

Towards the structural screening of mircobial ecosystems Gwenaëlle André-Leroux

► To cite this version:

Gwenaëlle André-Leroux. Towards the structural screening of mircobial ecosystems. 2. Seminaire, Oct 2017, Montevideo, Uruguay. hal-02785773

HAL Id: hal-02785773 https://hal.inrae.fr/hal-02785773

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gwenaëlle André-Leroux

Montevideo October 23rd

Outline

- Cholesterol conversion in the gut microbiota: the mystery enzyme(s) ?
- MetaFoldScan project : 3D screening of the gut microbiota
- Conclusions and perspectives

Outline

- Cholesterol conversion in the gut microbiota: the mystery enzyme(s) ?

- MetaFoldScan project : 3D screening of the gut microbiota
- Conclusions and perspectives

Cholesterol :

- Is a sterol that plays a central role as cell-membrane agent
- Is precursor of steroïd hormone (progesterone, testosterone, cortisone) and bile salt.
- Originates 30% from diet vs 70 % from bile and desquamed sterol of the gut epithelium

Cholesterol level and gut microbiota :

- Can be metabolized by colonic bacteria.
- The gut microbiota reduces cholesterol to coprostanol
- Neomycin impacts serum cholesterol and fecal sterol in hypercholesterolemic patients.

Cholesterol is absorbed by human intestin, not coprostanol

• Cholesterol conversion relates to abundance of bacteria with cholesterol reducing activities)

Gérard et al, 2004, Veiga et al, 2005

• Cholesterol conversion to coprostanol could result in lower cholesterolemia.

• One strain from hog-sewage lagoon: Gram+ coccobacillus *Eubacterium coprostanoligenes* ATCC 51222T Freier et al, 1993

Oral administration of *E. copro* \rightarrow significant decrease of plasma cholesterol in dietary induced hypercholesterolemic rabbits Li et al, 1995

• One from « high converter » human: isolate from the *Bacteroides phylum*, named Bacteroides sp. Strain D8. Gram- anaerobie. Gérard et al, 2007

Phylogenetic tree construction \rightarrow this strain clusters in an independent clade with the two isolates of *Bacteroides dorei* species.

• One strain from hog-sewage lagoon: Gram+ coccobacillus *Eubacterium coprostanoligenes* ATCC 51222T Freier *et al*, 1993

Oral administration of *E. copro* \rightarrow significant decrease of plasma cholesterol in dietary induced hypercholesterolemic rabbits Li et al, 1995

• One from « high converter » human: isolate from the *Bacteroides phylum*, named Bacteroides sp. Strain D8. Gram- anaerobie. Gérard et al, 2007

Phylogenetic tree construction \rightarrow this strain clusters in an independent clade with the two isolates of *Bacteroides dorei* species.

Microbial genes or enzymes involved in cholesterol metabolism in the gut are unknown.

However ...

Genomes of *B. Dorei* D8 & *B. Dorei* 175^T sequenced and assembled at MaIAGE

Valentin Loux

		Strain Medium	SBM	BCM
Phylogopotically close	1	B. Dorei 175 [⊤]	-	-
Phylogenetically close		B. Dorei D8	+	-
Phylogenetically remote	Ļ	E. coprostanoligenes	-	+

SBM : Standard Brain Medium BCM: Basal Cholesterol Medium

Coll. C. Juste and P. Gérard, Micalis

Metabolic pathway for cholesterol to coprostanol conversion in B. dorei D8?

Which are the enzymes of the catabolic pathway that degrade cholesterol into coprostanol?

Cholesterol metabolic pathway -KEGG

Cholesterol metabolic pathway -KEGG

Cholesterol metabolic pathway -KEGG

at the

Server of protein structure prediction

http://toolkit.tuebingen.mpg.de/hhpred

MPI Bioinformatics Toolkit

Search	Alignment	Sequence	Analysis	2ary St	ructure	3ary Structure	Classification	Utils
HHblits	HHpred	HMMER	Patterns	earch	ProtBLA	ST/PSI-BLAST		

HHpred ⑦

ID	Date	Tool	≔
74	56410	HHPR	×
16	81937	HHPR	×
51	62681	HHPR	×
63	11127	HHPR	×
81	60192	HHPR	×

Véronique Martin

- Prediction of MSA profile with SS for each protein of *B. Dorei* 175^T& *B. dorei* D8 genomes
- Compare each protein with a bank of cholesterol oxidase « Enzyme A » to be assessed

- 1- Split of each fasta sequence in the genome -> more than 3,400 for each genome of *B. dorei*
- 2- Multiple sequence alignment for each fasta: 'HHblits' > PSI-Blast
- 3- Prediction & addition of SS elements: 'adssl.pl'
- 4- Profiling & comparaison with the 3D template « bank »: 'HHBlitsdb.pl' & 'HHsearch'
- 5- Extraction, ranking and analyse of scores.
- 6- Analyse of selected sequences of proteins. Annotation? Fonction?
- 7- In fine, a list of cholesterol oxidase putative proteins to test in vitro / in vivo

Cholesterol oxidase:

- monomeric flavoenzyme catalyzes oxidation and isomerization into cholest-4-en-3-one.
- two folds exist, cofactor-FAD- dependent, covalently bound or not.

Cholesterol oxidase:

- monomeric flavoenzyme catalyzes oxidation and isomerization into cholest-4-en-3-one.
- two folds exist, cofactor- dependent, covalent or not.

