
HAL Id: hal-02785414
https://hal.inrae.fr/hal-02785414v1

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Designing molecules with cost function networks -
Bridging symbolic and numerical AI.

Thomas Schiex

To cite this version:
Thomas Schiex. Designing molecules with cost function networks - Bridging symbolic and numerical
AI.. Journées plénières du GDR IA du CNRS, Oct 2018, Paris, France. �hal-02785414�

https://hal.inrae.fr/hal-02785414v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1/25

Designing molecules with cost function networks
Bridging symbolic and numerical AI

T. Schiex
D. Allouche, S. Barbe, J. Cortes, M. Ruffini, D. Simoncini, A. Voet, J. Vucinic

S. de Givry, G. Katsirelos, M. Zytnicki

October 2018

2/25

Propositional logic, Constraint networks

Constraint network (X, C) Joint feasibility distribution

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
Joint boolean function F(X) =

∧
cS

Central problems: SAT/CSP and their solvers

A solution is an assignment of X that satisfies the joint function (NP-complete)

Algorithms to find a model/solution or a proof (Backtrack, unit/constraint propagation)

2/25

Propositional logic, Constraint networks

Constraint network (X, C) Joint feasibility distribution

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
Joint boolean function F(X) =

∧
cS

Central problems: SAT/CSP and their solvers

A solution is an assignment of X that satisfies the joint function (NP-complete)

Algorithms to find a model/solution or a proof (Backtrack, unit/constraint propagation)

2/25

Propositional logic, Constraint networks

Constraint network (X, C) Joint feasibility distribution

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}

Joint boolean function F(X) =
∧

cS

Central problems: SAT/CSP and their solvers

A solution is an assignment of X that satisfies the joint function (NP-complete)

Algorithms to find a model/solution or a proof (Backtrack, unit/constraint propagation)

2/25

Propositional logic, Constraint networks

Constraint network (X, C) Joint feasibility distribution

a sequence X of discrete variables xi, domain Di

a set C of constraints

cS ∈ C involves variables in S ⊆ X and is a boolean function
∏

i∈S Di → {t, f}
Joint boolean function F(X) =

∧
cS

Central problems: SAT/CSP and their solvers

A solution is an assignment of X that satisfies the joint function (NP-complete)

Algorithms to find a model/solution or a proof (Backtrack, unit/constraint propagation)

3/25

Huge impact of symbolic AI

SAT and CSP technologies

Solving and generating Sudokus (Le Monde)

Planning and Scheduling12 (Rosetta-Philae probe plan, CP, LAAS/Toulouse)

Configuration/verification (also neural nets5)

Recent theorem proof (Splitting all pythagorean triples inN: 200 TB proof4)

Excellent to describe, analyze, design perfectly known complex systems.

Biology is full of imperfectly known complex systems.

3/25

Huge impact of symbolic AI

SAT and CSP technologies

Solving and generating Sudokus (Le Monde)

Planning and Scheduling12 (Rosetta-Philae probe plan, CP, LAAS/Toulouse)

Configuration/verification (also neural nets5)

Recent theorem proof (Splitting all pythagorean triples inN: 200 TB proof4)

Excellent to describe, analyze, design perfectly known complex systems.

Biology is full of imperfectly known complex systems.

3/25

Huge impact of symbolic AI

SAT and CSP technologies

Solving and generating Sudokus (Le Monde)

Planning and Scheduling12 (Rosetta-Philae probe plan, CP, LAAS/Toulouse)

Configuration/verification (also neural nets5)

Recent theorem proof (Splitting all pythagorean triples inN: 200 TB proof4)

Excellent to describe, analyze, design perfectly known complex systems.

Biology is full of imperfectly known complex systems.

4/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Generalizes CSP/SAT: a constraint is a cost function that maps to {0,∞}
Complex interactions of graduality with comparability (likelihood, preferences)

4/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Generalizes CSP/SAT: a constraint is a cost function that maps to {0,∞}
Complex interactions of graduality with comparability (likelihood, preferences)

4/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Generalizes CSP/SAT: a constraint is a cost function that maps to {0,∞}
Complex interactions of graduality with comparability (likelihood, preferences)

4/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Generalizes CSP/SAT: a constraint is a cost function that maps to {0,∞}
Complex interactions of graduality with comparability (likelihood, preferences)

4/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Generalizes CSP/SAT: a constraint is a cost function that maps to {0,∞}

