Designing molecules with cost function networks Bridging symbolic and numerical AI.

Thomas Schiex

To cite this version:

Thomas Schiex. Designing molecules with cost function networks - Bridging symbolic and numerical AI.. Journées plénières du GDR IA du CNRS, Oct 2018, Paris, France. hal-02785414

HAL Id: hal-02785414
 https://hal.inrae.fr/hal-02785414

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Designing molecules with cost function networks
 Bridging symbolic and numerical Al

T. Schiex
D. Allouche, S. Barbe, J. Cortes, M. Ruffini, D. Simoncini, A. Voet, J. Vucinic S. de Givry, G. Katsirelos, M. Zytnicki

October 2018
tOULOUSE
KU LEUVEN

LAAS

 CNRSConstraint network (X, C) Joint feasibility distribution

- a sequence X of discrete variables x_{i}, domain D_{i}

Constraint network (X, C)
Joint feasibility distribution

- a sequence X of discrete variables x_{i} domain D_{i}
- a set C of constraints

Constraint network (X, C)

Joint feasibility distribution

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set C of constraints
- $c_{S} \in C$ involves variables in $S \subseteq X$ and is a boolean function $\prod_{i \in S} D_{i} \rightarrow\{t, f\}$

Constraint network (X, C) Joint feasibility distribution

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set C of constraints
- $c_{S} \in C$ involves variables in $S \subseteq X$ and is a boolean function $\prod_{i \in S} D_{i} \rightarrow\{t, f\}$
- Joint boolean function $F(X)=\bigwedge c_{s}$

Central problems: SAT/CSP and their solvers

- A solution is an assignment of X that satisfies the joint function (NP-complete)
- Algorithms to find a model/solution or a proof (Backtrack, unit/constraint propagation)

SAT and CSP technologies

- Solving and generating Sudokus (Le Monde) 핌
- Planning and Scheduling ${ }^{12}$
- Configuration/verification (also neural nets ${ }^{5}$)
(Rosetta-Philae probe plan, CP, LAAS/Toulouse) cnes
- Recent theorem proof (Splitting all pythagorean triples in \mathbb{N} : 200 TB proof ${ }^{4}$)

SAT and CSP technologies

- Solving and generating Sudokus (Le Monde)
- Planning and Scheduling ${ }^{12}$
- Configuration/verification (also neural nets 5^{5})
(Rosetta-Philae probe plan, CP, LAAS/Toulouse) cnes
- Recent theorem proof (Splitting all pythagorean triples in \mathbb{N} : 200 TB proof ${ }^{4}$)

Excellent to describe, analyze, design perfectly known complex systems.

SAT and CSP technologies

- Solving and generating Sudokus (Le Monde)
- Planning and Scheduling ${ }^{12}$
- Configuration/verification (also neural net5 ${ }^{5}$)
(Rosesta-Phile probe palan. CP: LAAS Tououse) Cecnes
- Recent theorem proof (Splitting all pythagorean triples in $\mathbb{N}: 200 \mathrm{~TB}$ proof ${ }^{4}$)

Excellent to describe, analyze, design perfectly known complex systems.
Biology is full of imperfectly known complex systems.

Cost function network (X, W) Joint cost/feasibility distribution ${ }^{2.9}$

- a sequence X of discrete variables x_{i}, domain D_{i}

Cost function network (X, W)

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions

Cost function network (X, W) Joint cost/feasibility distribution ${ }^{2,9}$

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
(possibly infinite costs)

Cost function network (X, W)

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
(possibly infinite costs)
- Joint cost function $W(X)=\sum w_{s}$

Cost function network (X, W)

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $w_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
(possibly infinite costs)
- Joint cost function $W(X)=\sum w_{s}$
- Generalizes CSP/SAT: a constraint is a cost function that maps to $\{0, \infty\}$

Cost function network (X, W) Joint cost/feasibility distribution ${ }^{2.9}$

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $w_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
(possibly infinite costs)
- Joint cost function $W(X)=\sum w_{s}$
- Generalizes CSP/SAT: a constraint is a cost function that maps to $\{0, \infty\}$
- Complex interactions of graduality with comparability (likelihood, preferences)

Cost function network (X, W) Joint cost/feasibility distribution ${ }^{2.9}$

- a sequence X of discrete variables x_{i}, domain D_{i}
- a set W of cost functions
- $W_{S} \in W$ is a numerical function $\prod_{i \in S} D_{i}$
(possibly infinite costs)
- Joint cost function $W(X)=\sum W_{S}$

Central problems: PWMaxSAT, WCSP, MAP/MRF

- a solution optimizes the joint cost $W(X)$
(WCSP, NP-complete)
- algorithms to find a solution and a proof of optimality (Branch and bound + cost function propagation, core-based)

Example: MAXCUT with hard edges

Graph $G=(V, E)$ with edge weight function w

- A boolean variable x_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $-\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$
- A boolean variable x_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $-\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$

3-clique

- vertices $\{1,2,3\}$
- cut weight 1
- edge $(1,2)$ hard.