1119.pdb & fasta

Cholesterol oxydase from *B. steroliticum* Coulombe et al, 2001 - 1.7 Å

Bank of cholesterol oxidases EC 1.1.3.6

Bank of cholesterol oxidases EC 1.1.3.6

- Catalytic sites different
- Binding patches divergent
- Standing topologies contrasting despite same redox role

Analysis with 2 banks required

B. dorei D8 Sorted by Probability – Bank1

37 92.9	5=32	1C0Y:A
33 93.3	2=31	1B4V:A
32 94.2	3=29	1B4V:A
241 97.1	209=32	1B4V:A
479 97.2	441=38	1C0Y:A
179 97.5	142=37	1C0Y:A
49 97.6	11=38	1COY:A
256 97.6	195=61	1B4V:A
35 97.6	2=33	1B4V:A
35 97.8	2=33	1B4V:A
37 97.9	4=33	1COY:A
37 98.0	2=35	1COY:A
66 98.1	29=37	1C0Y:A
37 98.2	1=36	1C0Y:A
40 98.2	3=37	1COY:A
41 98.2	7=34	1COY:A
163 98.7	104=59	1B4V:A
118 98.9	81=37	1B4V:A
208 99.1	133=75	1B4V:A
237 99.1	175=62	1B4V:A
280 99 3	211=69	1C0Y:A

/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 01957.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 03587.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00872.fasta.a3m.hhm.out.hhmakeBK1 /projet/miq/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00845.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 04063.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 01842.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 02168.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 03122.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 01099.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00348.fasta.a3m.hhm.out.hhmakeBK1 /projet/miq/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 04051.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00992.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 04457.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 01766.fasta.a3m.hhm.out.hhmakeBK1 /projet/miq/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00293.fasta.a3m.hhm.out.hhmakeBK1 /projet/miq/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 01761.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00882.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 01104.fasta.a3m.hhm.out.hhmakeBK1 /projet/miq/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 00352.fasta.a3m.hhm.out.hhmakeBK1 /projet/miq/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8 03708.fasta.a3m.hhm.out.hhmakeBK1 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS/BANK1/bdd8.00254.fasta.a3m.bbm.out.bbmakeBK1

B. dorei D8 Sorted by Probability – Bank2

				, p , , ,
5.9	-	212-241	- 3JS8:A	- /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_01995.fasta.a3m.hhm.out.hhmakeBK2-
6.8	-	5-19 -	1I19:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_01730.fasta.a3m.hhm.out.hhmakeBK2-
7.0	-	26-52 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_00608.fasta.a3m.hhm.out.hhmakeBK2-
7.2	-	237-266	- 3JS8:A	 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_01989.fasta.a3m.hhm.out.hhmakeBK2-
7.3	-	5-40 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_01278.fasta.a3m.hhm.out.hhmakeBK2-
7.7	-	135-164	- 3JS8:A	 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_03492.fasta.a3m.hhm.out.hhmakeBK2-
7.7	-	9-28 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_00561.fasta.a3m.hhm.out.hhmakeBK2-
8.2	-	233-262	- 3JS8:A	 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_04010.fasta.a3m.hhm.out.hhmakeBK2-
8.3	-	9-28 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_03809.fasta.a3m.hhm.out.hhmakeBK2-
9.1	-	9-26 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_02053.fasta.a3m.hhm.out.hhmakeBK2-
9.9	-	9-28 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_00931.fasta.a3m.hhm.out.hhmakeBK2-
15.5	-	364-406	- 3JS8:A	 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_02744.fasta.a3m.hhm.out.hhmakeBK2-
18.0	-	6-23 -	3JS8:A -	/projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_02160.fasta.a3m.hhm.out.hhmakeBK2-
99.9	-	18-190	- 1I19:A	 /projet/mig/work/vmartin/D8/D8.batch4.20150203/RESULTS-BANK2/bdd8_03618.fasta.a3m.hhm.out.hhmakeBK2-

>

INS

B. dorei D8 Sorted by Prob > 95 and size cut off > 50 amino acid residues

99.9 172 aa bdd8_03618.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetylenolpyruvoylglucosamine reductase

K 📄 bdd8_0370	8.fasta.a3m.hhm.out.hhmakeBK1 🛛 🛛 💥	bdd8_03122.fasta.a3m.hhm.out.hhmakeBK1	HHM_le1erhit.hhmakeBK2.txt.final2	bdd8_03618.fasta.a3m.hhm.out.hhmakeBK2
Query B Match_columns 3 No_of_seqs 2 Neff 7 Searched_HMMs 2 Date M Command h	dD8_03618 UDP-N-acetylenolpyruvoylglucosamine 37 64 out of 1760 .5 on Feb 23 18:15:31 2015 hsearch -i /projet/mig/work/vmartin/D8/D8.bat	reductase lcl Agmial:UEPSD D8#1381 ch4.20150203/fasta split/hhm/bdd8 03618.fasta.a3m.hhm	-d /projet/mig/work/vmartin/D8/BANK2/base/BANK2 hh	m db -cov 10 -v -cpu 8 -o /projet/mig/work/vmartin/D8/
D8.batch4.20150 No Hit 1 1119:A	203/fasta_split/hhm/bdd8_03618.fasta.a3m.hhm. Prob E-value P-value Sc 99.9 2.6E-25 1.3E-25 19	out.hhmakeBK2 ore SS Cols Query HMM Template HMM 5.3 17.0 162 18-190 33-223 (561)	_ , , , _ , _ , _ , _ , _ , _ , _ , _ ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2 3JS8:A	99.8 6.6E-24 3.3E-24 18	4.2 18.0 165 17-190 26-219 (540)		
Probab=99.86 E	-value=2.6e-25 Score=195.27 Aligned_cols=16	2 Identities=15% Similarity=0.117 Sum_probs=134.7		
Q ss_pred Q BdD8_03618 Q Consensus T Consensus	CccccEEEEcCCHHHHHHHHHHHhhhhCCCCEEEEcCCCC 18 DVKASLFVEYESVTELQSILSDKNLMAGWLHIGGSN 18 gg-av-peedlv-aipilGgGsN ++++ + + ++++ ++++ + 33v-v-P-s-eevv-av-v-G-GhS 23 m D-Tu/ccPU-TDPU/UIL MAULUIVYTDPC ANUC	CCccCCCCceEEEe-C-CCceEEEecCCCeEEEEe LLFKGDYAGTVLHS-A-IRGYEVVAENCOETEVRAG 99 (337) +.+.+. + ++ ++++++++++ + +.+.++. + + +++++++++ + 		
T ss_pred Confidence	55 HLD411005171710070124004HLD1017120700400 ccCcCcEEeccC0140414HHHHHHH10CCCEEEEcCCC0 4457899999999999999999999999999999999999	4454432 6899999 6 999965 653223499999		
Q ss_pred Q BdD8_03618 Q Consensus T Consensus T 1119:A T ss_pred Confidence	cCCcHHHHHHHHHHHCCCCCcccCCcCccc-c-chHHHHh 90 AGEVWDDFVAYTVKNSWYGAENLSLIPG-EVGASAVON 90 AG\\GL-GLe-L-gIPG-TVGGavN ++ .+ .+++.++ ++.++++ +++++ 112 aGGL-GL-C	hhcCccchhhheeEEEEECCCC 150 (337) IGAYGVEAKDLIVSVETVEVETGR 150 (337) aGYG 150 (337) +++ .++ ++++++ + >hG 158 (561) AHGAALPAVGQTTLPGHTYG-SLSNLVTELTAVW-NGTTYA 188 (561) CCCCCCccCCCCcccc-CcccCEEEEEEEee-CCCEee 755 55 49999999999999 599		
Q ss_pred Q BdD8_03618 Q Consensus T Consensus T 1119:A T ss_pred Confidence	EEEEecCcccccccccccccccccccceEEEEEEeee 151 KRIFTKEECRYAYRESIFKKDLKGKYIVTYVTRLS 151 i	eCCC KQPV 190 (337) 190 (337) +. p 223 (561) PNFR 223 (561) ecCe 8765		
No 2 >3JS8:A Probab=99.83 E	-value=6.6e-24 Score=184.16 Aligned_cols=16	5 Identities=12% Similarity=0.046 Sum_probs=131.5		
Q ss_pred Q BdD8_03618 Q Consensus	CCccccEEEEcCCH#HHHHHHHHHHhhhcCCCEEEEcCC 17 MDVKA5LFVEYESVTEL05IL5UKNLMAGMUHTIGGS 17 igg-av-p-medlv-y-ailGgs 14 +++t+	CCCcCCCCCceEEEe-C-CCCceEEEecCCCeEEEE NLLFKGDYAGTVLHS-A-IRGYEVVAENEOEIEVRA 88 (337) N-LGvV		
T Consensus T 3JS8:A T ss_pred Confidence	26	sy-idl-i-i-dv-v 104 (540) NWSPLTLAAGVSCPAVVLLDTTRYLTAMSI-DASGPVAKVTA 104 (540) CCCCCCCCCCCCCCEEEEeccCCCCCEE-CCCCCCEEEEE 953 3332 25790908 4 990954 65222238909		
				Plain lext 🗸 Tab Width: 8 🗸 En 1, Col 1