Complex interactions of graduality with comparability (likelihood, preferences)

4/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Generalizes CSP/SAT: a constraint is a cost function that maps to {0,∞}
Complex interactions of graduality with comparability (likelihood, preferences)

5/25

From boolean function to numerical functions

Cost function network (X,W) Joint cost/feasibility distribution2,9

a sequence X of discrete variables xi, domain Di

a set W of cost functions

wS ∈ W is a numerical function
∏

i∈S Di (possibly infinite costs)

Joint cost function W(X) =
∑

wS

Central problems: PWMaxSAT, WCSP, MAP/MRF

a solution optimizes the joint cost W(X) (WCSP, NP-complete)

algorithms to find a solution and a proof of optimality (Branch and bound + cost function
propagation, core-based)

6/25

Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w Graphical model3

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.

6/25

Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w Graphical model3

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.

6/25

Example: MAXCUT with hard edges

Graph G = (V, E)with edge weight function w Graphical model3

A boolean variable xi per vertex i ∈ V

A cost function per edge e = (i, j) ∈ E : wij = w(i, j)× 1[xi 6= xj]

Hard edges: constraints with costs 0 or−∞ (when xi 6= xj)

3-clique

vertices {1, 2, 3}
cut weight 1

edge (1, 2) hard.

7/25

toulbar2 input file

MAXCUT on a 3-clique with hard edge

{
"problem" :{"name": "MaxCut", "mustbe": ">0.0"},
"variables": {"x1": ["l","r"], "x2": ["l","r"], "x3": ["l","r"]},
"functions": {

"cut12": {"scope": ["x1","x2"], "costs": [0,-100,-100,0]},
"cut13": {"scope": ["x1","x3"], "costs": [0,1,1,0]},
"cut23": {"scope": ["x2","x3"], "costs": [0,1,1,0]}

}
}

MIT licence, https://github.com/toulbar2/toulbar2

https://github.com/toulbar2/toulbar2

8/25

The cost distribution

Can be concisely expressed as

A set of weighted clauses

An integer linear program

A Markov Random Field (stochastic graphical model with additive potentials)

A quadratic boolean polynomial

And the WCSP problem tackled with

MaxHS (PWMaxSat solver)

CPLEX/GUROBI (ILP solver)

MAP/MRF solvers (very few provide guarantees: toulbar2, daoopt)

A quadratic boolean polynomial (SDP based BiqMac)

8/25

The cost distribution

Can be concisely expressed as

A set of weighted clauses

An integer linear program

A Markov Random Field (stochastic graphical model with additive potentials)

A quadratic boolean polynomial

And the WCSP problem tackled with

MaxHS (PWMaxSat solver)

CPLEX/GUROBI (ILP solver)

MAP/MRF solvers (very few provide guarantees: toulbar2, daoopt)

A quadratic boolean polynomial (SDP based BiqMac)

9/25

Proteins

Most active molecules of life

Flexible sequence of “amino-acids”, each chosen among a set of 20 natural ones (or more)

Folding

→ → Function

Transporter, binder/regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…

9/25

Protein Design

Most active molecules of life

Flexible sequence of “amino-acids”, each chosen among a set of 20 natural ones (or more)

Inverse folding

Function → →

Transporter, binder/regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…

10/25

Why is it worth designing new proteins?

Eco-friendly chemical/structural nano-agents

Biodegradable (have been mass produced for billions of year)

“Easy” to produce (transformed E. coli)

Useful for green chemistry8 (biofuels, plastic recycling, food and feed, cosmetics…),
nanotechnologies,13 drugs…

20n sequences! intractable for experimental techniques

10/25

Why is it worth designing new proteins?

Eco-friendly chemical/structural nano-agents

Biodegradable (have been mass produced for billions of year)

“Easy” to produce (transformed E. coli)

Useful for green chemistry8 (biofuels, plastic recycling, food and feed, cosmetics…),
nanotechnologies,13 drugs…

20n sequences! intractable for experimental techniques

10/25

Why is it worth designing new proteins?

