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Amyloid diseases and nucleation

Becker-Doring model

Coarse-graining : to include nucleation in continuous model

Stochastic Becker Déring model

Variability in nucleation time
Re-scaling reaction rates with M
Re-scaling nucleus size with M
Back to classical nucleation theory



Amyloid diseases and nucleation



Motivation

Protein accumulation in amyloid by nucleation-dependent

polymerization

Misfolding Prusiner model for prion

The early aggregation formation requires a series of association
steps that are thermodynamically unfavorable (with an dissociation
constant Ky » 1).

These aggregation steps are unfavorable up to a given size (that is
not currently known), which is referred to the nucleus size.



Motivation

Protein accumulation in amyloid by nucleation-dependent

polymerization

Misfolding Prusiner model for prion

Prpse (infectious agent=seed)

© Chemistry & Biology, 1995

The early aggregation formation requires a series of association
steps that are thermodynamically unfavorable (with an dissociation
constant Ky » 1).

These aggregation steps are unfavorable up to a given size (that is
not currently known), which is referred to the nucleus size.



Motivation

Key questions

We want to study nucleation mechanism for in-vitro spontaneous
polymerization experiments of rPrP (kinetics monitored by
fluorescence intensity)

» How to include nucleation in (macroscopic) model of protein
polymerization ?

» How to explain large variability in nucleation lag time, despite
the large number of proteins?



Becker-Doring model



BD

Becker-Déring model

Reversible one-step
coagulation-fragmentation

Ci+C1LCI'+17 i:27737"'

qi+1

» First used in the work Kinetic treatment of nucleation in
supersaturated vapors by physicists Becker and Déring (1935).
» Traditionally used as an infinite set of Ordinary Differential

Equations. More recently used as a finite state-space Markov
Chain.



BD

Becker-Déring model

. Ball, Carr, Penrose, Comm. Math. Phys
Reversible one-step 104(4), 1986

coagulation-fragmentation

pi
G+G=—=0Cu

di+1

» Purely kinetic model (law of mass-action) : no space, no
polymer structure (but size-dependent kinetic rates).



BD

Becker-Déring model

. Ball, Carr, Penrose, Comm. Math. Phys
Reversible one-step 104(4), 1986

coagulation-fragmentation

pi
G+G=—=0Cu

di+1

» Purely kinetic model (law of mass-action) : no space, no
polymer structure (but size-dependent kinetic rates).

» Indirect interaction between polymer C;, i = 2 via the
available number of monomers C;.

G(t) + Z iCi(t) = constant

i=2
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Becker-Déring model

. Ball, Carr, Penrose, Comm. Math. Phys
Reversible one-step 104(4), 1986

coagulation-fragmentation

pi
G+G=—=0Cn

qi+1

Rates
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» Typical coefficient are derived from physical principles

pi =i, qi:Pi<Zs+.£>-
17
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Becker-Déring model

. Ball, Carr, Penrose, Comm. Math. Phys
Reversible one-step 104(4), 1986

coagulation-fragmentation

Deterministic and Stochastic Becker-Déring equations:
_Pi Past and Recent Mathematical Developments
G+G Cit1 P

qi+1 E. Hingant R. Yvinec
April 24, 2017

Rates
OB IO

OO0

0 10 20 30 40 50 60
Size i

» Typical coefficient are derived from physical principles

pi=1i%, qi:Pi<Zs+i>-
1Y



BD

Becker-Déring model

Reversible one-step coagulation-fragmentation

Set of kinetic reactions :

C;-I—ClL‘C;_,.l, i=1.

qi+1

» In spontaneous polymerization experiment,
> Initial condition given by ¢;(t =0) =0 Vi > 2.
> Measured variable : 3}, iC; (nis an unknown parameter)
» The (observed) nucleation time is given by
inf{t >0: Z iC;(t) >0m ‘ C,'(t = 0) = m5,-:1} .
i=n
Another quantity of interest is the following First Passage
Time,

inf{t >0: CN(t) >1 | C,'(t = O) = m5,~=1} .



BD

Deterministic Becker-Déring model

Reversible one-step

. . dc; ]
coagulation-fragmentation d—t' Jii—Jii=2,
pi Ji = piac—qiticiv1,i =1,
Ci+ G —=— C1 da y o
qi+1 E = —J1— Z’.:1 i

» Deterministic version : infinite system of ODEs.
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Deterministic Becker-Déring model

Reversible one-step

. . dc; ]
coagulation-fragmentation d—t' Jii—Jii=2,
pi Ji = piac—qiticiv1,i =1,
Ci+ G —=— C1 da y o
qi+1 E = —J1— Zizl i

» Deterministic version : infinite system of ODEs.
» Well-posedness theory for sublinear coefficients in

