Motivation BD Coarse-graining SBD Variability

§ Purely kinetic model (law of mass-action) : no space, no polymer structure (but size-dependent kinetic rates). § Indirect interaction between polymer C i , i ě 2 via the available number of monomers C 1 .

Becker-Döring model

Reversible one-step coagulation-fragmentation

C i `C1 p i ÝÝá âÝÝ q i`1 C i`1
Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986 § § Typical coefficient are derived from physical principles p i " i α , q i " p i ´zs `q i γ ¯.
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Becker-Döring model

Reversible one-step coagulation-fragmentation

Set of kinetic reactions :

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1 , i ě 1 . §
In spontaneous polymerization experiment, § Initial condition given by c i pt " 0q " 0 @i ě 2. § Measured variable : ř iěn iC i (n is an unknown parameter) § The (observed) nucleation time is given by inftt ě 0 :

ÿ iěn iC i ptq ě δm | C i pt " 0q " mδ i"1 u .
Another quantity of interest is the following First Passage Time, inftt ě 0 : C N ptq ě 1 | C i pt " 0q " mδ i"1 u .
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Deterministic Becker-Döring model

Reversible one-step coagulation-fragmentation

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1 $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 
i"1 J i . § Deterministic version : infinite system of ODEs.
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Deterministic Becker-Döring model

Reversible one-step coagulation-fragmentation

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1 $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i .
§ Deterministic version : infinite system of ODEs. § Well-posedness theory for sublinear coefficients in X "

# pc i q iě1 P R N `: ÿ iě1 ic i ă 8 + Deterministic Becker-Döring model Reversible one-step coagulation-fragmentation C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1 $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i .
§ Deterministic version : infinite system of ODEs. § Well-posedness theory for sublinear coefficients in X "

# pc i q iě1 P R N `: ÿ iě1 ic i ă 8
+ § Preserves mass for all times

8 ÿ i"1 ic i ptq " 8 ÿ i"1 ic i p0q ": m . $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i .
Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

Equilibrium is given by J i " J " 0, which implies

c i " Q i z i , Q i "
p 1 p 2 ¨¨¨p i´1 q 2 q 3 ¨¨¨q i z is given by the mass at equilibrium, mpzq :"

ÿ iě1 iQ i z i
Is there a solution of mpzq " ? mp"

ÿ iě1 ic i ptqq $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i .
Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

If the serie mpzq " ř iě1 iQ i z i has a finite radius of convergence z s and if suptmpzq , z ă z s u ": m s ă 8 , then there is a critical mass such that there is no equilibrium with mass m ą m s . 

$ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i . Ball,

Remark

There is a Lyapounov function, given by Hpcq "

ÿ c i ˆln ˆci Q i ˙´1 ˙. $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i .
Penrose, Comm. Math. Phys 124, 1989

There exist "almost steady-states", for which J i " J ˚pmq ‰ 0. As m OE m s , if such steady-states are used as initial condition, then the solution § (for finite t) c i ptq ´ci p0q is exponentially small § lim tÑ8 c i ptq ´ci p0q is not exponentially small Moreover J ˚pmq is exponentially small § The new phase is being formed extremely slowly, after a long metastable period. § For constant or linear kinetic rates p i , q i , one can reduce the system to 1 or 2 ODEs on

c 1 , ÿ iě2 c i , ÿ iě2 ic i . § Based on scaling arguments, one can show that for q i " 0 (irreversible nucleation), inftt ě 0 : c n ptq ě δm | c i pt " 0q " mδ i"1 u » 1 m . while for "q i Ñ 8 2 (pre-equilibrium nucleation), inftt ě 0 : c n ptq ě δm | c i pt " 0q " mδ i"1 u » 1 m n .
Use of BD-like model in protein polymerization models pre-equilibrium nucleation step, constant rates

$ ' ' ' ' & ' ' ' ' % dc 1 dt " ´ppc 1 ´qqy , . dy dt " Kc n 1 p`Qpm ´c1 ptqqq , dz dt
" ppc 1 ´qqy , . ppx 0 qf px 0 , tq " ppx 0 q p N c 1 ptq n q N `ppx 0 qc 1 ptq , We start from a rescaled model (ε " 1{n, ε 2 " 1{m)

ř iěn c i z " ř iěn ic i ppiq " p, qpiq " q Q " secondary nucleation mechanism (fragmentation, heterogeneous nucleation...)

