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Abstract

Forests are often threatened by storms; and such a threat is likely to increase due to climate

change. Indeed, climate change is expected to increase the frequency and intensity of extreme

events such as intensive storms. For forest owners, adaptation to climate change will require major

adjustments in forest management practices. Then, forest owners will have to take these increasing

risks into account through risk-sharing (insurance) and risk-reducing strategies (reduction of rotation

length). In this paper, we propose to jointly analyze the forest owner’s insurance decision and the

rotation age under storm risk. We extend the Faustmann optimal rotation model under risk, first,

considering the forest owner’s preferences towards risk, and second, integrating the decision of

insurance. With this analytical model, we show that unless the forest owner’s discount rate and

the insurer’s discount rate are sufficiently unequal, it is not optimal for the forest owner to adopt

insurance. We prove that the rotation length increases as the insurance premium increases, i.e.

substitution between the two coverage mechanisms. Finally, we discuss the potential implications

of government policy on the insurance scheme.
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1 Introduction

Natural hazards represent serious threat for forest ecosystems. In particular, storms are the more dam-

ageable event for European forest since they are responsible for more than 50% of the European forest

damage over the period 1950-2000 (Schelhaas et al., 2003). In the same vein, Gardiner et al. (2013)

reported 130 storms over the last sixty years in Europe, i.e., an average of two storms per year. Since

1999, three main storms generate important damages in European forests, and in particular in France.

Lothar and Martin in 1999 induced 6 billions Euros of damage for the whole France, while Klaus in

2009 generated an average cost of 1.5 billion Euros in the South-western part of France (Rakotoarison

and Loisel, 2017).

The occurrence of storm generates various type of losses both for forest owners and society: loss of

marketability, costs of storage and restoration, losses in other income such as hunting leases or losses

of carbon sequestration and amenities (Brunette et al., 2015). Climate change is expected to increase

the frequency and intensity of disturbances (Flannigan et al., 2000; Fuhrer et al., 2006) and in particular

those of storm (Haarsma et al., 2013).

To face such events, forest owners may adopt classical risk-sharing strategy like insurance contract.

Various European countries propose insurance contract against storm and/or fire like for example France,

Germany, Slovakia, Spain, etc (Brunette et al., 2015). Such a contract allows the forest owner to transfer

the risk to the insurer. In exchange of the payment of a premium, the owner perceives an indemnity

in case of storm occurrence. Another option available for the forest owner to face the increasing risk

of storm is to adapt the silvicultural management. A classical risk-reducing strategy in forestry is to

reduce the rotation length (Lindner et al., 2000; Spittelhouse and Stewart, 2003), i.e., the time from

the establishment of the stand to its final felling. Such a strategy allows diminishing both the time of

exposure to natural event and the vulnerability of trees due to ageing (Bréda and Pfeiffer, 2014).

Traditionally, in the literature, decisions related to insurance and rotation length have been analyzed

separately. The forest owner’s insurance decision has been studied in relation to the disincentive role

played by public help implemented by government after the occurrence of a disaster (Brunette and

Couture, 2008; Brunette et al., 2013). A part of the literature also deals with the determination of the

optimal insurance premium through an actuarial approach (Holecy and Hanewinkel, 2006; Pinheiro
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and Ribeiro, 2013; Brunette et al., 2015). One of the main conclusion is that, in order to provide

relevant forest insurance premium, the insured forest area should increase, leading Brunette et al. (2015)

to suggest an European forest insurance scheme. In this forest insurance literature, the analysis of

insurance decision under risk is generally realized from a static point of view whereas the problem of

forest management under risk is typically a dynamic sequential decision problem under uncertainty. It

is fundamental to consider this temporal and sequential aspect in the definition of insurance contract

because when a risk occurs, the loss covered by insurance strongly depends on the optimal rotation

decision of the forest owner. To our knowledge, in this literature, the insurer’s behavior is never modeled

and integrated into the analysis.