X = {(C,‘),’>1 ERI_?_ . Zici < OO}

i=1



BD

Deterministic Becker-Déring model

Reversible one-step

. . dc; ]
coagulation-fragmentation d—t' Jii—Jii=2,
pi Ji = piac—qiticiv1,i =1,
Ci+ G —=— C1 da y o
qi+1 E = —J1— Zizl i

» Deterministic version : infinite system of ODEs.
» Well-posedness theory for sublinear coefficients in

X = {(C,‘),’>1 € RI_?_ . Z iC,' < OO}
i>1
» Preserves mass for all times

ici(t) = Z ici(0) =:m.

i=1 i=1



BD

Equilibrium of the BD model

Ball, Carr, Penrose, Comm.

dc; . Math. Phys 104(4), 1986
—_ = Jii—Ji,i=2, Y (4
dt )
Ji = piac —qgiticiy1,i =1,
dCl
P —h =3

Equilibrium is given by J; = J = 0, which implies
¢ = Q7 Q= PP Pl

q2q3 - - qj
z is given by the mass at equilibrium,
m(z) := Z iQiz'
i=1

Is there a solution of



BD

Equilibrium of the BD model

Ball, Carr, Penrose, Comm.

dc; Math. Phys 104(4), 1986

oo Uiz, e 1049

dt _

Ji = piac—qiyiciy,i =1,

dC1 0

B = —h-Xd
If the serie m(z) = Y-, iQ;z' has a finite radius of convergence z;
and if

sup{m(z),z < zs} =: mg < 0,

then there is a critical mass such that there is no equilibrium with
mass m > ms.



BD

Deterministic BD model and Classical Nucleation Theory

Ball, Carr, Penrose, Comm.

dc; i Math. Phys 104(4), 1986
L= Jii=2

7 L Slemrod, Nonlinearity 2(3),
Ji = picac—GitiGit1,i =1, 1989

dcy . Caiiizo, Lods, J. Diff. Egs.

o = h o Xiad 255(5), 2013

If m < myg, then (with strong convergence)
tli)ngo ci(t)=Qiz', m(z)=m
If m > myg, then (with weak convergence)

lim ¢i(t) = Qiz., m— ms = "loss of mass to c0"
t—00

Remark
There is a Lyapounov function, given by

H(c) = ; ¢ (In (g) - 1) .



BD

Deterministic BD model and Classical Nucleation Theory

Penrose, Comm. Math. Phys

dc; . 124, 1989
(Tt' = Jia—Ji,i =2, |
dJi = pjc1C — Qiy1Ciy1,1 =1,
a 0
dr —h =i i

There exist "almost steady-states”, for which J; = J*(m) # 0. As
m N\, mg, if such steady-states are used as initial condition, then
the solution

» (for finite t) ¢;(t) — ¢i(0) is exponentially small
» limeoo ci(t) — ¢i(0) is not exponentially small
Moreover J*(m) is exponentially small

» The new phase is being formed extremely slowly, after a
long metastable period.



BD

Deterministic BD model — Some remarks

» For constant or linear kinetic rates p;, g;, one can reduce the
system to 1 or 2 ODEs on

C1, Zci7 Zici'

i=2 i=2
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Deterministic BD model — Some remarks

» For constant or linear kinetic rates p;, g;, one can reduce the
system to 1 or 2 ODEs on

C1, Z Ciy Z iCi .
i=2 i=2

» Based on scaling arguments, one can show that for g; = 0
(irreversible nucleation),

inf{t >0 cp(t) = 6m | ci(t = 0) = moi_} ~ %

while for “g; — o0” (pre-equilibrium nucleation),

L

mn’

inf{t >0:cp(t) =0m]|ci(t =0) = mdj_1} ~
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Use of BD-like model in protein polymerization models

Irreversible nucleation

A B
i+ % Sl=2) S
YT (=) 2 g
ay(=a) 2
X2 + % b3 (=b) X3 |oligomers £
: 8
o
g (=a) 2
Xn1 + X1 orp) ¥n  nudeus ]
X + X =2Ll=2 y o
n 1 bn,l ( == 0) n+1 g
ansy (= a) &
Xnv1 + X1 5T o) Xne2 | fibrils 2
ai(=a)
X + Xp e ¥,
i 1 b|+1 ( pe= C) i+1

step, "Heaviside" rates

nucleus
oligomers fibrils

(i) [X]tot < Ke

Xio X1 X1z

(ii) Ke < [Xtot < Ks

(iii) Ks < [X]tot
= @ %= f) X-= @
@ = nucleus Xs = @ etc.