99.4 % 70 aa bacdor_01751.fasta.a3m.hhm.out.hhmakeBK1 → Hypothetical protein
99.1 % 75 aa bacdor_01928.fasta.a3m.hhm.out.hhmakeBK1 → L-aspartate oxidase
99.1 % 62 aa bacdor_02089.fasta.a3m.hhm.out.hhmakeBK1 → Succinate Dehydrogenase flavoprotein
97.5 % 61 aa bacdor_03886.fasta.a3m.hhm.out.hhmakeBK1 → Pyridine nucleotide oxido reductase

③ *B. dorei* 175^{T} Sorted by Prob > 95 and size > 50 amino acid residues

99.9 % 172 aa bacdor_03524.fasta.a3m.hhm.out.hhmakeBK2 →UDP-N-acetyl muramate dehydrogenase

99.4 % 70 aa bacdor_01751.fasta.a3m.hhm.out.hhmakeBK1 → Hypothetical protein
99.1 % 75 aa bacdor_01928.fasta.a3m.hhm.out.hhmakeBK1 → L-aspartate oxidase
99.1 % 62 aa bacdor_02089.fasta.a3m.hhm.out.hhmakeBK1 → Succinate Dehydrogenase flavoprotein
97.5 % 61 aa bacdor_03886.fasta.a3m.hhm.out.hhmakeBK1 → Pyridine nucleotide oxido reductase

③ *B. dorei* 175^{T} Sorted by Prob > 95 and size > 50 amino acid residues

99.9 % 172 aa bacdor_03524.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetyl muramate dehydrogenase

99.9 % 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 → UDP-N-acetylenolpyruvoylglucosamine reductase

99.9 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 → UDP-N-acetylenolpyruvoylglucosamine reductase

99.9 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetylenolpyruvoylglucosamine reductase

99.9 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetylenolpyruvoylglucosamine reductase

99.9 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetylenolpyruvoylglucosamine reductase

99.9 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 → UDP-N-acetylenolpyruvoylglucosamine reductase

99.4 % 70 aa bacdor_01751.fasta.a3m.hhm.out.hhmakeBK1 → Hypothetical protein
99.1 % 75 aa bacdor_01928.fasta.a3m.hhm.out.hhmakeBK1 → L-aspartate oxidase
99.1 % 62 aa bacdor_02089.fasta.a3m.hhm.out.hhmakeBK1 → Succinate Dehydrogenase flavoprotein
97.5 % 61 aa bacdor_03886.fasta.a3m.hhm.out.hhmakeBK1 → Pyridine nucleotide oxido reductase

O B. dorei 175^T Sorted by Prob > 95 and size > 50 amino acid residues

99.9 % 172 aa bacdor_03524.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetyl muramate dehydrogenase

99.9 % 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 → UDP-N-acetylenolpyruvoylglucosamine reductase

Gene ordered at Genscript. Cloning and expression tests in progress.

Then, purification, activity test and crystallization assays

Cholesterol oxidases are secreted. This contains a signal peptide.