- A boolean variable x_{i} per vertex $i \in V$
- A cost function per edge $e=(i, j) \in E: w_{i j}=w(i, j) \times \mathbb{1}\left[x_{i} \neq x_{j}\right]$
- Hard edges: constraints with costs 0 or $-\infty\left(\right.$ when $\left.x_{i} \neq x_{j}\right)$

3-clique

- vertices $\{1,2,3\}$
- cut weight 1
- edge $(1,2)$ hard.

MAXCUT on a 3-clique with hard edge

```
{
    "problem" :{"name": "MaxCut", "mustbe": ">0.0"},
    "variables": {"x1": ["l","r"], "x2": ["l","r"], "x3": ["l","r"]}
    "functions": {
            "cut12": {"scope": ["x1","x2"], "costs": [0,-100,-100,0]},
            "cut13": {"scope": ["x1","x3"], "costs": [0,1,1,0]},
            "cut23": {"scope": ["x2","x3"], "costs": [0,1,1,0]}
    }
}
```

MIT licence, https://github.com/toulbar2/toulbar2

Can be concisely expressed as

- A set of weighted clauses
- An integer linear program
- A Markov Random Field (stochastic graphical model with additive potentials)
- A quadratic boolean polynomial

Can be concisely expressed as

- A set of weighted clauses
- An integer linear program
- A Markov Random Field (stochastic graphical model with additive potentials)
- A quadratic boolean polynomial

And the WCSP problem tackled with

- MaxHS (PWMaxSat solver)
- CPLEX/GUROBI (ILP solver)
- MAP/MRF solvers (very few provide guarantees: toulbar2, daoopt)
- A quadratic boolean polynomial (SDP based BiqMac)

Most active molecules of life
Flexible sequence of "amino-acids", each chosen among a set of 20 natural ones (or more)

Folding

\longrightarrow Function

Transporter, binder/regulator, motor, catalyst...
Hemoglobine, TAL effector, ATPase, dehydrogenases...

Most active molecules of life
Flexible sequence of "amino-acids", each chosen among a set of 20 natural ones (or more)

Transporter, binder/regulator, motor, catalyst... Hemoglobine, TAL effector, ATPase, dehydrogenases...

Eco-friendly chemical/structural nano-agents

- Biodegradable (have been mass produced for billions of year)

Eco-friendly chemical/structural nano-agents

- Biodegradable (have been mass produced for billions of year)
- "Easy" to produce (transformed E. coli)

Eco-friendly chemical/structural nano-agents

- Biodegradable (have been mass produced for billions of year)
- "Easy" to produce (transformed E. coli)
- Useful for green chemistry ${ }^{8}$ (biofuels, plastic recycling, food and feed, cosmetics...), nanotechnologies, ${ }^{13}$ drugs...
20^{n} sequences! intractable for experimental techniques

Molecular modeling

- Full atom model of a protein backbone
(assumed to be rigid〕

Molecular modeling

- Full atom model of a protein backbone
- Catalog of all 20 side-chains in different conformations
(assumed to be rigid)
[≈ 400 overall]

Molecular modeling

- Full atom model of a protein backbone
- Catalog of all 20 side-chains in different conformations
(assumed to be rigid)
(≈ 400 overall)
- Huge sequence-conformation space: 400^{n} (or more)

Thermodynamics: forces, energy and stability

- Full atom empirical force field (bonds, electrostatics, solvant...)

