
Definition (Bayesian network)

- \(X = (X_1, \ldots, X_n) \) is a set of variables, with finite domains \(\{\Lambda_i\}_{i=1,\ldots,n} \).
- \(\text{Par}(i) \subseteq \{1, \ldots, i - 1\}, \forall i = 2, \ldots, n. \)

\[
P(x_1, \ldots, x_n) = \underbrace{P(x_1)}_{\psi_1(x_1)} \times \prod_{i=2}^{n} \underbrace{P(x_i | x_{\text{Par}(i)})}_{\psi_{\text{Par}(i) \cup \{i\}}(x_i; x_{\text{Par}(i)})}
\]
Probabilistic Graphical Models

Definition (Markov Random Field)

- $G = (V, E)$ is an undirected graph with vertices $V = \{1, \ldots, n\}$, edges $E \subseteq V \times V$ and C is the set of *cliques* of G.
- $\{\psi_C : X_C \to \mathbb{R}^{+*}\}_{C \in C}$ are strictly positive functions.

$$P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{C \in C} \psi_C(x_C)$$

ψ_0, normalizing constant

![Diagram of a Markov Random Field with nodes X1, X2, X3, X4 and edges connecting them.

- φ_{123}
- φ_{124}
Deterministic Graphical Model

Definition (Cost Functions networks)

\[\{w_C : X_C \rightarrow \mathbb{R}^+\}_{C \in \mathcal{C}} \text{ are positive functions.} \]

\[w(x_1, \ldots, x_n) = \sum_{c \in \mathcal{C}} w_C(x_C) \]
Deterministic Graphical Model

Definition (Cost Functions networks)
- \(\{w_C : X_C \rightarrow \mathbb{R}^+\}_{C \in \mathcal{C}} \) are positive functions.

\[
w(x_1, \ldots, x_n) = \sum_{c \in \mathcal{C}} w_C(x_C)
\]

Minimization task: \(\min w(X_1, \ldots, X_n) \) is an NP-hard problem.

\(w_{123} = -\log \phi_{123} \)

\(w_{124} = -\log \phi_{124} \)

Energy minimization task is equivalent to finding the most probable explanation.
Example

In JSON compatible toulbar2 cfn format

```json
{
  problem: { name: "maximization", mustbe: ">-5.0"},
  variables: { "X1": ["a", "b"], "X2": ["c", "d"] },
  functions: {
    "w0": {scope: [], costs: [-6.0]},
    "w1": {scope: ["X1"], costs: [1.0, 0.5]},
    "w2": {scope: ["X2"], costs: [1.0, 0.5]},
    "w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}
  }
}
```
Micro-Structure

```
{    problem: { name: "maximization", mustbe: ">-5.0"},
variables: { "X1": ["a", "b"], "X2": ["c", "d"] },
functions: {
"w0": {scope: [], costs: [-6.0]},
"w1": {scope: ["X1"], costs: [1.0, 0.5]},
"w2": {scope: ["X2"], costs: [1.0, 0.5]},
"w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}    }
}
```

![Diagram showing nodes and edges with weights.](Image)
Minimization with **non-negative integer** costs

```
{ 
  problem: { name: "maximization", mustbe: ">-5.0"},
  variables: { "X1": ["a", "b"], "X2": ["c", "d"] },
  functions: {
    "w0": {scope: [], costs: [-6.0]},
    "w1": {scope: ["X1"], costs: [1.0, 0.5]},
    "w2": {scope: ["X2"], costs: [1.0, 0.5]},
    "w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}
  }
}
```

\[w_\emptyset = 60 \]

\[\text{UB} < 125 \]
Constraints are Cost Functions

```json
{
  problem: { name: "maximization", mustbe: ">-5.0"},
  variables: { "X1": ["a", "b"], "X2": ["c", "d"] },
  functions: {
    "w0": {scope: [], costs: [-6.0]},
    "w1": {scope: ["X1"], costs: [1.0, 0.5]},
    "w2": {scope: ["X2"], costs: [1.0, 0.5]},
    "w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}
  }
}
```