99.4 % 70 aa bacdor_01751.fasta.a3m.hhm.out.hhmakeBK1 → Hypothetical protein
99.1 % 75 aa bacdor_01928.fasta.a3m.hhm.out.hhmakeBK1 → L-aspartate oxidase
99.1 % 62 aa bacdor_02089.fasta.a3m.hhm.out.hhmakeBK1 → Succinate Dehydrogenase flavoprotein
97.5 % 61 aa bacdor_03886.fasta.a3m.hhm.out.hhmakeBK1 → Pyridine nucleotide oxido reductase

③ *B. dorei* 175^{T} Sorted by Prob > 95 and size > 50 amino acid residues

99.9 % 172 aa bacdor_03524.fasta.a3m.hhm.out.hhmakeBK2 \rightarrow UDP-N-acetyl muramate dehydrogenase

99.9 % 172 aa bdd8_003618.fasta.a3m.hhm.out.hhmakeBK2 → UDP-N-acetylenolpyruvoylglucosamine reductase

Analysis of synthenies by Thomas Lacroix using Insyght.

http://genome.jouy.inra.fr/Insyght

Thomas Lacroix

Powerful tool for genes comparison and syntheny inferences

Lacroix et al, Nar 2014

Thomas Lacroix

http://genome.jouy.inra.fr/Insyght

Powerful tool for genes comparison and syntheny inferences

Synthenies : co-localization of homologuous loci accross species

Comparison 2 vs 2 with a reference genome.

BDBH method Bi-Directional Best Hit i.e best reciprocal match between two proteomes.

Gene comparison. Synthenies visible

ALL During the second	C ANAL CONTRACTOR CONT
and the design of the design o	
/LLEASANCE	• • • • #3 Convebacterium efficiens (strain : DSM 44549 = NBRC 100395 = JCM 11189 = YS-314 = AJ 12310)
#13.Mycobecher	C (c00002 (c0000 (c0000) (c0000 (c0000) (c0000 (c0000) (
All Mechanis	Tenderal Mills State Sta
112 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	ee the adds 3 the adds 3 and 5
ALL ATTEMAT	 #4 Corynebacterium diphtheriae (strain : NCTC 13129 = ATCC 700971)
ALL ATTACANT	C00002 C00002 C0000 C0000 C0000 C00018 C00013
.822.Braceta.eks	and Byord street mer grill Byord states Byord states 22
ATT BOARD ON	100 400 400 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
.statuceta.etc	AS Agrobacterium vitis (strain : S4 = ATCC BAA-846)
J2LBourbanke	Constant Con
AS DIMEASE	Art. 712 22
AUX Brownia and	
All Brands and	Contestad Ben Contestad Ben
	Since after family and strate a later and the strate at th
Sort result list	Streed State Conception Conception (Conception) Merced State (Concepti
view types	Leg We want 122
nd aptions	Contextual menu: browse multiple homologies per gene

- Analysis of candidates- Comparison within cholesterol degrading genomes and others
- Annotation comparator's analysis
- Genomic organisation's analysis

No significant hits with clear syntheny

Need of transcriptomic analysis

Catherine. Juste Fabienne Beguet-Crespel

- Ions detection corresponding to COPROSTANOL
- DIMS-MS/MS method in positive ionisation mode

E. Coprostanoligenes samples : Genome sequencing, assembling and analysis

No significant difference between the two genomes. Similar enzymes are found.

▶ Transcriptomic analysis of both chromosome and plasmids of *B. dorei* 175⁷ & *B. dorei* D8?

Activity test and 3D structure validation of our cholesterol-oxidase hit in bank2

Genomic & transcriptomic analysis of both chromosome & plasmids of *E. coprostanoligenes*.

Can we rule out some synergy among bacteria of the microbiota?

Outline

- Cholesterol conversion in the gut microbiota: the mystery enzyme(s) ?
- MetaFoldScan project : 3D screening of gut microbiota
- Conclusions and perspectives

- More than 10 millions prokaryotic genes
 - 40% protein sequences of unknown function
 - Function can be inferred from structure, only 1393 unique 3D fold
 - Assessing the fold is possible
 - Fishing out the right fold is crucial !

- More than 10 millions prokaryotic genes
 - 40% protein sequences of unknown function
 - Function can be inferred from structure, only 1393 unique 3D fold
 - Assessing the fold is possible
 - Fishing out the right fold is crucial !

- More than 10 millions prokaryotic genes
 - 40% protein sequences of unknown function
 - Function can be inferred from structure, only 1393 unique 3D fold
 - Assessing the fold is possible
 - Fishing out the right fold is crucial !

- **1- Capitalize** on MetaOmic datasets that are **underexploited**
- 2- Develop a versatile bioinformatics tool to scan 3D fold in MetaOmics
- **3- Identify** hits from 3D Targets
- 4- Validate hits and pathways involved as pro- or antibiotic markers

Structural screening of Microbial Ecosystems

- 1- Develop & integrate cutting-edge tools in bioinformatics
- Identify Hits from 3D targets within MetaHit
- Increase the functional annotation
- Biologist friendly Web user

Gut microbiota

- 2- Achieve 3D-MetaOmics.
- **** Intensive modeling of entire proteome
- Distribution, diversity of folds
- Identify proteins with new functions/ fold

- 3- Validate Hits impacting Health
- Pro and anti-biotic biomarkers
- **Universal antibiotic**
- Identify homeostasis marker

Preliminary data: - Histone-like Nucleotide Structuring protein in *Enterococcus faecalis*

- Penicillin binding protein in Bacillus subtilis
- Cholesterol oxidase for *Bacteroides dorei* and *dorei D8*

• Experimental data in progress

Scaling up to full microbiota requested

To tackle both methodological and biological issues

MAM JM. Chatel

Microbial Anti-inflammatory Molecule

- Unknown biological function
- Small 180 residues

- Rare, found in F. prausnitzii
- F. Prausnitzii **5%** of the microbiota, IBD Crohn Disease, Ulcerative Colitis,
- Fishing from homology modeling
- Associated with probiotic properties

Cohort of 124 European individuals, healthy and obese, danish and spanish Nordic & Mediterranean faecal DNA