Continuous approximation, nucleation as a boundary condition

$ ' ' ' & ' ' ' % Bf px, tq Bt `c1 ptq Bppxqf px, tq Bx " r¨¨¨s . c 1 ptqppx 0 qf px 0 , tq " Npc 1 ptqq , dc 1 dt " λ ´γc 1 ´nNpc 1 q ´c1 ż 8 x 0 ppxqf px,
Prigent
$ ' & ' % dc ε i dt " 1 ε " J ε i´1 ´Jε i ‰ , i ě 2 , m ε " c ε 1 ptq `ε2 ÿ iě2 ic ε i ptq .
Scaling idea : excess of monomer, time scale " 1{ε

c ε 1 ptq :" ε 2 c 1 pt{εq , c ε i ptq :" c i pt{εq
Compensated aggregation / fragmentation

p ε i :" p i ε 2 , q ε i :" q i , J ε i " p ε i c ε 1 c ε i ´qε i`1 c ε i`1
and slow first step : p ε 1 :"

p 1 ε 4 ,
Large Size, Excess of monomer

We start from a rescaled model (ε " 1{n, ε 2 " 1{m)

$ ' & ' % dc ε i dt " 1 ε " J ε i´1 ´Jε i ‰ , i ě 2 , m ε " c ε 1 ptq `ε2 ÿ iě2 ic ε i ptq .
From the polymer point of view, we have accelerated fluxes, all of the same order :

1 ε p ε 1 C ε 1 C ε 1 Ý ÝÝÝÝÝ á â ÝÝÝÝÝ Ý 1 ε q ε 2 C ε 2 C ε 2 C ε i´1 1 ε p ε pεpi´1qqC ε 1 C ε i´1 Ý ÝÝÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝÝÝ Ý 1 ε q ε pεiqC ε i C ε i 1 ε p ε pεiqC ε 1 C ε i Ý ÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝ Ý 1 ε q ε pεpi`1qqC ε i`1 C ε i`1 ,
We start from a rescaled model (ε " 1{n, ε 2 " 1{m)

$ ' & ' % dc ε i dt " 1 ε " J ε i´1 ´Jε i ‰ , i ě 2 , m ε " c ε 1 ptq `ε2 ÿ iě2 ic ε i ptq .
Weak form : for any test function (ϕ i ),

d dt ÿ iě2 c ε i ϕ i " 1 ε J ε 2 ϕ 2 `ÿ iě3 J ε i " ϕ i`1 ´ϕi ε  .
Large Size, Excess of monomer

We start from a rescaled model (ε " 1{n, ε 2 " 1{m)

$ ' & ' % dc ε i dt " 1 ε " J ε i´1 ´Jε i ‰ , i ě 2 , m ε " c ε 1 ptq `ε2 ÿ iě2 ic ε i ptq . f ε pt, xq " ř iě2 c ε i ptq1 rpi´1{2qε,pi`1{2qεq pxq, ϕ i " ş pi`1{2qε pi´1{2qε ϕpxqdx, $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % d dt ż `8 0 f ε pt, xqϕpxq dx " " p ε 1 c ε 1 ptq 2 ´qε 2 c ε 2 ptq ‰ ˜1 ε ż 5{2ε 3{2ε ϕpxq dx ż `8 0 J ε pt, xq∆ ε ϕpxq dx , m ε " c ε 1 ptq `ż `8 0 xf ε pt, xq dx .
where ∆ ε ϕpxq " ϕpx`εq´ϕpxq ε and J ε pt, xq " .p ε pxqc ε

1 ptqf ε pt, xq ´qε px ὲqf ε pt, x `εq d dt ż `8 0 f ε pt, xqϕpxq dx " " p ε 1 c ε 1 ptq 2 ´qε 2 c ε 2 ptq ‰ ˜1 ε ż 5{2ε 3{2ε ϕpxq dx ż `8 0 rp ε pxqc ε 1 ptqf ε pt, xq∆ ε ϕpxq ´qε pxqf ε pt, xq∆ ´εϕpx qs dx ,
Theorem (Deschamps, Hingant, Y. ( 2016))

We suppose : § Control and convergence of rate functions § Control and convergence of initial condition § ppxq " px rp , qpxq " qx rq near x " 0, and r q ě r p . § c 1 p0q ą ρ :" lim xÑ0 qpxq{ppxq d dt

ż `8 0 f ε pt, xqϕpxq dx " " p ε 1 c ε 1 ptq 2 ´qε 2 c ε 2 ptq ‰ ˜1 ε ż 5{2ε 3{2ε ϕpxq dx ż `8 0 rp ε pxqc ε 1 ptqf ε pt, xq∆ ε ϕpxq ´qε pxqf ε pt, xq∆ ´εϕpx qs dx ,
Theorem (Deschamps, Hingant, Y. ( 2016)) 

we have f ε Ñ f (in C pr0, T s; w ´˚´Mpr0,
f ε pt, xqϕpxq dx " " p ε 1 c ε 1 ptq 2 ´qε 2 c ε 2 ptq ‰ ˜1 ε ż 5{2ε 3{2ε ϕpxq dx ż `8 0 rp ε pxqc ε 1 ptqf ε pt, xq∆ ε ϕpxq ´qε pxqf ε pt, xq∆ ´εϕpx qs dx ,
Theorem (Deschamps, Hingant, Y. ( 2016))