Graphical Representation

```
\[ w_\emptyset = 60 \]
```
Constraints are Cost Functions

```json
{
  problem: { name: "maximization", mustbe: ">-5.0"},
  variables: { "X1": ["a", "b"], "X2": ["c", "d"] },
  functions: {
    "w0": {scope: [], costs: [-6.0]},
    "w1": {scope: ["X1"], costs: [1.0, 0.5]},
    "w2": {scope: ["X2"], costs: [1.0, 0.5]},
    "w12": {scope: ["X1", "X2"], costs: [-1.0, 0.5, -2.0, 5.5]}
  }
}
```

\[w_\emptyset = 60 \]

\[UB < 125 \]
Other equivalent formulations

In various toulbar2 input formats

- **WCSP**

```plaintext
wcsp 2 2 4 125
2 2
2 0 1 0 4
0 0 65
0 1 50
1 0 75
1 1 0
1 0 125 2
0 0
1 5
1 1 125 2
0 0
1 5
0 60 0
```

- **MRF**

```plaintext
MARKOV
2
2 2
2 2
2 0 1
1 0
1 1
1 0
4
0.000341454887383
0.00215443469003
0.0001
1.0
2
1.0
1.0
0.541169526546
2
1.0
0.541169526546
2
0.00063095734448
0.00063095734448
```

- **Max-SAT**

```plaintext
p wcnf 2 7 125
65 1 2 0
50 1 -2 0
75 -1 2 0
5 -1 0
5 -2 0
60 1 0
60 -1 0
```

- **QPBO**

```plaintext
4 13
1 3 32.5
1 4 25
2 3 37.5
2 2 5
4 4 5
1 1 60
2 2 60
1 1 -1000
2 2 -1000
1 2 1000
3 3 -1000
4 4 -1000
3 4 1000
```
Local reasoning techniques

Cost Function Propagation
Reparameterization and pruning

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)

\[w_\phi = 60 \]

UB < 125
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)

\(w_\varnothing = 60 \)

\(\text{UB} < 125 \)
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)
Reparameterization and pruning

(Schiex, CP 2000; Larrosa, AAAI 2002; Cooper, FSS 2003; IJCAI05; IJCAI07; AAAI08; AIJ10)

\[w_\emptyset = 65 \]

\[\text{UB} < 125 \]
Reparameterization and pruning

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)
Reparameterization and pruning

(Schiex, CP 2000 ; Larrosa, AAAI 2002 ; Cooper, FSS 2003 ; IJCAI05 ; IJCAI07 ; AAAI08 ; AIJ10)

• Reparameterization produces a feasible solution of the dual of a strong LP relaxation

• We use a sequence of reparameterizations
 – Faster than LP
 – Not optimal: weaker dual bounds than LP
 – Many fixpoints

and domain value pruning
Same Example in 01LP

(CPAIOR16 – Constraints16)

• **Direct LP formulation**

Minimize

\[+50 t_{0_0_1_1} +75 t_{0_1_1_0} +65 t_{0_0_1_0} -5 d_{0_0} -5 d_{1_0} +60 t +10 t \]

Subject to:

\[+1 d_{0_0} -1 d_{1_0} - t_{0_0_1_1} \leq 0 \]
\[-1 d_{0_0} +1 d_{1_0} - t_{0_1_1_0} \leq 0 \]
\[+1 d_{0_0} +1 d_{1_0} - t_{0_0_1_0} \leq 1 \]

Bounds

\[t_{0_0_1_0} \leq 1 \]
\[t_{0_0_1_1} \leq 1 \]
\[t_{0_1_1_0} \leq 1 \]
\[t = 1 \]

Binary

\[d_{0_0} \quad d_{1_0} \]

End

• **Stronger LP formulation**

Minimize

\[+50 t_{0_0_1_1} +75 t_{0_1_1_0} +65 t_{0_0_1_0} -5 d_{0_0} -5 d_{1_0} +60 t +10 t \]

Subject to:

\[+1 t_{0_0_1_0} +1 t_{0_0_1_1} -1 d_{0_0} = 0 \]
\[+1 t_{0_1_1_0} +1 t_{0_1_1_1} +1 d_{0_0} = 1 \]
\[+1 t_{0_0_1_0} +1 t_{0_1_1_0} -1 d_{1_0} = 0 \]
\[+1 t_{0_0_1_1} +1 t_{0_1_1_1} +1 d_{1_0} = 1 \]