Vol 464 4 March 2010 doi:10.1038/nature08821

nature

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin¹*, Ruiqiang Li¹*, Jeroen Raes^{2,3}, Manimozhiyan Arumugam², Kristoffer Solvsten Burgdorf⁴, Chaysavanh Manichanh⁵, Trine Nielsen⁴, Nicolas Pons⁶, Florence Levenez⁶, Takuji Yamada², Daniel R. Mende², Junhua Li^{1,7}, Junming Xu¹, Shaochuan Li¹, Dongfang Li^{1,8}, Jianjun Cao¹, Bo Wang¹, Huiqing Liang¹, Huisong Zheng¹, Yinlong Xie^{1,7}, Julien Tap⁶, Patricia Lepage⁶, Marcelo Bertalan⁹, Jean-Michel Batto⁶, Torben Hansen⁴, Denis Le Paslier¹⁰, Allan Linneberg¹¹, H. Bjørn Nielsen⁹, Eric Pelletier¹⁰, Pierre Renault⁶, Thomas Sicheritz-Ponten⁹, Keith Turner¹², Hongmei Zhu¹, Chang Yu¹, Shengting Li¹, Min Jian¹, Yan Zhou¹, Yingrui Li¹, Xiuqing Zhang¹, Songgang Li¹, Nan Qin¹, Huanming Yang¹, Jian Wang¹, Søren Brunak⁹, Joel Doré⁶, Francisco Guarner⁵, Karsten Kristiansen¹³, Oluf Pedersen^{4,14}, Julian Parkhill¹², Jean Weissenbach¹⁰, MetaHIT Consortium[†], Peer Bork², S. Dusko Ehrlich⁶ & Jun Wang^{1,13}

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ~150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.

- 3,3 millions of genes , 99,1 % of bacterial origin
- Minimal gut bacterial genome : 1,000 to 1,150 prevalent bacterial species
- Each individual harbors at least 160 such species

Minimal gut genome: functions necessary for a bacterium to thrive in a gut context

Minimal gut metagenome: functions involved in the homeostasis of the whole ecosystem

Bacteroides uniformis Alistipes putredinis Parabacteroides merdae Dorea longicatena Ruminococcus bromii L2-63 Bacteroides caccae Clostridium sp. SS2-1 Bacteroides thetaiotaomicron VPI-5482 Eubacterium hallii Ruminococcus torques L2-14 Unknown sp. SS3 4 Ruminococcus sp. SR1 5 Faecalibacterium prausnitzii SL3 3 Ruminococcus lactaris Collinsella aerofaciens Dorea formicigenerans Bacteroides vulgatus ATCC 8482 Roseburia intestinalis M50 1 Bacteroides sp. 2_1_7 Eubacterium siraeum 70 3 Parabacteroides distasonis ATCC 8503 Bacteroides sp. 9_1_42FAA Bacteroides ovatus Bacteroides sp. 4 3 47FAA Bacteroides sp. 2 2 4 Eubacterium rectale M104 1 Bacteriodes xylanisolvens XB1A Coprococcus comes SL7 1 Bacteroides sp. D1 Bacteroides sp. D4 Eubacterium ventriosum Bacteroides dorei Ruminococcus obeum A2-162 Subdoligranulum variabile Bacteroides capillosus Streptococcus thermophilus LMD-9 Clostridium leptum Holdemania filiformis Bacteroides stercoris Coprococcus eutactus Clostridium sp. M62 1 Bacteroides eggerthii Butyrivibrio crossotus Bacteroides finegoldii Parabacteroides johnsonii Clostridium sp. L2-50 Clostridium nexile Bacteroides pectinophilus Anaerotruncus colihominis Ruminococcus gnavus Bacteroides intestinalis Bacteroides fragilis 3 1 12 Clostridium asparagiforme Enterococcus faecalis TX0104 Clostridium scindens Blautia hansenii

Functional composition

Core genome: 57 bacterial species present in > 90 of individuals (prevalence and consensus)

Mostly Bacteroidetes & Firmicutes

Bacteroides uniformis Alistipes putredinis Parabacteroides merdae Dorea longicatena Ruminococcus bromii L2-63 Bacteroides caccae Clostridium sp. SS2-1 Bacteroides thetaiotaomicron VPI-5482 Eubacterium hallii Ruminococcus torques L2–14 Unknown sp. SS3 4 Ruminococcus sp. SR1 5 Faecalibacterium prausnitzii SL3 3 Ruminococcus lactaris Collinsella aerofaciens Dorea formicigenerans Bacteroides vulgatus ATCC 8482 Roseburia intestinalis M50 1 Bacteroides sp. 2_1_7 Eubacterium siraeum 70 3 Parabacteroides distasonis ATCC 8503 Bacteroides sp. 9_1_42FAA Bacteroides ovatus Bacteroides sp. 4 3 47FAA Bacteroides sp. 2 2 4 Eubacterium rectale M104 1 Bacteriodes xylanisolvens XB1A Coprococcus comes SL7 1 Bacteroides sp. D1 Bacteroides sp. D4 Eubacterium ventriosum Bacteroides dorei Ruminococcus obeum A2-162 Subdoligranulum variabile Bacteroides capillosus Streptococcus thermophilus LMD-9 Clostridium leptum Holdemania filiformis Bacteroides stercoris Coprococcus eutactus Clostridium sp. M62 1 Bacteroides eggerthii Butyrivibrio crossotus Bacteroides finegoldii Parabacteroides johnsonii Clostridium sp. L2-50 Clostridium nexile Bacteroides pectinophilus Anaerotruncus colihominis Ruminococcus gnavus Bacteroides intestinalis Bacteroides fragilis 3 1 12 Clostridium asparagiforme Enterococcus faecalis TX0104 Clostridium scindens Blautia hansenii