The optimal rotation length is the common research question in forest economics tackled through

the classical Faustmann approach (Faustmann, 1849). This approach allows the evaluation of the Land

Expectation Value (LEV) over an infinite sequence of rotation. Consequently, the optimal harvesting age

in a Faustmann framework has been addressed a lot in the literature (Naslund, 1969; Schreuder, 1971;

Kao and Brodie, 1980; Roise, 1986; Haight et al., 1992; Jacobsen et al., 2016). However, originally,

this approach is deterministic. Reed (1984) was the first to introduce risk in the Faustmann framework.

He showed that a potential total destruction due to a fire risk acts as an increase in the discount rate.

Such a framework has then been applied to different risks, and recently to disease (Macpherson et al.,

2016). To our knowledge, few studies focused on the impact of storm risk on optimal rotation length

in a Faustmann framework. Haight et al. (1995) studied the impact of storm on the expected present

value. They showed that age-dependent damage risk and stocking reduction caused by tree mortality

have the greatest impact on the relationship between the expected present value and rotation age. Loisel

(2014) showed that considering storm risk leads to earlier optimal thinning than without risk. Recently,

Rakotoarison and Loisel (2017) jointly analyzed storm risk and price risk in a Faustmann model. They

propose simulations of their theoretical model for European beech stand in Northwestern France. The

simulations indicate that the storm risk reduces the optimal rotation length, limits the number of thinning

and increases economic loss (but less than price variation).

In this context, it seems that insurance decision and decision related to optimal rotation length have

never been studied jointly. Thus, we propose to tackle the question of the impact of insurance decision

on the optimal rotation length. For that purpose, we extend the Faustmann optimal rotation model

under risk by considering the decision of insurance. Our paper has two additional contributions. First,
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linked to the rotation and insurance model of the forest owner, we propose to model the microeconomic

behavior of the insurer in order to define the components of the insurance contract. Second, in order

to analyze insurance decision, we integrate into the model the forest owner’s preferences towards risk

associated to an expected utility maximization criteria. Such a criteria allows to explicitly consider the

forest owner’s preferences towards risk, i.e., neutrality, risk aversion or risk loving. Indeed, previous

works have proved that forest owners are risk averse on average (Musshof and Maart-Noelck, 2014;

Sauter et al., 2016; Brunette et al., 2017). In addition, the impact of risk aversion on optimal rotation

length has been proved in various modeling approaches, like mean-variance approach (Ollikainen, 1993;

Gong and Lofgren, 2005; Caulfield, 1988; Taylor and Forston, 1991; Valsta, 1992), Wicksellian single

rotation framework (Alvarez and Koskela, 2006), heuristic method (Kangas, 1994; Pukkala and Kangas,

1996) or expected utility maximization model (Gong, 1998). A majority of papers obtained that risk

aversion tends to shorten the optimal rotation length (Caulfield, 1988; Taylor and Forston, 1991; Alvarez

and Koskela, 2006; Gong, 1998) while (Valsta, 1992) found the opposite result. Moreover, one of the

main factors explaining the individual’s insurance decision is risk aversion. A risk-averse individual is

willing to transfer a part of risk to a third party even if it is costly. It is fundamental to consider the risk

preferences of the forest owner when analyzing the insurance decision. However, to our knowledge, the

forest owner’s preferences towards risk have never been considered in a Faustmann modeling.

The rest of the paper is structured as follows. Section 2 presents the model. Section 3 develops the

maximization program of the forest owner and the insurer. Finally, Section 4 discusses the results while

Section 5 provides the conclusion.

2 Modeling the risk and the insurance contract

2.1 Modeling storm risk and its impact on the stand

We suppose that the occurrence of storm follows a Poisson process, i.e., that storms occur independently

of one another, and randomly in time. This is a classical assumption in the literature to model both storm

and fire (Reed, 1984; Yin and Newman, 1996; Fina et al., 2001; Ohlson et al., 2006; Armstrong et al.,

2007; Jacobsen, 2007; Loisel, 2011). Thus the distribution of the times between successive storms is an

exponential with mean 1/λ: F (x) = 1 − e−λx where λ is the expected number of storms per unit of

4



time. The severity of the storm is given by the random variable A. Let τ be the period of time between

the beginning of the stand and, either the storm occurrence or the final harvesting. The storm risk is then

described by the couple of random variables (τ,A).