Bounds

\[t_{0_0_1_0} \leq 1 \]
\[t_{0_0_1_1} \leq 1 \]
\[t_{0_1_1_0} \leq 1 \]
\[t_{0_1_1_1} \leq 1 \]
\[t = 1 \]

Binary

\[d_{0_0} \quad d_{1_0} \]

End
Uncapacitated Warehouse Location Problem
(Kratica et al., RAIRO OR 2001)

Search nodes

<table>
<thead>
<tr>
<th>Instance</th>
<th>cplex 12.7.1</th>
<th>toulbar2 1.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capmo1 100x100</td>
<td>155</td>
<td>7,581</td>
</tr>
<tr>
<td>Capmo2 100x100</td>
<td>25</td>
<td>2,024</td>
</tr>
<tr>
<td>Capmo3 100x100</td>
<td>93</td>
<td>5,439</td>
</tr>
<tr>
<td>Capmo4 100x100</td>
<td>23</td>
<td>4,055</td>
</tr>
<tr>
<td>Capmo5 100x100</td>
<td>28</td>
<td>2,664</td>
</tr>
</tbody>
</table>

CPU time (sec. on PC i7 3GHz)

<table>
<thead>
<tr>
<th>Instance</th>
<th>cplex 12.7.1</th>
<th>toulbar2 1.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capmo1 100x100</td>
<td>13.01</td>
<td>20.13</td>
</tr>
<tr>
<td>Capmo2 100x100</td>
<td>3.06</td>
<td>3.02</td>
</tr>
<tr>
<td>Capmo3 100x100</td>
<td>13.32</td>
<td>11.40</td>
</tr>
<tr>
<td>Capmo4 100x100</td>
<td>3.26</td>
<td>7.45</td>
</tr>
<tr>
<td>Capmo5 100x100</td>
<td>2.68</td>
<td>4.62</td>
</tr>
</tbody>
</table>
Clique cuts

Given a set S

$$x_i + x_j \leq 1 \quad \forall x_i, x_j \in S$$

\Rightarrow Satisfied by $x_i = 0.5$

But we can get

$$\sum_{x_i \in S} x_i \leq 1$$
Clique cuts in CFN

Straightforward generalization
Given a set \(S \) of \(\langle X_i, v_i \rangle \) with

\[c_{ij}(v_i, v_j) = \infty \]

Then derive

\[\sum_{ij \in S} X_{ij} \leq 1 \]
Reparameterization for clique

(CP17)

\[w_\emptyset = 0 \]
Reparameterization for clique

\(w_{123}(b,d,f) \rightarrow 2 \)

\(\frac{w_0}{\phi} = 3 \)
Reparameterization for cliques

\(w_{123}(b,d,f) \rightarrow 2 \)

\(w_\emptyset = 3 \)
Reparameterization for cliques

\[w_{123}(b,d,f) \rightarrow 2 \]
\[w_{234}(d,f,v) \rightarrow 1 \]

\(w_\emptyset = 4 \)

Propagating C1 before C2
Reparameterization for cliques

Select the clique with the largest lower bound increase first

$w_{123}(b,d,f) \rightarrow 0$

$w_{234}(d,f,v) \rightarrow 3$

$w_{\emptyset} = 5$

Propagating C2 before C1

(CP17)
Experimental Results

Including bounded clique detection with Bron-Kerbosch algorithm in preprocessing

<table>
<thead>
<tr>
<th>problem</th>
<th>TOULBAR2</th>
<th></th>
<th>TOULBAR2<sup>clq</sup></th>
<th></th>
<th>CPLEX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>solv.</td>
<td>time</td>
<td>solv.</td>
<td>time*</td>
<td>solv.</td>
<td>time</td>
</tr>
<tr>
<td>Auction/path</td>
<td>86</td>
<td>59</td>
<td>86</td>
<td>0.18</td>
<td>86</td>
<td>0.01</td>
</tr>
<tr>
<td>Auction/sched</td>
<td>84</td>
<td>110</td>
<td>84</td>
<td>0.23</td>
<td>84</td>
<td>0.04</td>
</tr>
<tr>
<td>MaxClique</td>
<td>31</td>
<td>1871</td>
<td>37</td>
<td>1508</td>
<td>38</td>
<td>1533</td>
</tr>
<tr>
<td>SPOT5</td>
<td>4</td>
<td>2884</td>
<td>6</td>
<td>2603</td>
<td>16</td>
<td>738</td>
</tr>
</tbody>
</table>