Functional composition

Structural hits of MAM in the core genome

Faecalibacterium_prausnitzii_A2-165 NCBI	WP_005932151.1	265	9,00E-93	100.00	100	100	135	0	0	1	135	1	135
		bitscore	evalue	pident	qcovs	qcovhsp	length	mismatch	gapopen				
MAM_wt	tr R6SBT0 R6SBT0_9BACE	23.5	6.4	47.826	17	17	23	10	1	14	36	624	644
MAM_wt	tr D4JK97 D4JK97_9FIRM	28.5	0.013	45.000	15	15	20	11	0	1	20	9	28
MAM_wt	tr R7EPB3 R7EPB3_9BACI	26.6	0.55	41.667	24	24	36	18	1	52	84	185	220
MAM_wt	tr C3QBI3 C3QBI3_9BACE	29.3	0.063	40.625	24	24	32	19	0	88	119	95	126
MAM_wt	tr D4C9H4 D4C9H4_9CLO	27.3	0.30	40.541	27	27	37	21	1	73	108	128	164
Faecalibacterium_prausnitzii_SL3_3	tr D4KBR2 D4KBR2_9FIRM	75.9	1.02e-19	35.570	98	98	149	72	4	1	132	1	142
MAM_wt	tr R7B146 R7B146_9BACE	25.0	1.2	34.694	36	36	49	31	1	15	63	119	166
MAM_wt	tr D4L4M8 D4L4M8_9FIRM	24.3	1.9	34.483	21	21	29	19	0	75	103	516	544
MAM_wt	tr C3QPR5 C3QPR5_9BAC	25.8	1.1	34.375	24	24	32	21	0	88	119	95	126
MAM_wt	tr R5TKN8 R5TKN8_9FIRM	26.2	0.50	34.286	26	26	35	22	1	48	82	205	238
MAM_wt	tr C0X1L4 C0X1L4_ENTFL	26.6	0.39	34.211	27	27	38	24	1	14	50	150	187
MAM_wt	tr D1PS54 D1PS54_9FIRM	24.6	2.2	34.043	34	34	47	27	3	44	89	105	148
MAM_wt	tr R6P689 R6P689_9CLOT	24.3	1.8	33.333	27	27	36	24	0	56	91	98	133
MAM_wt	tr A6LD60 A6LD60_PARD8	24.3	4.4	33.333	36	36	57	26	2	31	78	382	435
MAM_wt	tr B0G4V7 B0G4V7_9FIRM	25.4	1.1	32.500	29	29	40	26	1	68	106	150	189
MAM_wt	tr C0D4Q5 C0D4Q5_9FIRM	25.0	3.3	32.394	53	53	71	42	3	16	86	189	253
MAM_wt	tr R7JPH0 R7JPH0_9BACT	24.6	1.3	32.258	23	23	31	21	0	6	36	123	153
MAM_wt	tr E4VUA2 E4VUA2_BACF(27.7	0.35	31.818	33	33	44	30	0	1	44	280	323
MAM_wt	tr A7VJ13 A7VJ13_9CLOT	25.0	1.3	31.507	53	53	73	44	3	2	72	121	189
MAM_wt	tr B0NGV9 B0NGV9_CLOS	26.2	0.68	31.373	38	38	51	33	1	4	54	61	109
MAM_wt	tr Q5M488 Q5M488_STRT2	26.9	0.13	31.111	33	33	45	24	2	36	80	83	120
MAM_wt	tr R5U2R3 R5U2R3_9BACI	28.5	0.12	30.909	41	41	55	36	1	76	130	47	99
MAM_wt	tr A4EBV5 A4EBV5_9ACTN	27.3	0.21	30.612	34	34	49	30	2	57	102	292	339
Clostridium_spSS2-1	tr B0P145 B0P145_9CLOT	32.7	0.004	30.337	66	66	89	49	5	9	97	1241	1316
MAM_wt	tr D4LSX8 D4LSX8_9FIRM	24.3	2.2	30.303	24	24	33	23	0	21	53	78	110
MAM_wt	tr R7FZ59 R7FZ59_9FIRM	25.0	0.99	30.159	41	41	63	37	1	23	78	160	222
MAM_wt	tr B0PHX3 B0PHX3_9FIRM	23.5	4.7	29.787	34	34	47	31	2	3	48	173	218
MAM_wt	tr R6X7N3 R6X7N3_9PORF	24.3	3.3	29.545	61	61	88	53	4	4	86	547	630
MAM_wt	tr A5Z5Q6 A5Z5Q6_9FIRM	27.7	0.19	29.412	47	47	68	42	2	66	128	345	411
MAM_wt	tr B9YAA0 B9YAA0_9FIRM	28.1	0.15	29.268	30	30	41	29	0	1	41	68	108
MAM_wt	tr B7B871 B7B871_9PORP	25.0	1.9	28.846	32	32	52	24	3	54	96	204	251
MAM_wt	tr P96214 P96214_MYCTU	25.4	1.4	28.571	38	38	56	35	1	52	102	61	116
MAM_wt	tr R6LDT4 R6LDT4_9FIRM	24.3	1.5	28.070	39	39	57	36	1	49	100	17	73
MAM_wt	tr C9L847 C9L847_BLAHA	24.3	1.9	27.869	41	41	61	38	2	5	59	79	139
MAM_wt	tr D4JTH7 D4JTH7 9FIRM	23.9	2.3	27.778	40	40	54	39	0	15	68	1	54
MAM_wt	tr D4M698 D4M698_9FIRM	26.6	0.46	27.692	47	47	65	45	1	72	134	187	251
MAM_wt	tr B6VXT6 B6VXT6_9BACE	26.6	0.72	27.536	44	44	69	41	1	76	135	77	145
11111		00.0	0.00	07 500	4.4		~~	44		70	405	77	440