Unlike other types of risk such as fire, the impacts of storm are age-dependent and are low on young

stands. Following Schmidt et al. (2010), we assume that, for a tree-height H less equal than HL, there is

no damage. The height HL is reached at a time tL, the time tL explicitly depends on the height limit HL

and can be deduced using the time dependent function H: H(tL) = HL. Therefore, in case of storm

occurrence before tL, the storm has no impact. At the opposite, in case of storm occurrence after tL,

the proportion of damaged trees θt depends on the severity of the storm A and the characteristics of the

stand when the storm occurs (tree height, tree diameter which are age-dependent), hence the proportion

of damaged trees is age-dependent. Let α(t) represents the expectation of the proportion of survival

trees 1− θt.

2.2 The sequence of events

Without risk, the forest stand grows from t = 0 (plantation or regeneration) to T , with T the harvesting

age. The storm risk modifies the sequence of events as follows:

• If a storm occurs before tL, there is no impact and the stand growth continues.

• If a storm occurs after tL but before T , the proportion of damaged trees is θ , a clear-cutting and

a regeneration (or plantation) of the stand is realized.

• If no storm occurs before T , a clear-cutting and a regeneration (or plantation) of the stand is

realized at time T .

Let τ be the spending time between the beginning of the stand and the first event after tL, i.e., storm

occurrence or harvesting at time T . The distribution of the random variable τ is defined for tL < t ≤ T

as Fτ (t) = F (t− tL) = 1− e−λ(t−tL).

Let L(θ, τ) the loss following a storm occurring at time τ for a proportion of damages trees θ. This

loss represents the unexploitability of damaged trees: L(θ, τ) = θV (τ) where V (τ) is the potential final

(without risk) income at time τ .
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2.3 Modeling the insurance contract

An insurance contract is defined as a couple (premium, indemnity), so that we described these two

variables in our model.

The contract is characterized by a upper premium P by unit of time (directly linked to the actu-

alization of future losses, see next section) for the full coverage of the damage L(θ, τ), i.e., damage

associated to a storm occurring at time τ . The forest owner chooses a premium P which is a percentage

ξ of P , so that P = ξP . If the forest owner chooses ξ = 1 then, s/he is fully insured in case of storm

occurrence, in the sense that the the damage is fully covered by insurer. At the opposite, ξ = 0 means

no insurance. All the other cases, for 0 < ξ < 1, correspond to partial insurance, where only a part of

the damage is covered by insurer, the other part being borne by the forest owner. Then, ξ represents the

forest owner’s degree of insurance coverage.

The indemnity perceives by the forest owner, in case of a storm occurring at time τ , is then I(θτ , τ) =

ξL(θτ , τ). The indemnity corresponds to the percentage ξ of the loss with, as defined above, 0 ≤ ξ ≤ 1.

3 The programs of the involved stakeholders

The forest owner’s decision variables are the harvesting age T and the percentage ξ as regard to insurance

decision, while the insurer chooses the upper premium P . Let’s turn to the analysis of each individual’s

maximization program.

3.1 The forest owner’s program

In this section, we determine the forest owner’s decision related to the rotation length, assuming a

given level of insurance. The forest owner is characterized by an utility function u with u′(.) > 0

and u′′(.) < 0 to represent risk aversion. The forest owner is assumed to maximize the utility of the

net economic return from silvicultural activity. This utility of the net economic return Y , actualized at
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storm occurrence time τ or logging time T , writes as follows:

Y =


P0(t, τ) +Hδ(t, τ) + u(V1(θτ , τ) + I(θτ , τ)− c1 − Cn(θτ , τ)) if tL < τ < T

P0(t, T ) +Hδ(t, T ) + u(V (T )− c1) if τ = T

with:

• P0(t, t) =

∫ t

0
u(−P)eδ(t−s)ds, the insurance premium paid by the forest owner between the

initial time and time t, actualized at time t.