* Including bounded clique detection with Bron-Kerbosch algorithm in preprocessing
Complete tree search methods

Hybrid search
DFS

Depth First
DFS

Depth First
Advantages

- Incrementality
DFS

Depth First
Advantages

- Incrementality
- Anytime (sort of)
DFS

Depth First
Advantages
- Incrementality
- Anytime (sort of)

But
- Thrashing
DFS

Depth First Advantages

- Incrementality
- Anytime (sort of)

But

- Thrashing
- No global lower bounds
BFS

Best first

- Memory requirements
Best first
- Memory requirements
- No incrementality or even greater memory cost
BFS

Best first
- Memory requirements
- No incrementality or even greater memory cost
- Not anytime
BFS

Best first

- Memory requirements
- No incrementality or even greater memory cost
- Not anytime

but

- Theoretical guarantees
BFS

Best first
- Memory requirements
- No incrementality or even greater memory cost
- Not anytime

but
- Theoretical guarantees
- Global lower bounds
HBFS

BFS with DFS probes*
HBFS

BFS with DFS probes*

- Improved anytime behavior
HBFS

BFS with DFS probes*

- Improved anytime behavior
- Incrementality without memory overhead
HBFS

BFS with DFS probes*

- Improved anytime behavior
- Incrementality without memory overhead
- Lower bounds
HBFS

BFS with DFS probes*

- Improved anytime behavior
- Incrementality without memory overhead
- Lower bounds
- Some of the advantages of restarting
HBFS

BFS with DFS probes*

- Improved anytime behavior
- Incrementality without memory overhead
- Lower bounds
- Some of the advantages of restarting

* With adaptive heuristic for probe size
Benchmark

- MRF: Probabilistic Inference Challenge 2011 (uai format)
- CVPR: Computer Vision and Pattern Recognition OpenGM2 (uai)
- CFN: MaxCSP 2008 Competition and CFLib (wcsp format)
- WPMS: Weighted Partial MaxSAT Evaluation 2013 (wcnf format)
- CP: MiniZinc Challenge 2012 & 2013 (minizinc format)

Number of instances and their total compressed (gzipped) size:

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Nb.</th>
<th>UAI</th>
<th>WCSP</th>
<th>LP(direct)</th>
<th>LP(tuple)</th>
<th>WCNF(direct)</th>
<th>WCNF(tuple)</th>
<th>MINIZINC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF</td>
<td>319</td>
<td>187MB</td>
<td>475MB</td>
<td>2.4G</td>
<td>2.0GB</td>
<td>518MB</td>
<td>2.9GB</td>
<td>473MB</td>
</tr>
<tr>
<td>CVPR</td>
<td>1461</td>
<td>430MB</td>
<td>557MB</td>
<td>9.8GB</td>
<td>11GB</td>
<td>3.0GB</td>
<td>15GB</td>
<td>N/A</td>
</tr>
<tr>
<td>CFN</td>
<td>281</td>
<td>43MB</td>
<td>122MB</td>
<td>300MB</td>
<td>3.5GB</td>
<td>389MB</td>
<td>5.7GB</td>
<td>69MB</td>
</tr>
<tr>
<td>MaxCSP</td>
<td>503</td>
<td>13MB</td>
<td>24MB</td>
<td>311MB</td>
<td>660MB</td>
<td>73MB</td>
<td>999MB</td>
<td>29MB</td>
</tr>
<tr>
<td>WPMS</td>
<td>427</td>
<td>N/A</td>
<td>387MB</td>
<td>433MB</td>
<td>N/A</td>
<td>717MB</td>
<td>N/A</td>
<td>631MB</td>
</tr>
<tr>
<td>CP</td>
<td>35</td>
<td>7.5MB</td>
<td>597MB</td>
<td>499MB</td>
<td>1.2GB</td>
<td>378MB</td>
<td>1.9GB</td>
<td>21KB</td>
</tr>
<tr>
<td>Total</td>
<td>3026</td>
<td>0.68G</td>
<td>2.2G</td>
<td>14G</td>
<td>18G</td>
<td>5G</td>
<td>27G</td>
<td>1.2G</td>
</tr>
</tbody>
</table>

http://genoweb.toulouse.inra.fr/~degivry/evalgm
Normalized lower and upper bounds on 1208 difficult instances as time passes.
Results exploiting cliques