Analysis in progress

No clear hit except in Faecalibacterium Prausnitzii SL3_3

MAM possibly strictly restricted to *F. Praunitzii*

all best MFD

+

Structural hits of Mfd in the core genome

1			bitscore	evalue	pident	qcovs	qcovhsp	length	mismatch	gapopen
2	2EYQ:A PDBID CHAIN SEQUENCE	tr A0A0D6MVR3 A0A0D6MVR3_4	773	0.0	39.464	95	95	1120	642	15
3	2EYQ:A PDBID CHAIN SEQUENCE	tr R7JPZ2 R7JPZ2_9BACT	572	0.0	44.162	78	57	668	361	4
4	2EYQ:A PDBID CHAIN SEQUENCE	tr B0PG14 B0PG14_9FIRM	660	0.0	36.837	92	92	1094	641	18
5	2EYQ:A PDBID CHAIN SEQUENCE	tr R5UYH1 R5UYH1_9BACE	542	9.11e-175	41.740	74	57	678	374	5
6	2EYQ:A PDBID CHAIN SEQUENCE	tr B6W1Q4 B6W1Q4_9BACE	561	0.0	40.387	80	61	723	405	6
7	2EYQ:A PDBID CHAIN SEQUENCE	tr E5WUF0 E5WUF0_9BACE	538	1.75e-173	41.654	74	57	677	376	5
8	2EYQ:A PDBID CHAIN SEQUENCE	tr R6S1S3 R6S1S3_9BACE	544	6.91e-176	41.802	74	57	677	375	5
9	2EYQ:A PDBID CHAIN SEQUENCE	tr E4VYD7 E4VYD7_BACFG	544	1.05e-175	42.097	73	57	677	373	5
10	2EYQ:A PDBID CHAIN SEQUENCE	tr B3CGR2 B3CGR2_9BACE	543	2.44e-175	41.740	74	57	678	375	5
11	2EYQ:A PDBID CHAIN SEQUENCE	tr R7B293 R7B293_9BACE	650	0.0	37.827	83	83	994	552	14
12	2EYQ:A PDBID CHAIN SEQUENCE	tr C3QPJ5 C3QPJ5_9BACE	539	1.63e-173	41.445	74	57	678	376	5
13	2EYQ:A PDBID CHAIN SEQUENCE	tr C6Z4G4 C6Z4G4_9BACE	558	0.0	40.249	80	61	723	406	6
14	2EYQ:A PDBID CHAIN SEQUENCE	tr A0A0M1W4E3 A0A0M1W4E3_§	560	0.0	40.387	80	61	723	405	6
15	2EYQ:A PDBID CHAIN SEQUENCE	tr C3QBP8 C3QBP8_9BACE	537	7.85e-173	41.298	74	57	678	377	5
16	2EYQ:A PDBID CHAIN SEQUENCE	tr A0A108TBR9 A0A108TBR9_BA	534	5.30e-172	41.298	74	57	678	377	5
17	2EYQ:A PDBID CHAIN SEQUENCE	tr Q8AB59 Q8AB59_BACTN	536	1.41e-172	40.855	74	57	678	380	5
18	2EYQ:A PDBID CHAIN SEQUENCE	tr R7EH57 R7EH57_9BACE	539	2.31e-173	41.003	74	57	678	380	5
19	2EYQ:A PDBID CHAIN SEQUENCE	tr A6L2L5 A6L2L5_BACV8	558	0.0	40.249	80	61	723	406	6
20	2EYQ:A PDBID CHAIN SEQUENCE	tr C9LCA3 C9LCA3_BLAHA	576	0.0	44.250	72	60	687	375	2
21	2EYQ:A PDBID CHAIN SEQUENCE	tr R5L9D1 R5L9D1_9FIRM	593	0.0	46.311	72	55	637	337	2
22	2EYQ:A PDBID CHAIN SEQUENCE	tr C0CUY2 C0CUY2_9FIRM	601	0.0	46.330	78	57	654	345	2
23	2EYQ:A PDBID CHAIN SEQUENCE	tr R6P1H2 R6P1H2_9CLOT	578	0.0	46.271	80	57	657	339	5
24	2EYQ:A PDBID CHAIN SEQUENCE	tr R6PNN2 R6PNN2_9CLOT	578	0.0	45.723	69	56	643	340	3
25	2EYQ:A PDBID CHAIN SEQUENCE	tr B0NCF3 B0NCF3_CLOSV	570	0.0	44.428	71	59	682	364	3
26	2EYQ:A PDBID CHAIN SEQUENCE	tr A7VI89 A7VI89_9CLOT	656	0.0	35.992	88	88	1053	619	11
27	2EYQ:A PDBID CHAIN SEQUENCE	tr D4C8Z1 D4C8Z1_9CLOT	674	0.0	37.367	87	87	1033	597	12
28	2EYQ:A PDBID CHAIN SEQUENCE	tr B0NYB3 B0NYB3_9CLOT	596	0.0	47.088	73	52	601	314	1
29	2EYQ:A PDBID CHAIN SEQUENCE	tr A4E9V3 A4E9V3_9ACTN	534	1.92e-171	42.857	76	58	672	370	6
30	2EYQ:A PDBID CHAIN SEQUENCE	tr R6LB70 R6LB70_9FIRM	634	0.0	37.151	93	93	1074	612	16
31	2EYQ:A PDBID CHAIN SEQUENCE	tr R5WLH5 R5WLH5_9FIRM	477	7.11e-158	50.316	41	41	475	229	3
32	2EYQ:A PDBID CHAIN SEQUENCE	tr B0G3N8 B0G3N8_9FIRM	583	0.0	43.629	82	63	722	387	6
33	2EYQ:A PDBID CHAIN SEQUENCE	tr R7FNN1 R7FNN1_9FIRM	637	0.0	37.681	89	89	1035	568	14
34	2EYQ:A PDBID CHAIN SEQUENCE	tr C0X941 C0X941_ENTFL	684	0.0	36.750	92	92	1083	636	15
35	2EYQ:A PDBID CHAIN SEQUENCE	tr R6G373 R6G373_9FIRM	654	0.0	36.794	91	91	1098	600	22
36	2EYQ:A PDBID CHAIN SEQUENCE	tr D4JLK0 D4JLK0_9FIRM	226	1.79e-63	34.483	34	34	406	247	6
37	2EYQ:A PDBID CHAIN SEQUENCE	tr D4JVX9 D4JVX9_9FIRM	562	0.0	46.026	75	52	604	320	3
38	2EYQ:A PDBID CHAIN SEQUENCE	tr A5Z5K5 A5Z5K5_9FIRM	672	0.0	36.886	90	90	1079	612	21
39	2EYQ:A PDBID CHAIN SEQUENCE	tr D4KAB8 D4KAB8_9FIRM	564	0.0	46.384	71	55	636	333	4

Analysis in progress

Mfd ubiquitarious as expected

10 best hits to be selected for experimental validation

Homology modeling to assess the molecular basis of specificity

Outline

- Cholesterol conversion in the gut microbiota: the mystery enzyme(s) ?
- MetaFoldScan project : 3D screening of the gut microbiota
- Conclusions and perspectives

Acknowledgments

Sandra Derozier

Jean-François Gibrat

Thomas Lacroix

Valentin Loux

Véronique Martin

MEM Metaprogram

Fabienn Béguet-Crespel

Jean-Marc Chatel

Philippe Gérard

Catherine Juste

Nalini RamaRao

Mariano Martinez

Pedro Alzari

Acknowledgments

To my dear friends...