• Hδ(t, t) =

∫ t

t
u(h − P)eδ(t−s)ds, the thinning incomes between time t and time t actualized at

time τ .

• V1(θτ , τ) = (1− θτ )V (τ), the final income in case of storm occurring at time τ .

• c1, the regeneration (or plantation) cost.

• Cn(θτ , τ) the clearing costs for a storm occurring at time τ .

We deduce the following expression for the Faustmann value JF (see Appendix A):

JF =
E[e−δτY]

1− E[e−δτ ]
=

1

b(T )

[
a0(T )u(−P) + a1(T )u(h− P)

δ
+WF (0, T )

]

where a0(T ) = e(δ+λ)T−λtL(1−e−δt), a1(T ) = e(δ+λ)T−λtL−δt−λe(δ+λ)(T−tL) + δ

δ + λ
, b(T ) = a0(T )+

a1(T ) and WF (0, T ) is a modified income such that:

WF (0, T ) =λ

∫ T

tL

E[u(V1(θ, τ) + I(θτ , τ)− c1 − Cn(θτ , τ))]e
(δ+λ)(T−τ)dτ + u(V (0, T )− c1)

This modified income is composed of two parts. The first part is the integral, with respect to τ , of

a reduced final income minus the clearing costs in case of a storm at time τ < T . The second part

represents the final income in case of no storm before cutting age T .

This Faustmann value, obtained with storm risk and insurance, differs from the Faustmann value

without risk, in several ways. First, the discount rate δ is replaced by the addition of the discount rate

and expected number of storms δ+ λ (as previously noticed by Reed (1984) without thinning and Price

7



(2011) with thinning). Second, the utility of the final income W0(0, T ) = u(V (T )− c1) is replaced by

WF (0, T ). More precisely, an integral relative to the final cutting minus clearing costs in case of a storm

before the cutting age T is added.

The maximum of the Faustmann value is obtained by solving:

max
T

JF =
1

b(T )

[
a0(T )u(−P) + a1(T )u(h− P)

δ
+WF (0, T )

]
(1)

We consider comparative statics relative to the maximization with respect to the rotation period T . We

obtain the following results (proof in Appendix B):

Proposition 1 For a risk averse forest owner with differentiated loss and gain risk aversion function

(u(x) = u+x+ − u−x− with u+ ≤ 1 ≤ u−), the optimal cutting age T satisfies: TP > 0 and T

increases as the degree of insurance coverage ξ increases.

This result indicates that the risk-sharing strategy and the risk-reducing one are substitutes for the

forest owner. Indeed, as the insurance coverage increases, then the forest owner reduces the risk-

reducing strategy, leading to an increase in the rotation length. This result is in line with the standard

result of Ehrlich and Becker (1972) indicating that insurance and self-insurance are substitutes. Here,

the reduction of rotation length may be associated to a self-insurance activity, in the sense that it reduces

the damage in case of storm occurrence.

3.2 The insurer’s program

We assume that the insurer’s discount rate is different from the owner’s one and is noted δA. b calculated

with discount rate δ is replaced by the corresponding bA with δA. The Faustmann value JA is:

JA = ξ
P
δA

− (1 + lf )(1 +m)
E[e−δτI(θτ , τ)]
1− E[e−δτ ]

(expectation with respect to θ and τ)

= ξ
P
δA

− λ(1 + lf )(1 +m)

∫ T
tL

E[I(θτ , τ)]e(λ+δA)(T−τ)dτ

bA(T )
(expectation with respect to θ)

where E[I(θτ , τ)] = E[ξL(θτ , τ)] = ξE[L(θτ , τ)] is the expected insurance income, lf is the loading

factor and m the security coefficient.
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The objective of the insurer is to generate benefits from the insurance activity. In order to have

benefit, the insurer must choose P > (1 + lf )(1 + m)P0(T ) where P0(T ) is the Faustmann value

associated to the future losses multiplied by the discount rate δA for the cutting age T :

P0(T ) = δA
E[e−δτL(θτ , τ)]

1− E[e−δτ ]
= λ

δA
bA(T )

∫ T

tL

E[L(θτ , τ)]e
(λ+δA)(T−τ)dτ

This constraint depends on the cutting age T chosen by the forest owners. P may not depend on the

cutting age T , while in the forest owner’s program, T depends on P . In order to ensure a level m for its

benefit, the insurer has to evaluate the optimal harvesting age from the forest owner’s point of view.