Xq =

Powers & Powers,
Biophys. J. 91, 2006

For b>» c:
pre-equilibrium
hypothesis.
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Use of BD-like model in protein polymerization models

_— . Ferrone et al., Bophys. J.
pre-equilibrium nucleation step, constant rates 3, ;959

dCl y = Zi;n Ci
? = _(pcl_q))/r Z(:) ’-an'cz)
dy p(i)=p q(i)=gq
dr Kl (+Q(m —a(t))), Q@ = secondary
dz —q) nucleation mechanism
dt (pc1 —q)y.. (fragmentation,
heterogeneous

nucleation...)



BD

Use of BD-like model in protein polymerization models

Knowles et al., Science

pre-equilibrium nucleation, 326, 2009

polymerization-fragmentation, "oligomers at 0"
Approximate analytical

solution.
dC1 n—1 . .
i —pc12c,-+2q2 Z ic; — nKcy .
izn i=1j>i+1
dc; . .
d—tl = pC]_(C,',l — C,') — q(l - 1)C,' + 2q 2 G + Kcln(si,n =0,
Jj=i+1
(dc
‘!fl = —pay +n(n—1)qy — nKcy .
y
| 4 = @@ -Day+Kd, y=)q,
J i=n
£ = pay —n(n—1)qy + nKef, z= Eic,-.

\ IBI‘I



BD

Use of BD-like model in protein polymerization models

Conti . . leati Helal et al., J. Math.
ontinuous approximation, nucleation as a Biol., 2013

boundary condition
f(t,x)=number of

polymer size x

af(;t’ﬂJra(t)W - []. N(ar) = acf
a(t)p(x)f(x,t) = N(ci(t)),
dey o

o A—~vc1 —nN(cp) — clf p(x)f(x,t)c

X0
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Use of BD-like model in protein polymerization models

Prigent et al., Plos One,

Conti . . leati 7, 2012
ontinuous apprpxmatlon, nucleation as a Banks et al., J. Math.
boundary condition Biol., 74, 2017

of(x,t)  dlp(x)ei(t) — q(x))f(x, 1)
PR ox = Ll

p(x0)f(x0,t) = p(xo)

pne(t)”
gn + p(xo)ci(t)’




Coarse-graining : to include nucleation in continuous model



Coarse-graining

Large Size, Excess of monomer

We start from a rescaled model (¢ = 1/n, 2 = 1/m)

dc? 1 .
dti = g[lgfl_JlE]7 1227
m = () +e> ) ic(t).

i=2

Scaling idea : excess of monomer, time scale = 1/¢
cS(t) == 2ci(tfe), cE(t) = ci(t/e)
Compensated aggregation / fragmentation

a._pi E v . e _ EE_E I3 €
pi = 22 qi =qi, Ji=piac — g6

and slow first step :
ps ] &
1- 4



Coarse-graining

Large Size, Excess of monomer

We start from a rescaled model (¢ = 1/n, 2 = 1/m)

dc? 1 .

dié = g[igfl—Jf]’ =2,

m = () +e> ) ic(t).
i=2

From the polymer point of view, we have accelerated fluxes, all of

the same order :
LpiCiCE

1 2
c6G
leE-GCE, | NG
i—1 1 E Ci 1 i+1>
[ [ €
2q°(eNC 2q°(e(i+1))Cryy



Coarse-graining

Large Size, Excess of monomer

We start from a rescaled model (¢ = 1/n, 2 = 1/m)

dc? 1 .
dti = g[lgfl_JlE]7 1227
m = () +e> ) ic(t).

i=2

Weak form : for any test function (¢;),

d S | pit1 — @i
dtZCiSD:—EJ2<P2+ZJi[ - :

i=2 i=3



Coarse-graining

Large Size, Excess of monomer

We start from a rescaled model (¢ = 1/n, 2 = 1/m)

dc? 1
i Z —J; =2,
T
mt = ~|—522 ic;
i=2
. i+1/2)e
f (t’ X) = Z:>2 i ( )1[(’ 1/2)e,(i+1/2) 5) SE’+1;2 dX
r d +o0 5/26
EJ fe(t,x)p(x)dx = [plcl(
0 3/25
+00
{ +J S (t, x) Acp(x) dx
0
m* = (1) +J xfe(t, x) dx.
0

where A p(x) = M and JE(t,x) = .p(x)cf(t)Fe(t,x) — g°(x +
e)fe(t,x +¢)



Coarse-graining

o 5/2¢
% , Fo(t, x)e(x) dx = [pici(t)® — g5¢5 ()] (i L/Zs o(x) dx)

+00
+fo [p" () et ()7 (8, x)Deip(x) — 7 (x)F= (8, x) A—ep(x)] dx,

Theorem (Deschamps, Hingant, Y. (2016))

We suppose :
» Control and convergence of rate functions

» Control and convergence of initial condition
» p(x) ~ px", q(x) ~ Gx" near x =0, and rqy = rp.