Thermodynamics: forces, energy and stability

- Full atom empirical force field (bonds, electrostatics, solvant...)
- Usually decomposed as a sum of pairwise terms that depends on atom positions

Thermodynamics: forces, energy and stability

- Full atom empirical force field (bonds, electrostatics, solvant...)
- Usually decomposed as a sum of pairwise terms that depends on atom positions

Imperfect

- Approximations: rigidity, solvent effect
- Very empirical representation of crucial quantum mechanic effects

Central problem	(plenty of tricky/harder variants)
Maximum stability \equiv Minimum energy	NP-hard ${ }^{7}$

Central problem
(plenty of tricky/harder variants)
Maximum stability \equiv Minimum energy
NP-hard ${ }^{7}$

As a Cost Function Network

- One variable per position in the protein sequence
- Domain: catalog of few hundreds amino acids conformations
- Functions: decomposed energy (pairwise terms)

\# of instances solved (X) within a per instance cpu-time limit (Y)

Optimality gap of the Simulated annealing solution as problems get harder Asymptotic convergence can be arbitrarily slow (infinity can be arbitrarily far)

C8 pseudo-symetric 20VP symmetrized into a nano-component

C8 pseudo-symetric 20VP symmetrized into a nano-component

- Tako: (R)evolution + Rosetta/talaris14

20VP

C8 pseudo-symetric 20VP symmetrized into a nano-component

- Tako: (R)evolution + Rosetta/talaris14 8 fold
\square |ka: toulbar2 + talaris14

Tako

lka

Compares Tako and Ika structural stability as temperature increases [circular dichroism)

Imperfect

Simplest way around this: inject more information than just energy.

Imperfect

Simplest way around this: inject more information than just energy.

Evolutionary information

- Use similar proteins (homologs) from databases
- All have been through millions of year of selection by "reality"
- Multiple alignment: align similar regions of the sequences

A multiple alignment with conserved positions

	tein sequences	$\frac{\text { conserved amino acid }}{\text { position }}$
Q5IS43.3 SADMTIKLWDF-QGFECIRTMHGHDHNVSSVAIMPNGDHIVSASRDKT		
07T394	SADMTIKLWDF-QGFECIRTMHG	IMPNGDHIVSASRDKT
Q7T394.	WDF	MP
ט Q7T		
E Q86	SDDKTLKLWDVRSG-KCLKTLKG	PPSNLIISGSFDET
Q86VZ2. 1		
Q86VZ2.1 SDDKTLKLWDVRSG-KCLKTLKGHSNYVFCCNFNPPSNLIISGSFDET		
C3XVT5.1 SADMTIKLWDF-QTFENIKTMHGHDHNVSSVHFMPNGDFLISASRDKT		
C3XVT5.1 SADMTIKLWDF-QTFENIKTMHGHDHNVSSVHFMPNGDFLISASRDKT		
C3XVT5.1 SADMTIKLWDF-QTFENIKTMHGHDHNVSSVHFMPNGDFLISASRDKT		
Q803D2.3 SADMTIKLWDF-QGFECIRTMHGHDHNVSSVAIMPNGDHIVSASRDKT		
Q803D2. 3 SADMTIKLWDF-QGFECIRTMHGHDHNVSSVAIMPNGDHIVSASRDKT		
Q803D2.3 SADMTIKLWDF-QGFECIRTMHGHDHNVSSVAIMPNGDHIVSASRDK		
5RE95.1 SDDKTLKLWDMRSG-KCLKTLKGHSNYVFCCNFNPPSNLIISGSFDET		

Simple integration of information

- Force amino acid choice (constraint) at conserved positions.

Boltzman distribution connects probability and cost/energy

$$
P(X) \propto e^{-W(X)}
$$

Boltzman distribution connects probability and cost/energy

$$
P(X) \propto e^{-W(X)}
$$

From CFN to probabilities and back

- After $\mathrm{e}^{-\mathrm{x}}$ transform, a CFN defines a probability distribution (MRF)

Boltzman distribution connects probability and cost/energy

$$
P(X) \propto e^{-W(X)}
$$

From CFN to probabilities and back

- After e^{-x} transform, a CFN defines a probability distribution (MRF)
- Which can be learned from data using maximum penalized likelihood.1.6,10

Boltzman distribution connects probability and cost/energy

$$
P(X) \propto e^{-W(X)}
$$

From CFN to probabilities and back

- After e^{-x} transform, a CFN defines a probability distribution (MRF)
- Which can be learned from data using maximum penalized likelihood.1.6,10
- And transformed back into a CFN with a - $\log (x)$ transform
- We start from a complete pairwise CFN with unknown cost functions
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn
- Let $\ell\left(D \mid w_{i j}\right)$ be the log-probability of data D given the $w_{i j}$
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn
- Let $\ell\left(D \mid w_{i j}\right)$ be the log-probability of data D given the $w_{i j}$

$$
\text { Maximize } \ell\left(D \mid w_{i j}\right)-\lambda \cdot \| w_{i j}| |
$$

- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn
- Let $\ell\left(D \mid w_{i j}\right)$ be the log-probability of data D given the $w_{i j}$

$$
\text { Maximize } \ell\left(D \mid w_{i j}\right)-\lambda \cdot \| w_{i j}| |
$$

Efficient $L 2$ norm based implementation available ${ }^{10}$

- Uses conjugate gradient optimization
- fast C or very fast CUDA implementation
- n variables, d values, s samples: $O\left(d^{2} n^{2}+d n s\right)$ space.
- We start from a complete pairwise CFN with unknown cost functions
- We have a total of $\mathrm{d}^{2} \cdot \frac{\mathrm{n}(\mathrm{n}-1)}{2}$ parameters to learn
- Let $\ell\left(D \mid w_{i j}\right)$ be the log-probability of data D given the $w_{i j}$

$$
\text { Maximize } \ell\left(D \mid w_{i j}\right)-\lambda \cdot \| w_{i j}| |
$$

Efficient $L 2$ norm based implementation available ${ }^{10}$

- Uses conjugate gradient optimization
- fast C or very fast CUDA implementation
- n variables, d values, s samples: $O\left(d^{2} n^{2}+d n s\right)$ space.

A counter-productive insulation of fields

- Symbolic (gradient-free) Al already reached super-human performances

A counter-productive insulation of fields

- Symbolic (gradient-free) Al already reached super-human performances
- Numerical (differentiable) Al: you certainly know! (Alpha Go/Zero)

A counter-productive insulation of fields

- Symbolic (gradient-free) Al already reached super-human performances
- Numerical (differentiable) Al: you certainly know! (Alpha Go/Zero)
- But reasoning/planning with Deep Nets? Not at this point.

A counter-productive insulation of fields

- Symbolic (gradient-free) Al already reached super-human performances
- Numerical (differentiable) Al: you certainly know! (Alpha Go/Zero)
- But reasoning/planning with Deep Nets? Not at this point.
- It's now possible to connect them and build hybrid Als that reason and learn

A counter-productive insulation of fields

- Symbolic (gradient-free) Al already reached super-human performances
- Numerical (differentiable) Al: you certainly know! (Alpha Go/Zero)
- But reasoning/planning with Deep Nets? Not at this point.
- It's now possible to connect them and build hybrid Als that reason and learn
- Graphical models look like a good place to start

```
Al/toulbar2
S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
H. Nguyen (PhD, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen)
```


Protein Design

A. Voet (KU Leuven)
D. Simoncini (INSA, Toulouse)
S. Barbe (INSA, Toulouse)
S. Traoré (PhD, CEA)
C. Viricel (PhD)

PyRosetta (U. John Hopkins) OSPREY (Duke U.)
[1] Sivaraman Balakrishnan et al. "Learning generative models for protein fold families". In: Proteins: Structure, Function, and Bioinformatics 79.4 (2011), pp. 1061-1078.
[2] Martin C Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174.7 (2010), pp. 449-478.
[3] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[4] Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).
[5] Nina Narodytska et al. "Verifying properties of binarized deep neural networks". In: Proc. of AAAl'18. 2018.
[6] Youngsuk Park et al. "Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random Fields". In: Artificial Intelligence and Statistics. 2017, pp. 1302-1310.
[7] Niles A Pierce and Erik Winfree. "Protein design is NP-hard." In: Protein Eng. 15.10 (Oct. 2002), pp. 779-82. ISSN: 0269-2139. URL: http://www.ncbi.nlm.nih.gov/pubmed/12468711.
[8] Daniela Röthlisberger et al. "Kemp elimination catalysts by computational enzyme design". In: Nature 453.7192 (2008), p. 190.
[9] T. Schiex, H. Fargier, and G. Verfaillie. "Valued Constraint Satisfaction Problems: hard and easy problems". In: Proc. of the $14^{\text {th }}$ IJCAI. Montréal, Canada, Aug. 1995, pp. 631-637.
[10] Stefan Seemayer, Markus Gruber, and Johannes Söding. "CCMpred-fast and precise prediction of protein residue-residue contacts from correlated mutations". In: Bioinformatics 30.21 (2014), pp. 3128-3130.
[11] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs. jctc . 5b00594.
[12] Gilles Simonin et al. "Scheduling scientific experiments for comet exploration". In: Constraints 20.1 (2015), pp. 77-99.
[13] Arnout RD Voet et al. "Computational design of a self-assembling symmetrical β-propeller protein". In: Proceedings of the National Academy of Sciences 111.42 (2014), pp. 15102-15107.