P0 is decreasing with respect to cutting age T . Assuming that the forest owner decides of a cutting

age lower than in the case without risk T0, then the condition becomes: P > (1 + lf )(1 +m)P0(T0).

The insurer thus has all the information necessary to determine the insurance contract, and to assess the

insurance premium and the indemnity.

3.3 Analysis of the optimal insurance decision

In this section, we determine the optimal insurance decision considering that the optimal rotation length

is given. We assume P = (1+ lf )(1 +m)P0(T ) where T is assumed known (and then, not necessarily

optimal). The Faustmann value becomes:

JF =
a0(T )u(−P) + a1(T )u(h− P)

δb(T )

+
P

(1 + lf )(1 +m)δA

bA(T )

b(T )

∫ T
tL

E[u(V1(θ, τ) + I(θτ , τ)− c1 − Cn(θτ , τ))]e
(λ+δ)(T−τ)dτ∫ T

tL
E[L(θτ , τ)]e(λ+δA)(T−τ)dτ

(2)

+
u(V (T )− c1)

b(T )

We consider the derivative of the Faustmann Value JF with respect to insurance premium P . We obtain

the following results (proof in Appendix C):

Proposition 2 (i) If the discount rates of the forest owner and the insurer are equal (δA = δ) then for

harvesting age T , premium P∗(T ) = 0 is optimal.

(ii) If the forest owner’s discount rate and the insurer’s discount rate are sufficiently unequal then for
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harvesting age T , premium P∗(T ) > 0 is optimal.

This proposition indicates that, in some cases, it may be optimal for a risk averse forest owner

to not adopt insurance. This result is not surprising since the premium proposed by the insurer, P ,

corresponds to a loaded (or unfair) premium. Consequently, the forest owner may consider that the

insurance premium is too high and may prefer to not insure despite risk aversion. A way to reduce the

insurance premium may be that the public authority subsidizes the premium.

3.4 Insurance subsidy

In the literature, the subsidy for the forest insurance premium has already been mentioned in Brunette

et al. (2013). They obtained theoretically that, when the government provides a subsidy to the forest

owner for her/his insurance premium, then the forest owner should increase the insurance demand.

However, they do not validate this result with the empirical part of the paper. In this article, we adopt

another idea which is that, rather than to subsidy the forest owner directly, the government subsidies the

insurer.

Indeed, we consider that the government gives a percentage γ of the indemnity to insurer. Conse-

quently, it is as a coinsurance contract where a part γ of the damage is borne by the government while

1 − γ is borne by the insurer (and/or the forest owner in case of partial insurance demand). The risk

supported by the insurer is lower, the indemnity paid by the insurer in case of storm occurrence also and

the insurance premium too, hence:

P0(T ) = (1− γ)
λδA
bA(T )

∫ T

tL

E[L(θτ , τ)]e
(λ+δA)(T−τ)dτ

We consider the derivative of the Faustmann Value JF with respect to insurance premium P when

δA = δ. We obtain the following results (proof in Appendix D):

Proposition 3 If the discount rates of the forest owner and the insurer are equal (δA = δ), and if the

government gives a percentage γ such that 0 < γ(δ) < γ < γ(δ) < 1 of the indemnity to the insurer

then an insurance premium P∗(T ) > 0 may be optimal.

By subsidizing the insurer, the government increases the attractiveness of insurance for the forest
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owner.