» ¢1(0) > p = limy_0 g(x)/p(x)



Coarse-graining

+00 5/2¢
D ot )00 e = [pEci (22 — 55 ()] (1 f so(x)dx>

€ J3/2¢
+0
+L [p*(x) et ()= (L, x) Acip(x) — g~ (X)F*(t, x) A_cip(x)] dx,

Theorem (Deschamps, Hingant, Y. (2016))
we have f¢ — f (in C ([0, T]; w — = — M([0, 20)))) solution of

d +00

dt . f(t,x)e(x) dx = N(t)p(0)

# [ a0 - abal ¢ (e x) o,
0

for all ¢ € Cy[0,0), which is the weak form of

of  d(J(x,t)f(t,x))
ot * 0x

=0, X“LnoJ(X’ t)f(t,x) = N(t).



Coarse-graining

d [t® ) 1 5/2¢

— Fe(t, x)p(x) dx = [pici(t)® — g5c5(t)] f p(x) dx

dt 0 € J3)2¢
+00

G OF (£ 0800 - (P (0B p(0)] o,

0

Theorem (Deschamps, Hingant, Y. (2016))

N(t) is an explicit function of ci(t), and is given by a quasi steady-

state approximation of c5 = f¢(t,2¢), given by the solution of

0 = [Jiila)—Jdi(a)], i=2,

a(t) = a.
Ji(a) = pi"?a—q(i + ]_)fqlrp:rq .

When ¢; > limy_g %, the solution of J; = J # 0 is linked to the

loss of mass in the classical BD theory.



Coarse-graining

Exemples

» For r, < rq, we get N(c1) = ac?, and

a
lim x™?f(t,x) = =c1(t).
lim x¥(ex) = Zalt



Coarse-graining

Exemples

» For r, < rq, we get N(c1) = ac?, and

a
lim x™?f(t,x) = =c1(t).
lim x¥(ex) = Zalt

» For r, = rq, we get N(c1) = %cl(ﬁcl —74q), and

a
li "Pf(t,x) = = .
lim _x (t,x) ﬁcl(t)



Coarse-graining

Exemples

» For r, < rq, we get N(c1) = ac?, and
(07

lim x™f(t,x) = —c1(t).

Jim, xPE(t,x) = Sa(t)

> For rp = rq, we get N(c1) = Scai(pa —9), and
p=Iq P

lim x™f(t,x) = gcl(t).

x—0+t p
» For faster fragmentation rate g5, we may get
— 2__pcl
N(a) = acg 555 and

- ca(t)
[ Pf(t,x) = t)—
gy X7 H(x) = acal )ﬁq(t) +q2

or N(cy) =0, and

XILrngfo(t,x) =0.



Stochastic Becker Déring model



SBD

Stochastic Becker Déring model

Reversible one-step

coag -frag. G(t) = G"+ Jti—l(t) —Ji(t), =
Ho = v f piCi(s) i(s)ds)
pi ] _ ° (e
G+ G q-:H Cit1 —Y,-H(J qi+1C'+1(5)dS)
Gi(t) = —24(t) = > Ji(t)
\ i=2

» Stochastic version : Finite-state space Markov Chain, in

0
XM = {CI (C,'),‘;]_ ENN . ZIC, = M} .

i=1



SBD

Stochastic Becker Déring model

Reversible one-step

coag -frag. G(t) = G"+ Jti—l(t) —Ji(t), =
5t = yﬁ(J'mcggcxgdg
pi ] _ ° (e
G+ G q-:H Cit1 —Y,-H(J qi+1C'+1(5)dS)
Gi(t) = —24(t) = > Ji(t),
\ i=2

» Stochastic version : Finite-state space Markov Chain, in

0
XM = {CI (C,'),‘;]_ ENN . ZIC, = M} .

i=1
» Preserves mass for all times
o0

DLiGi(t) = > iGi(0) =
i=1

i=1



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at 1ter. 0

Pi
G+G—=—=0GCu
di+1

Transitions are given by

{ Ci(t+dt) = Ci(t) —2

Go(t + dt) = Go(t) + 1 } = p1Gi(t)(Gi(t) — 1)dt + o(dt)



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at 1ter. 0

Pi
CG+CG — Ci+1
qi+1

Transitions are given by

G(t+dt)=G(t)—1
7’{ Ci(t+dt) = G(t) -1 } = p;C1(t)Ci(t)dt + o(dt)
Cip1(t+dt) = Gya(t) +1



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at 1ter. 0

Pi
CG+G—CGC
gdi+1

Transitions are given by

G(t+dt) = G(t)+1
79{ Ci(t+dt)=C(t)+1 } = qi+1Ci+1(t)dt + o(dt)
Ci+1(t + dl’) = Ci+1(t) -1



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at iter. 1

Pi
CG+G—CGC
gdi+1

Time interval between transition

Tiypi—Ti~€ <P1C1(C1 —D+ > ,pGGH+ CI;Ci)

i=2

A given transition is selected at random according to its weight.