Nptq is an explicit function of c 1 ptq, and is given by a quasi steadystate approximation of c ε 2 " f ε pt, 2εq, given by the solution of

$ ' & ' %
0 " rJ i´1 pc 1 q ´Ji pc 1 qs , i ě 2 , c 1 ptq " c 1 .

J i pc 1 q " pi rp c 1 ´qpi `1q rq 1 rp"rq .

When c 1 ą lim xÑ0 qpxq ppxq , the solution of J i " J ‰ 0 is linked to the loss of mass in the classical BD theory.

Exemples § For r p ă r q , we get Npc 1 q " αc 2 1 , and

lim xÑ0 `x rp f pt, xq " α p c 1 ptq .
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Exemples § For r p ă r q , we get Npc 1 q " αc 2 1 , and lim xÑ0 `x rp f pt, xq " α p c 1 ptq . § For r p " r q , we get Npc 1 q " α p c 1 ppc 1 ´qq, and

lim xÑ0 `x rp f pt, xq " α p c 1 ptq .
Exemples § For r p ă r q , we get Npc 1 q " αc 2 1 , and lim xÑ0 `x rp f pt, xq " α p c 1 ptq . § For r p " r q , we get Npc 1 q " α p c 1 ppc 1 ´qq, and lim 

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1
Transitions are given by ÝÝá âÝÝ

P " C 1 pt `dtq " C 1 ptq ´2 C 2 pt `dtq " C 2 ptq `1 * " p 1 C 1 ptqpC 1 ptq ´1qdt `opdtq
q i`1 C i`1
Transitions are given by

P $ & % C 1 pt `dtq " C 1 ptq ´1 C i pt `dtq " C i ptq ´1 C i`1 pt `dtq " C i`1 ptq `1 , .
- ÝÝá âÝÝ

" p i C 1 ptqC i ptqdt `opdtq
q i`1 C i`1
Transitions are given by

P $ & % C 1 pt `dtq " C 1 ptq `1 C i pt `dtq " C i ptq `1 C i`1 pt `dtq " C i`1 ptq ´1 , .
-

" q i`1 C i`1 ptqdt `opdtq
Stochastic Becker-Döring model Reversible one-step coag.-frag.

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1
Due to detailed-balance, the asymptotic prob. distribution is

ΠpC q " B M M ź i"1 pQ i q C i C i ! , Q i " p 1 p 2 ¨¨¨p i´1 q 2 q 3 ¨¨¨q i .
The expected number of clusters of size i is

E Π C i " Q i B M {B M´i , and MB ´1 M " M ÿ i"1 iQ i B ´1 M´i .
Moreover, analogy with supercritical case in BD holds :

ˆlim iÑ8 p i q i`1 " z s ą 0 ˙ñ ˆlim MÑ8 E Π C i " Q i z i s ˙ §
With the large volume scaling : c ε i " εC i , and p i " εp i , q i " q i : Law of large numbers as M Ñ 8 [Jeon, CMP (1998)] § Any macroscopic quantity like inftt ě 0 :

ÿ iěN iC i ptq ě ρM | C i pt " 0q " Mδ i"1 u .
converges (in standard scaling) to a finite deterministic value as M Ñ 8. § With the large volume scaling : c ε i " εC i , and p i " εp i , q i " q i : Law of large numbers as M Ñ 8 [Jeon, CMP (1998)] § Any macroscopic quantity like inftt ě 0 :

ÿ iěN iC i ptq ě ρM | C i pt " 0q " Mδ i"1 u .
converges (in standard scaling) to a finite deterministic value as M Ñ 8. § This may not be true for microscopic quantity, for instance.

inftt ě 0 : How to explain large variability in M Ñ 8 ?

C N ptq ě 1 | C i pt " 0q " Mδ i"1 u .
Roughly speaking, due to the law of large number (+CLT), in order to obtain a positive variance in a continuous settings, one needs to avoid that the nucleation occurs in finite time in the limit M Ñ 8. § We seek situations (model, scaling) where the nucleation is a rare event, that do not occurs in the deterministic limit M Ñ 8.

Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

C i `C1 p i Ý ÝÝÝ á â ÝÝÝ Ý q i`1 {ε C i`1
Y . et al., JCP, 144, 2016 Using pre-equilibrium hypothesis, in the unfavorable aggregation limit, the leading order of the first assembly time of a cluster of size N is

ă T ą« εÑ0 1 ε N´2 ś N´1 k"2 q k ś N´1 k"1 p k ś N´1 k"0 pM ´kq .
Also, in the asymptotic ε Ñ 0 the first assembly time T is an exponential distribution. § This behavior can be used to couple a first part, very unfavorable, to a second part, favorable or irreversible

Unfavorable aggregation in SBD

Reversible one-step coag.-frag.

C i `C1 p i Ý ÝÝÝ á â ÝÝÝ Ý q i`1 {ε C i`1
Y . et al., JCP, 144, 2016 Unfavorable aggregation in SBD Reversible one-step coag.-frag. Large nucleus scaling Reversible one-step coag.-frag. 

C i `C1 p i Ý ÝÝÝ á â ÝÝÝ Ý q i`1 {ε C i`1 Y. et
C i `C1 p i ÝÝá âÝÝ q i`1 C i`1 f ε pt, xq " ř iě2 C ε i ptq1 rpi´1{2qε,

Stochastic view of Classical Nucleation Theory

In the classical scaling from SBD to BD, with gelation coefficients (sup `ř iQ i z i ˘" ρ s ă 8), there is a phase transition in finite random time

The transition phase is abrupt and corresponds to the rapid formation of a single large cluster

Stochastic view of Classical Nucleation Theory

The transition phase is abrupt, occurs at a random time and corresponds to the rapid formation of a single large cluster n cluster models Can we perform LDP calculations with n clusters ? pk 0 , k 1 q p k 0 pm´pk0`k1qεq

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ q k 0 `1 pk 0 `1, k 1 q , pk 0 , k 1 q p k 1 pm´pk0`k1qεq

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ q k 1 `1 pk 0 , k 1 `1q , which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q n cluster models

Can we perform LDP calculations with n clusters ? pk 0 , k 1 q p k 0 pm´pk0`k1qεq

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ q k 0 `1 pk 0 `1, k 1 q , pk 0 , k 1 q p k 1 pm´pk0`k1qεq

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ q k 1 `1 pk 0 , k 1 `1q , which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q

xÑ0`x

  rp f pt, xq " α p c 1 ptq . § For faster fragmentation rate q ε 2 , we may get Npc 1 q " f pt, xq " αc 1 ptq c 1 ptq pc 1 ptq `q2 ,or Npc 1 q " 0, and lim xÑ0 `x rp f pt, xq " 0 .
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Deterministic BD model -Some remarks § For constant or linear kinetic rates p i , q i , one can reduce the system to 1 or 2 ODEs on c 1 ,

Use of BD-like model in protein polymerization models Irreversible nucleation step, "Heaviside" rates

Powers & Powers, Biophys. J. 91, 2006

For b " c : pre-equilibrium hypothesis.

Use of BD-like model in protein polymerization models pre-equilibrium nucleation, polymerization-fragmentation, "oligomers at 0"

dc i dt " pc 1 pc i´1 ´ci q ´qpi ´1qc i `2q 
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Preserves mass for all times
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Stochastic Becker-Döring model

Reversible one-step coag.-frag.

ÝÝá âÝÝ

Time interval between transition

given transition is selected at random according to its weight. ÝÝá âÝÝ

Drawback : exponential increase of the size of the state-space !

where σpiq is the sum of the divisors of i ÝÝá âÝÝ

Due to detailed-balance, the asymptotic prob. distribution is

Stochastic Becker-Döring model

Reversible one-step coag.-frag.

ÝÝá âÝÝ

Due to detailed-balance, the asymptotic prob. distribution is

The expected number of clusters of size i is

Coarse-Grained model

Then, for "small α", and large volume, the lag time is composed of the convolution of an Exponential variable of rate α and a deterministic time given by the ODE

Coarse-Grained model

Then, for ν ą 1, and ε Ñ 0, the lag time converges "essentially" to an exponential distribution (in the time scale

Coarse-Grained model Then, for the rescaled process εpC 1 ptq, C 1 ptq, Z ptqq we observ "translated trajectory" as ε Ñ 0

Quantifying the rare event in a toy model

A much simpler version of this model consider that a single aggregate may be formed at a time :

ÝÝÝÝÝá âÝÝÝÝÝ Thanks for your attention ! n cluster models
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Can we perform LDP calculations with n clusters ? pk 0 , k 1 q p k 0 pm´pk0`k1qεq
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