4 Discussion

As underlined by Brunette et al. (2015), the adoption of a forest insurance contract is still an exception

in Europe. For example, in France, only approximately 4% of the French private forests are insured

representing 400,000 ha of private forests. Similar observations are obtained for Spain, Germany or

Slovakia (Brunette et al., 2015). The literature explores different potential explanations for this low

level of insurance, among which the existence of public program to financially help the forest owners

after the occurrence of storms. In this context, Brunette and Couture (2008) and Brunette et al. (2013)

showed that a public help reduces the forest owners’ insurance demand, but that this negative effect

is lower when the help is contingent to insurance adoption rather than fixed (i.e., independent from

any insurance contract adoption). In this paper, we provide another potential explanation to the non-

adoption of insurance contract by private forest owners, the fact that, in some cases, insurance may be

considered as too expensive by the forest owner (see Proposition 2). In addition, as regard to the existing

literature, we explore another channel from which the government may participate to the insurance

scheme. Indeed, we show that, by subsidizing the insurer, the government encourages the forest owner

to adopt insurance contract. Consequently, an horizontal risk sharing between the insurer, the forest

owner and the government may be an efficient way to insure storm risk in forest.

5 Conclusion

In this paper, we propose to extend the classical Faustmann rotation model under risk by considering the

insurance decision. This means that, in addition to the decision related to the rotation length, the forest

owner also decides on a degree of insurance coverage. Such a challenge requires to model the insurer’s

behavior (in order to determine the contract) and to consider the forest owner’s preferences towards

risk (in order to analyze the insurance decision), two supplementary originalities for this paper. In this

framework, our results indicate that the forest owner considers that the risk-sharing strategy (insurance)

and the risk-reducing one (reduction of the rotation length) are substitutes. In addition, we show that, in
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some cases, it may be optimal for the forest owner to not adopt insurance. Finally, we conclude that, a

way to incite forest owners to adopt insurance contract is to consider that the government subsidizes the

insurer.
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A The Faustmann Value

As we assume that the storm occurs independently of one another and randomly in time, we deduce the

following expression for the land value:

JF = E[

∞∑
i=1

e−δ(τ1+τ2+...+τi)Yi] =

∞∑
i=1

i−1∏
j=1

E[e−δτj ].E[e−δτiYi] =
[e−δτY]

1− E[e−δτ ]
(3)

From the definition of τ we deduce the expectation E[e−δτ ]:

E[e−δτ ] =

∫ T

tL

e−δτdF (τ − tL) + e−δT (1− F (T − tL)) =
λ+ δe−(δ+λ)(T−tL)

δ + λ
e−δtL

We deduce the expected net economic return E[e−δτY] actualized at initial time:

1− e−δt

δ
u(−P) +

e−δt − e−δtL

δ
u(h− P) +

e−δtL − e(δ+λ)T−λtL

δ + λ
u(h− P)

+

∫ T

tL

(E[u(V1(θ, τ) + I(θτ , τ)− c1 − Cn(θτ , τ))])e
−δτdF (τ − tL)

+ u(V (T )− c1)e
−δT (1− F (T − tL))

and hence the result.

B Proof of Proposition 1

To lighten the presentation, in some calculus, we omit the λ dependency in functions a1, b and denote

aT (resp. bT ) the partial derivative of a1 (resp. b) with respect to T .

From (1), differentiating JF with respect to the rotation age T gives the following first-order condi-

tion:

JT =

[
WF (0, T ) +

a1(T )
δ ((hu−)Ih<P + (hu+ + P(u− − u+))Ih>P)

b(T )

]
T

= 0

We consider the case h > P (the other case is simpler). From the first-order condition JT = 0 we

17



deduce:

WF (0, T )T b(T )−WF (0, T )bT (T ) + (aT (T )b(T )− a1(T )bT (T ))
hu+ + P(u− − u+)

δ
= 0 (4)

Differentiating JT = 0 with respect to P yields: JTTTP + JTP = 0. From JTT < 0, TP and JTP have

the same sign. JTP is proportional (with the same sign) to the sum of:

AP = WF (0, T )TPb(T )−WF (0, T )PbT (T ) and (aT (T )b(T )− a1(T )bT (T ))(u− − u+)

The difference aT (T )b(T )− a1(T )bT (T ) is positive. Concerning AP :