Eco-friendly chemical/structural nano-agents

Biodegradable (have been mass produced for billions of year)

“Easy” to produce (transformed E. coli)

Useful for green chemistry8 (biofuels, plastic recycling, food and feed, cosmetics…),
nanotechnologies,13 drugs…

20n sequences! intractable for experimental techniques

11/25

Protein Design as a discrete optimisation problem

Molecular modeling

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 side-chains in different conformations (≈ 400 overall)

Huge sequence-conformation space: 400n (or more)

11/25

Protein Design as a discrete optimisation problem

Molecular modeling

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 side-chains in different conformations (≈ 400 overall)

Huge sequence-conformation space: 400n (or more)

11/25

Protein Design as a discrete optimisation problem

Molecular modeling

Full atommodel of a protein backbone (assumed to be rigid)

Catalog of all 20 side-chains in different conformations (≈ 400 overall)

Huge sequence-conformation space: 400n (or more)

12/25

Protein stability

Thermodynamics: forces, energy and stability

Full atom empirical force field (bonds, electrostatics, solvant…)

Usually decomposed as a sum of pairwise terms that depends on atom positions

Imperfect

Approximations: rigidity, solvent effect

Very empirical representation of crucial quantummechanic effects

12/25

Protein stability

Thermodynamics: forces, energy and stability

Full atom empirical force field (bonds, electrostatics, solvant…)

Usually decomposed as a sum of pairwise terms that depends on atom positions

Imperfect

Approximations: rigidity, solvent effect

Very empirical representation of crucial quantummechanic effects

12/25

Protein stability

Thermodynamics: forces, energy and stability

Full atom empirical force field (bonds, electrostatics, solvant…)

Usually decomposed as a sum of pairwise terms that depends on atom positions

Imperfect

Approximations: rigidity, solvent effect

Very empirical representation of crucial quantummechanic effects

13/25

Finding sequences with low energy conformations

Central problem (plenty of tricky/harder variants)

Maximum stability≡Minimum energy NP-hard7

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (pairwise terms)

13/25

Finding sequences with low energy conformations

Central problem (plenty of tricky/harder variants)

Maximum stability≡Minimum energy NP-hard7

As a Cost Function Network

One variable per position in the protein sequence

Domain: catalog of few hundreds amino acids conformations

Functions: decomposed energy (pairwise terms)

14/25

Toulbar2 vs. CPLEX, MaxHS…(real instances)

of instances solved (X) within a per instance cpu-time limit (Y)

15/25

Comparison with Rosetta’s Simulated annealing11

Optimality gap of the Simulated annealing solution as problems get harder

Asymptotic convergence can be arbitrarily slow (infinity can be arbitrarily far)

16/25

From bits to atoms (col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold

16/25

From bits to atoms (col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold

16/25

From bits to atoms (col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold

17/25

Ika more stable than Tako and can self assemble

Compares Tako and Ika structural stability as temperature increases
(circular dichroism)

18/25

Energy function

Imperfect

Simplest way around this: inject more information than just energy.

Evolutionary information

Use similar proteins (homologs) from databases

All have been through millions of year of selection by “reality”

Multiple alignment: align similar regions of the sequences

18/25

Energy function

Imperfect

Simplest way around this: inject more information than just energy.

Evolutionary information

Use similar proteins (homologs) from databases

All have been through millions of year of selection by “reality”

Multiple alignment: align similar regions of the sequences

19/25

A multiple alignment with conserved positions

Simple integration of information

Force amino acid choice (constraint) at conserved positions.

20/25

Learning CFNs from data

Boltzman distribution connects probability and cost/energy

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood1,6,10

And transformed back into a CFN with a− log(x) transform

20/25

Learning CFNs from data

Boltzman distribution connects probability and cost/energy

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood1,6,10

And transformed back into a CFN with a− log(x) transform

20/25

Learning CFNs from data

Boltzman distribution connects probability and cost/energy

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood1,6,10

And transformed back into a CFN with a− log(x) transform

20/25

Learning CFNs from data

Boltzman distribution connects probability and cost/energy

P(X) ∝ e−W(X)

From CFN to probabilities and back

After e−x transform, a CFN defines a probability distribution (MRF)

Which can be learned from data using maximum penalized likelihood1,6,10

And transformed back into a CFN with a− log(x) transform

21/25

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available10

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

21/25

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available10

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

21/25

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available10

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

21/25

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available10

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

21/25

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available10

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

21/25

Learning in practice

We start from a complete pairwise CFN with unknown cost functions

We have a total of d2 · n(n−1)
2 parameters to learn wij(·, ·)

Let `(D|wij) be the log-probability of data D given the wij

Maximize `(D|wij)− λ · ||wij|| concave

Efficient L2 norm based implementation available10

Uses conjugate gradient optimization

fast C or very fast CUDA implementation

n variables, d values, s samples: O(d2n2 + dns) space.