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at iter. 2

Pi
CG+G—CGC
gdi+1

Time interval between transition

Tiypi—Ti~€ <P1C1(C1 —D+ > ,pGGH+ CI;Ci)

i=2

A given transition is selected at random according to its weight.



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at 1ter. 3

Pi
CG+G—CGC
gdi+1

Time interval between transition

Tiypi—Ti~€ <P1C1(C1 —D+ > ,pGGH+ CI;Ci)

i=2

A given transition is selected at random according to its weight.



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at iter. 4

Pi
CG+G—CGC
gdi+1

Time interval between transition

Tiypi—Ti~€ <P1C1(C1 —D+ > ,pGGH+ CI;Ci)

i=2

A given transition is selected at random according to its weight.



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at 1ter. 5

Pi
CG+G—CGC
gdi+1

Time interval between transition

Tiypi—Ti~€ <P1C1(C1 —D+ > ,pGGH+ CI;Ci)

i=2

A given transition is selected at random according to its weight.



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=5) at 1ter. 6

Pi
CG+G—CGC
gdi+1

Time interval between transition

Tiypi—Ti~€ <P1C1(C1 —D+ > ,pGGH+ CI;Ci)

i=2

A given transition is selected at random according to its weight.



SBD

Stochastic Becker-Déring model

Reversible one-step

coag.-frag. Graph (M=15) at 1ter. 0

Pi
CG+G—CGC
gdi+1

o0
XM:={CGNN : ZiC,-zl\/l}

i—1
Drawback : exponential increase of the size of the state-space!

M 1 oM
M| Xy |= o(i) | Xm=il, Xy |oc——exp | mA\/— |,
|M|;<>|M||M|4W§p< 3>

where o (i) is the sum of the divisors of i



SBD

Stochastic Becker-Déring model

Reversible one-step coag.-frag.

pi
G+ G —=—C(C

qi+1

Due to detailed-balance, the asymptotic prob. distribution is

M .

i pip2 - pi—1

N(C) = By , Qi=——-——.
(©) H G! I 9243 - qi



SBD

Stochastic Becker-Déring model

Reversible one-step coag.-frag.

Pi
G+ G =—=0Cu

gdi+1

Due to detailed-balance, the asymptotic prob. distribution is

Q = pip2 - Pi—1 '
g2q93---qj

)

M NG
() = 8ul [ G
i=1 I

The expected number of clusters of size i is

M
EnG = QiBu/Bu—i, and MBy! = iQiByt .
i=1



SBD

Stochastic Becker-Déring model

Reversible one-step coag.-frag.

Pi
CG+G—CGC1

qit+1

Due to detailed-balance, the asymptotic prob. distribution is

M ]
(Q)© pip2- - pi-1
nic) =8 , Q=5 T
(©) MH ! 9293 qi

The expected number of clusters of size i is

M

EnC = Q;BM/BM_;, and MBA_ﬂl = Z iQ;BA_ﬂl_i .
i=1
Moreover, analogy with supercritical case in BD holds :

(Iim Pi _ > 0) = ( lim EnC = Q,-zs")
=00 gjt1 M—o0




» With the large volume scaling : SBD and full BD
— 1.0
C,'a =¢€G;, and p; = ep;, — Monomer
gi = q; : Law of large numbers o — Dimer
as M — oo [Jeon, CMP (1998)] T 3-mer
o — 4-mer
» Any macroscopic quantity like € o6l —  5-mer
3 10-mer
i ° 20-mer
inf{t >0: 2 iCi(t) = pM f'(—gf 04
i=N 3
o
‘ C,(t = 0) = M(S,‘:l} . 0.2
converges (in standard scaling) 0.0

- . . . — 4 6 8
to a finite deterministic value as 1072 10° 10% 10% 10° 10
M — o0 time



» With the large volume scaling : SBD and full BD
_ 1.0
CI:E =¢e(C;, and p; = EP;, — Monomer
gi = q; : Law of large numbers — Dimer
as M — oo [Jeon, CMP (1998)] o5 8-mer
) — 4-mer
» Any macroscopic quantity like € o6l — 5-mer
2 10-mer
o 20-mer
inf{t >0: ) iCi(t) = pM -
=N :
o
‘ C,'(t = 0) = M(S,'Zl} . 0.2
converges (in standard scaling) 0.0
to a finite deterministic value as 1072 10° 10* 10% 10° 10°
M = oo, time
» This may not be true for [Y., D'Orsogna, Chou JCP
microscopic quantity, for instance. (2012)]

[Y., Bernard, Hingant,

inf{t > 0: Cu(t) >1 Pujo-Menjouet JCP (2016)]

| C,'(t = 0) = M5;=1}.