WF (0, T )P =λ
u+

P

∫ T

tL

(1− α(τ))V (τ)e(λ+δ)(T−τ)dτ

WF (0, T )TP =λ
u+

P
(1− α(T ))V (T ) + (λ+ δ)WF (0, T )P

From bT (T ) = δ + (δ + λ)b(T ) we deduce:

AP =λ
u+

P
(1− α(T ))V (T )b(T )− δWF (0, T )P

=λ
u+

P
[(1− α(T ))V (T )b(T )− δ

∫ T

tL

(1− α(τ))V (τ)e(λ+δ)(T−τ)dτ ]

Let γ(t) = λ
u+

P
(1− α(t))V (t)b(t) then:

AP = γ(T )b(T )− δ

∫ T

tL

γ(τ)e(λ+δ)(T−τ)dτ

Moreover, studiing the behavior of AP(t) = γ(t)b(t)− δ

∫ t

tL

γ(τ)e(λ+δ)(t−τ)dτ , then:

A′
P(t) =γ′(t)b(t) + γ(t)bT (t)− δγ(t)− (λ+ δ)(γ(t)b(t)−AP(t))

=γ′(t)b(t) + (λ+ δ)AP(t)

From α′(t) < 0 we deduce γ′(t) > 0, moreover from AP(0) = 0 we deduce that AP(T ) > 0.
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C Proof of Proposition 2

We consider the derivative of the Faustmann Value JF with respect to insurance premium P:

∂JF
∂P

= −a0(T )u
′(−P) + a1(T )u

′(h− P)

δb(T )

+
1

(1 + lf )(1 +m)δA

bA(T )

b(T )

∫ T
tL

E[u′(V1(θ, τ) + I(θτ , τ)− c1 − Cn(θτ , τ))L(θ, τ)]e
(λ+δ)(T−τ)dτ∫ T

tL
E[L(θτ , τ)]e(λ+δA)(T−τ)dτ

(i) From the concavity of the utility u, and using −P < h− P < V1(θ, τ) + I(θτ , τ)− c1 then:

∂JF
∂P

<
1

δ
(−1 +

1

(1 + lf )(1 +m)

δ

δA

bA(T )

b(T )

∫ T
tL

E[L(θτ , τ)]e
(λ+δ)(T−τ)dτ∫ T

tL
E[L(θτ , τ)]e(λ+δA)(T−τ)dτ

)u′(h− P)

From δA = δ then bA = b and
∂JF
∂P

<
1

δ
(−1 +

1

(1 + lf )(1 +m)
)u′(h− P) < 0, hence the result.

(ii)
∂JF
∂P

is proportional to:

− (a0(T )u
′(−P) + a1(T )u

′(h− P))
δA

bA(T )

∫ T

tL

E[L(θτ , τ)]e
(λ+δA)(T−τ)dτ

+
1

(1 + lf )(1 +m)
δ

∫ T

tL

E[u′(V1(θ, τ) + I(θτ , τ)− c1 − Cn(θτ , τ))L(θ, τ)]e
(λ+δ)(T−τ)dτ

If the forest owner’s discount rate and the insurer’s discount rate are sufficiently unequal then
∂JF
∂P

> 0

for sufficiently large value of δ, hence
∂JF
∂P

is equal to zero for smaller δ and we deduce the existence

of a non trivial solution P∗(T ) > 0.
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D Proof of Proposition 3

If δA = δ then bA = b and:

∂JF
∂P

=− a0(T )u
′(−P) + a1(T )u

′(h− P)

δb(T )

+

∫ T
tL

E[u′(V1(θ, τ) + I(θτ , τ)− c1 − Cn(θτ , τ))L(θ, τ)]e
(λ+δ)(T−τ)dτ

δ(1− γ)(1 + lf )(1 +m)
∫ T
tL

E[L(θτ , τ)]e(λ+δ)(T−τ)dτ

∂JF
∂P

is positive for sufficiently large value γ and is negative for γ = 0. Hence we deduce that for

intermediate γ,
∂JF
∂P

may be equal to 0, hence a non null premium P will be optimal.
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