600 variables, domain size 21 80, 000, 000 parameters, estimated in minutes

22/25

Symbolic vs. numerical AI

A counter-productive insulation of fields

Symbolic (gradient-free) AI already reached super-human performances

Numerical (differentiable) AI: you certainly know! (Alpha Go/Zero)

But reasoning/planning with Deep Nets? Not at this point.

It’s now possible to connect them and build hybrid AIs that reason and learn

Graphical models look like a good place to start

22/25

Symbolic vs. numerical AI

A counter-productive insulation of fields

Symbolic (gradient-free) AI already reached super-human performances

Numerical (differentiable) AI: you certainly know! (Alpha Go/Zero)

But reasoning/planning with Deep Nets? Not at this point.

It’s now possible to connect them and build hybrid AIs that reason and learn

Graphical models look like a good place to start

22/25

Symbolic vs. numerical AI

A counter-productive insulation of fields

Symbolic (gradient-free) AI already reached super-human performances

Numerical (differentiable) AI: you certainly know! (Alpha Go/Zero)

But reasoning/planning with Deep Nets? Not at this point.

It’s now possible to connect them and build hybrid AIs that reason and learn

Graphical models look like a good place to start

22/25

Symbolic vs. numerical AI

A counter-productive insulation of fields

Symbolic (gradient-free) AI already reached super-human performances

Numerical (differentiable) AI: you certainly know! (Alpha Go/Zero)

But reasoning/planning with Deep Nets? Not at this point.

It’s now possible to connect them and build hybrid AIs that reason and learn

Graphical models look like a good place to start

22/25

Symbolic vs. numerical AI

A counter-productive insulation of fields

Symbolic (gradient-free) AI already reached super-human performances

Numerical (differentiable) AI: you certainly know! (Alpha Go/Zero)

But reasoning/planning with Deep Nets? Not at this point.

It’s now possible to connect them and build hybrid AIs that reason and learn

Graphical models look like a good place to start

23/25

Thanks

AI/toulbar2

S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
H. Nguyen (PhD, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen)

Protein Design

A. Voet (KU Leuven)
D. Simoncini (INSA, Toulouse)
S. Barbe (INSA, Toulouse)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
PyRosetta (U. John Hopkins)
OSPREY (Duke U.)

24/25

References I

[1] Sivaraman Balakrishnan et al. “Learning generative models for protein fold families”. In: Proteins: Structure, Function, and
Bioinformatics 79.4 (2011), pp. 1061–1078.

[2] Martin C Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174.7 (2010), pp. 449–478.

[3] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

[4] Oliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).

[5] Nina Narodytska et al. “Verifying properties of binarized deep neural networks”. In: Proc. of AAAI’18. 2018.

[6] Youngsuk Park et al. “Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random
Fields”. In: Artificial Intelligence and Statistics. 2017, pp. 1302–1310.

[7] Niles A Pierce and Erik Winfree. “Protein design is NP-hard.”. In: Protein Eng. 15.10 (Oct. 2002), pp. 779–82. ISSN: 0269-2139.
URL: http://www.ncbi.nlm.nih.gov/pubmed/12468711.

[8] Daniela Röthlisberger et al. “Kemp elimination catalysts by computational enzyme design”. In: Nature 453.7192 (2008), p. 190.

[9] T. Schiex, H. Fargier, and G. Verfaillie. “Valued Constraint Satisfaction Problems: hard and easy problems”. In: Proc. of the 14th

IJCAI. Montréal, Canada, Aug. 1995, pp. 631–637.

[10] Stefan Seemayer, Markus Gruber, and Johannes Söding. “CCMpred—fast and precise prediction of protein residue–residue
contacts from correlated mutations”. In: Bioinformatics 30.21 (2014), pp. 3128–3130.

[11] David Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal of Chemical
Theory and Computation 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

http://www.ncbi.nlm.nih.gov/pubmed/12468711
https://doi.org/10.1021/acs.jctc.5b00594

25/25

References II

[12] Gilles Simonin et al. “Scheduling scientific experiments for comet exploration”. In: Constraints 20.1 (2015), pp. 77–99.

[13] Arnout RD Voet et al. “Computational design of a self-assembling symmetrical β-propeller protein”. In: Proceedings of the
National Academy of Sciences 111.42 (2014), pp. 15102–15107.

	References