Variability in nucleation time
Re-scaling reaction rates with M
Re-scaling nucleus size with M
Back to classical nucleation theory
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How to explain large variability in M — o0 7?

Roughly speaking, due to the law of large number (+CLT), in order
to obtain a positive variance in a continuous settings, one needs to
avoid that the nucleation occurs in finite time in the limit M — oo.

» We seek situations (model, scaling) where the nucleation is a
rare event, that do not occurs in the deterministic limit
M — 0.
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Coarse-Grained model

G-nY+1,Z+n atrate «a(G),
G,Y,Z— G-1Y,Z+1 atrate pQGY,
G,Y+1,Z atrate qZ.

Then, for "small ", and large Szavits-Nossan et al., PRL 113,
volume, the lag time is composed of 2014 .
the convolution of an Exponential Y =2022G 2= 250G

variable of rate o and a

deterministic time given by the ODE
dC1

%
yoo_ , — .

! g T * (+ala)), y= ;CH

dz - )
% = Py +(naf(c)), z=2/c,-.

i=n

= —pay (—nala)).
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Coarse-Grained model

Ci 7 G —2,Z+2 atrate 5“a(5C1)2,
b Gi—1,Z+1 atrate p(Ge)(Ze).

Then, for v > 1, and € — 0, the lag Doumic et al., SIAM J. App.

time converges "essentially” to an Math., 76('6) (2016)
exponential distribution (in the time Z =2z 1C
scale £”t)
dC1
g = —pGz (*2()<C12> .
F4 .
% = Paz (+2ac}), z= Z icj .

i=n



Variability

Coarse-Grained model

Rescaled Number

Rescaled Number

~
G — (¢,
Vs /€Y
e
Cl* + Cl* — 27,
ep
G+7Z — 2Z7.
N=100 s N=1000
—_— Monomer
—— Misflod Monomer
— Po\ymevmass

Rescaled Number

0 50 LUO 151 o 200 250 300 350 400

time

N=10000

L
0 50 100 150 200 250 300 350 400
time

N=100000

Rescaled Number

L
0 50 100 150 200 250 300 350 400

L
0 50 100 150 200 250 300 350 400

Rate scaling Size scaling CNT

Adapted from Eugeéne et al.,JCP,
144(17), 2016

and Doumic et al.,
Math., 76(6) 2016

SIAM J. App.

Then, for the
rescaled process
e(Gi(1), CF(2). Z(2)
we observ
"translated
trajectory” as

e—0
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Unfavorable aggregation in SBD

. Y. et al., JCP, 144, 2016
Reversible one-step coag.-frag.

G+G Cii1

qit1/e

Using pre-equilibrium hypothesis, in the unfavorable aggregation
limit, the leading order of the first assembly time of a cluster of
size N is

1 qk
<T >R 50 N3 N=1 Hk 2 .
€ L Pk Tz (M — k)

Also, in the asymptotic ¢ — 0 the first assembly time T is an
exponential distribution.

» This behavior can be used to couple a first part, very
unfavorable, to a second part, favorable or irreversible
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Unfavorable aggregation in SBD

. Y. et al., JCP, 144, 2016
Reversible one-step coag.-frag.

Pi
G+ G =—= (1
qi+1/e
10° M = 100
= 4 =
ok b 10t | * M = 200
2 10§ #'\T. t L S *t
100 Uohy 10° | \H
102 ! i Lid ] 102 L i L il
107° 107 107' 100 10° 107° 107% 107!
10* | 10* | M = 10000
mzrt‘\ 102rt'f‘?\
E 100 B 102 E ! T N
- 1072 F
0 F ot UL
10—4 | L | | il | | L L
107° 1073 107' 100 10° 10° 107° 1072 107 10* 10® 10°

q q
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Unfavorable aggregation in SBD

. Y. et al., JCP, 144, 2016
Reversible one-step coag.-frag.

Pi
G+G—=CG(C1

qi+1/e
VT
—e A = 200
1.2 o—e M = 1000
o—e M = 10000

0.0
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Large nucleus scaling

Reversible Fo(t,x) = 2iso G () 1[(i—1/2)e,(i+1/2)e) (X)
converges towards solution of
one-step
coag.-frag. of  O(J(x,t)F(t,x))
— + =0,
ot 0x
G+ G == Ci1 (+boundary condition, if needed) and
qi+1

o, 0) = p(x)a(t) — alx).

» How can we obtain large assembly time in this scaling ?
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Large nucleus scaling

» First case (p(0)m > g(0)) : Convergence towards a
deterministic value.