Normalized lower and upper bounds on 252 instances as time passes

(CP17)
- Small example with 3 variables and 2 values per domain
- Small example with 3 variables and 2 values per domain
Limited Discrepancy Search (Ginsberg 95)
Limited Discrepancy Search (Ginsberg 95)

\[l_{\text{max}} = n \ast (d - 1) : \text{ in this case, } l_{\text{max}} = 3 \ast (2 - 1) = 3 \]

Full exploration

\[l = 3 \Rightarrow \text{optimality proof} \]

In practice, it occurs before \(l_{\text{max}} \) thanks to bounding and pruning
Variable Neighborhood Search (Hansen 97)

1. Select randomly and uniformly a local set of k variables

3. If $E' < E$ then intensification: $S = S'$ and $k = k_{init}$ (small)
 Else diversification: $k = k+1$

LDS SEARCH with given discrepancy
UDGVNS : Exploration of both k and l dimensions

LDS

\[l=0 \quad l=1 \quad l=2 \quad \rightarrow \quad l_{\text{max}} \]

k_{\text{init}}=4

k=5

k=\ldots

k_{\text{max}}

DSF
Step 1: Initial solution

Greedy assignment
NEW SOLUTION WITH BETTER E → RESTART

Lds

l=0 l=1 l=2 l_{max}

k_{init}=4

k=5

k=...

k_{max}

New E_{best}

DSF
Proof of Optimality

IFF \(ub = lb(\text{problem}) \) can be before \(k_{\text{max}} \)
Proof of Optimality

In the worst case $l \geq \text{max number of right branches}$

$$l_{\text{max}} = |x|^*(D_{\text{max}} - 1)$$

Iff $k = k_{\text{max}} =$ problem size
Proof of Optimality

In the worst case $l \geq \text{max number of right branches}$

Iff $k = k_{\text{max}} = \text{problem size}$

In practice can be before l_{max} (due to the pruning in DFBB)
Neighborhoods using problem structure

Radio Link Frequency Assignment

Radio Link Frequency Assignment

CELAR SCEN-07r
(Constraints 4(1), 1999)

Mendelian Error Detection

langladeM7 sheep pedigree
(Constraints 13(1), 2008)

Earth Observation Satellite Management

SPOT5 #509 (Constraints 4(3), 1999)

Tag SNP Selection

HapMap chr01 r^2≥0.8 #14481
(Bioinformatics 22(2), 2006)
Cluster visit in a topological order:
Results

CPU time (in seconds)

Number of solved instances

incop+toulbar2

cplex

UDGVNS
daoopt (3600sec setting)

(UAI17)
Results

(UAI17)
Results

CPU time (in seconds)

Normalized upper bounds

UDGVNS
incop+toulbar2
daoopt (1200sec setting)
cplex
libDAI
Parallel VNS

Unified Parallel Decomposition Guided VNS (UPDGVNS)
Results

(UAI17)

The graph shows the normalized upper bounds over wall-clock real time for various algorithms:
- UPDGVNS (30 cores)
- UPDGVNS (10 cores)
- UDGVNS
- incop+toulbar2
- daoopt (1200sec setting)

The x-axis represents the wall-clock real time in minutes, ranging from 0 to 20 minutes. The y-axis represents the normalized upper bounds, ranging from 1.0 to 1.2.
References

- Cooper et al. *Soft arc consistency revisited*. Artificial Intelligence, 2010
- Katsirelos et al. *Clique Cuts in Weighted Constraint Satisfaction*. In Proc. of CP-17, Melbourne, Australia, 2017

https://github.com/toulbar2/toulbar2