10" 10° ’
varry gt M 3 varry M
E 100 *HH+HH.”"."".. 1071 | iH“““Nhuuuuuu
' p=q=1 £ p=10,q=1
10—1 A sl ol L 10—2 " T ERETIRETTTY ENRTTTRRRTIY IR
102 10% 106 108 102 104 106 108
10" 0.6
N 05
0.4
E 100 r’HH?“H,".uuu.. a 0.3
! p=1,q=10 0-2
0.1
1070 Do vl v vl v 0.0 Lo vod o™
102 10% 106 108 102 104 106 108
M M

» case A » case B
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Large nucleus N ~ /M

v

Second case (p(0)M < g(0)) : Exponentially large time and
"translated’ trajectory. ( p(x) = x, g(x) = 0.1.)

I I
1.0 |
1.0 |
[ [ 0
— m=2
0.8 H —_ =1 —
§ 0.8 |
=
§ 0.6 H - B
'c—;‘, 0.6 |-
5 0.4 H -
Z
0.4 |
0.2 _
0.0 l l 0.2 el P | MR
0 1000 2000 102 10° 104 10°

Time 1/e
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Quantifying the rare event in a toy model

A much simpler version of this model consider that a single
aggregate may be formed at a time :

0.15 1D dynamic
. P'(m—ia) . 0.10
! ‘I:\ | —|— ]_ s
ql+1 % 0.05
which converges (with 2
time rescaling) to =0
dX -0.05
P p(x)(m - x) — 4(x)
dt -0.10
0.0 0.2 0.4 0.6 0.8 10

size

(m=1, p(x) =x, q(x) =0.1)
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Quantifying the rare event in a toy model

A much simpler version of this model consider that a single
aggregate may be formed at a time :

» To leading order the stationary

i i+1, prob. density is
qi+1
. . —1 0 (%)d
which converges (with . ce =3 8 B0 (m=y) )Y
: : u*(x) = .
time rescaling) to (%) /PO (m — x)q(x)
% = p(X)(m — X) — Q(X) » MFPT is explicit and is

exponentially large in ¢

» The “rate” is exponentially small
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Stochastic view of Classical Nucleation Theory

In the classical scaling from SBD to BD, with gelation coefficients
(sup (X iQiz") = ps < ), there is a phase transition in finite
random time

500 500 500
— Tmaz(®)
_ 400 400 400 | — <) >
2 ®
2 N
E 300 £ 300 @ 300
5 hd
=z £ g
£ 200 2 200 <200
1%} ©
32 =
© 100 100 100
0 0 - - @ 0 - )
1073 107! 10t 10% 10-3% 107' 10t 10°
Time Time

The transition phase is abrupt and corresponds to the rapid
formation of a single large cluster
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Stochastic view of Classical Nucleation Theory

t=10"3 t=10"2 t=10"1
102 102 102
1 1 —_ < C(t) > 1 1 | 1 1 |
0 Z a0 0 : 0 |
5 100 — < ze(t) > 100 100
Q |
§ 10-1 101 : 101
102 072§ 102
103 Il ! L Il 10-3 1 ! L ! 10-3
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
t=10° t=10" t =102
102 102 102
10t [] ! 10! ! 10! I
| | |
g 100 100 100
a | |
€
ERUSEI 10! ! 10!
|
072 1072 h 10-2
10-3 U L 103 1 L 1 B 103 1 L L
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0 0.0 02 04 0.6 08 1.0
Size Size Size

The transition phase is abrupt, occurs at a random time and
corresponds to the rapid formation of a single large cluster
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Open Questions on Metastability in the (S)BD model

. =107 ., t=10"2 . t=10""
10 . w|! t
5 0 > w [ 10
S0 | '
1 103 10
+=10° +=10' . = 10°
Il ' 10° ! 10! !
Schweitzler et al., Physica A, 150 o\ ‘
1988 ™ 0= L 0=

» Which initial conditions go through the metastable state ?
Completely open

» How long (and variable) is the metastable period ? [Partial numerical
answers in Y. et al, JCP 137 (2012), Y. et al, JCP 144 (2016)]

» How does the largest cluster size /.« behave as M — w0 ? [Partial
answers in the literature : Niethammer, Penrose, Wattis, etc...
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Summary

» A framework to include nucleation in continuous-size model

» A stochastic version of a classical model of nucleation

» Several scaling possibilities to obtain positive variance in the
limit M — oo.
> Rate scaling
» Size scaling
» Large time behavior (metastability)

Thanks for your attention !
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n cluster models

Can we perform LDP calculations with n clusters?

Phase plane, Deterministic

Pro (m—(ko+k1)e)

(ko,kl) (k() + 1,/(1),
Akg+1 0.8
—(ko+ki)e S b
(kok) 20 (g k1), |
Qky +1 § 0.6
8
which converges (with time Y
rescaling) to 3
0.2
dx
— = px)(m—=x—y)—q(x) 0.0
S} 00 02 04 06 08 1.0

il p(y)(m—x—y)—q(y) Size cluster 1
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n cluster models

Can we perform LDP calculations with n clusters?

Phase plane, Deterministic
Pro (m—(ko+k1)e) -

(ko k1) (ko + 1, k1),
Akg+1
—(ko+ki)e
(hovky) 2 o g +1), o
Qky +1 >
3 0.10
which converges (with time °
rescaling) to & 0.05
dx
— = px)(m—=x—y)—q(x) 0.00
g)’; 0.00 0.05 0.10 0.15 0.20
— = py)m—x—-y)—qly) Size cluster 1

dt
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Can we perform LDP calculations with n clusters?

(ko, k1)

(k07 kl)

Pro (m—(ko+k1)e)

(k() + 1, kl) s
Gkp+1
—(ko+ki)e
Piq (m—(ko+k1)e) (ko ko + 1),

Qky +1

which converges (with time
rescaling) to

dx
y
dt

p(x)(m—x—y) —q(x)

ply)(m—x—y)—q(y)

Size cluster 2

Tin?e spent along trajectories

0.8
0.6
0.4
0.2
0.07

I I I I

0.07 0.2 04 06 0.8
Size cluster 1

A

[y
(=}

[y
(=}

—
o

w

oeos awi|

r
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n cluster models

Can we perform LDP calculations with n clusters?

Time spent along trajectories

Piy (m—(ko+ki)e) 1
(k07k1) ‘0— (k0+17k1)7 : : : ] 103
ho+1 o~ 08 4 .
Pk (m*(kO“rkl)E) = 102 -
(kOakl) \1— (ko,kl + 1), % 0.6 - (BD
: o S | 100 &
which converges (with time n 02 o B

rescaling) to 005 L 1| s
0.05 02 0.4 06 08 1

Size cluster 1

dx
— = px)(m—x—y)—q(x)
&
dt

= ply)(m—x—y)—qly)
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Can we perform LDP calculations with n clusters?

(ko, k1)

(k07 kl)

Pro (m—(ko+k1)e)

Py (m—(ko+k1)e)

(k() + 1, kl) s

Gkp+1

(ko, k1 +1),

Qky +1

which converges (with time
rescaling) to

dx
y
dt

p(x)(m—x—y) —q(x)

ply)(m—x—y)—q(y)

Size cluster 2

Time spent along trajectories

1 I I I I
08 H
i
06
|
0.2 b

A

0.02 Lj_rl o B

0.02 0.2 04 06 0.8
Size cluster 1

1

103

—
(==}
]

9|Bos awi |

= = e e

o O o O
| R
N}

_
o
|

@
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Can we perform LDP calculations with n clusters?

(ko, k1)

(k07 kl)

Pro (m—(ko+k1)e)

Py (m—(ko+k1)e)

(k() + 1, kl) s

Gkp+1

(ko, k1 +1),

Qky +1

which converges (with time
rescaling) to

dx
y
dt

p(x)(m—x—y) —q(x)

ply)(m—x—y)—q(y)

Size cluster 2

Time spent along trajectories,

1 - I I I
0.8‘;

0.6 }
0.4
0.2

0.01 0.2 04 06 0.8
Size cluster 1

A

0.01 Lt-g—_--gl:—j:-_l

1

10
104
103
102
10!
10°
1071
1072
1073

8jeos awi |
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n cluster models

Can we perform LDP calculations with n clusters?

pig (m— (ko +h1)2) T|m1e spent along trajectories

(kOakl) (k()-i-l,kl), A }82

Akg+1 I 0.8 - 10% 4
Pi, (m—(ko+ki)e) 5 3 =
(ko, ki) =——————=(ko,ki +1), B 06 - D10z 2
iy +1 S 0.4 | 10! @
g s

which converges (with time ® 02 ol

rescaling) to 0.007 107

0.0070.2 04 06 0.8 1
Size cluster 1

dx
- = pX)(m—x—y)—q(x)
&
dt

= ply)(m—x—y)—qly)
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n cluster models

Can we perform LDP calculations with n clusters?

Tim1e spent along trajectories

Py (m—(ko+k1)e) (ko + 1, ki), N R Rl B

(ko, k1)

107

Gk +1 o~ 08 - g 108 .

Pry (m—(ko+ki)e) 5 105 o

(ko k) === (ko ki +1), § o8 L% 3

Gk +1 S 102 o

0.4 - d10r @

2 100 &

. . . = 1071('D
which converges (with time o 02 - § 10

rescaling) to 0.005 -
0.0050.2 0.4 0.6 0.8 1

dx Size cluster 1
? = p(x)(m—x—y)—aq(x)
d% = ply)(m—x—y)—qly)
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