Mabel Berois

Andrea Villarino

Maria Natalia Lísa

And you for your kind attention ...

0

Analysis of candidates- Comparison within cholesterol degrading genomes and other

=> all 5 present in other B. dorei : very well conserved (id 100% length 100%) , synteny BdD8_00352 and BdD8_00254 (only one on same contig) but far apart

- => + B vulgatus, intestinalis, ovatus, plebeius : well conserved (id 60-80% length 100%) ; no synteny
 => 4/5 (mostly BdD8_00254 missing) in B. massiliensis, acidifaciens, fragilis, uniformis, eggerthii, caccae, pyogenes, thetaiotaomicron, helcogenes : well conserved (id 60-80% lenght 100%) ; no synteny
- => 1-3/5 in other, less well conserved (id 20-40% lenght 60-100%) ; no synteny

-- Annotation comparator's analysis

- nadB : L-aspartate oxidase also in 28 other orthologs (some well conserved)
- BdD8_00254 : FAD dependant oxidoreductase also in 6 other orthologs (some well conserved)
- sdhA : succinate dehydrogenase also in 19 other orthologs (some well conserved)
- BdD8_03122 : pyridine nucleotide-disulfide oxidoreductase also in 17 other orthologs (some well conserved)
- murB : UDP-N-acetylenolpyruvoylglucosamine reductase also in 30 other orthologs (some well conserved)

-- Genomic organisation's analysis

- nadB : 1 interesting genes in 5' ? : lpdA (Dihydrolipoyl dehydrogenase) ; synteny of ~192 in other B. dorei, ~6 in other B., no synteny with further species :
- BdD8_00254 : 2 interesting genes in 3' ? : choloylglycine hydrolase, phenylacetate--CoA ligase ; synteny of ~192 in other B. dorei, ~6 in other B., no synteny with further species
- sdhA : nothing interesting
- BdD8_03122 : nothing interesting
- murB : no interesting keyword in neighbhor CDS ; synteny of 14-26 with other B. dorei, 3-11 with other B no synteny with further species

Thomas Lacroix

Analyse of interesting genes from other species known to reduce cholesterol

Do they have orthologs in D8?

keyword related to cholesterol degradation :

5-cholesten-3-one; 4cholesten-3-one; cholestenone beta reductase; EC1.1.3.6; EC1.3.1.3; cholesterol oxidase and FAD dependent oxidoreductase (POSIX Regex : .*FAD.*oxidoreductase.*)

Set of

- 20 bacteroides anaerobie (included 6 B dorei) which do not degrade cholesterol
- 3 Mycobacterium aerobie lifestyle which degrade cholesterol
- 4 Rhodococcus aerobie lifestyle which degrade cholesterol

- 1 * cholesterol oxidase :

choD, Rv3409c: cholesterol oxidase

=> Close to oxidoreductase, in conserved synteny with all bacteria cholesterol catabolism except Schizophyllum commune (eukaryotes)

 \Rightarrow no interest for D8

```
- 0 * .*FAD.*oxidoreductase.* - 0 * EC1.3.1.3
```

- Mycobacterium smegmatis str. MC2
 - 0 * cholest 3 * EC1.3.1.3

Thomas Lacroix

Analyse of interesting genes from other species known to reduce cholesterol

Do they have orthologs in D8?

keyword related to cholesterol degradation :

5-cholesten-3-one; 4cholesten-3-one; cholestenone beta reductase; EC1.1.3.6; EC1.3.1.3; cholesterol oxidase and FAD dependent oxidoreductase (POSIX Regex : .*FAD.*oxidoreductase.*)

Set of

- 20 bacteroides anaerobie (included 6 B dorei) which do not degrade cholesterol
- 3 Mycobacterium aerobie which degrade cholesterol
- 4 Rhodococcus aerobie which degrade cholesterol

Analysis using Insyght.

Conclusions: no significant hits with clear synthenie, genes linked to lipid metabolism, etc ...

Could cholesterol-degrading-enzymes present in aerobie bacteria be different from anaerobie bacteria? -> Need of transcriptomic analysis

KstRTetR family studied in *Mycobacterium tuberculosis*

doi:10.1111/j.1462-2920.2010.02398.x

Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc²155

et

ba

ch

chi

the

two

da

(FA

usi

del

as

Kis

200

diff

thei

enz

200

oxic

indu

Apa

grov

culti

whic

for c

teriu

cida

acqu

zatic

seer

the

Sass

N

I. Uhía, B. Galán,* V. Morales and J. L. García Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.

Environmental Microbiology (2011) 13(4), 943-959

Summary

The first step in the catabolism of cholesterol, i.e. the transformation of cholesterol into cholestenone. has been investigated in Mycobacterium smegmatis. In silico analysis identified the MSMEG_1604 gene encoding a putative protein similar to the ChoD cholesterol oxidase of M. tuberculosis H37Rv (Rv3409c) and the MSMEG_5228 gene coding for a protein similar to the NAD(P)-dependent cholesterol dehydrogenase/ isomerase of Nocardia sp. The expression of the MSMEG_5228 gene was inducible by cholesterol whereas the expression of MSMEG_1604 gene was constitutive. When both genes were expressed in Escherichia coli only the MSMEG_5228 protein was active on cholesterol. The function of ChoD-like MSMEG_1604 protein remains to be elucidated, but it does not appear to play a critical role in the mineralization of cholesterol as a MSMEG_1604 mutant was not affected in the production of cholestenone. However, a MSMEG_5228 mutant showed a drastic reduction in the synthesis of cholestenone. The finding that this mutant was still able to grow in cholesterol, allowed us to demonstrate that the cholesterol-inducible MSMEG_5233 gene encodes an additional cholesterol dehydrogenase/isomerase similar to the AcmA dehydrogenase of Sterolibacterium denitrificans. The observation that the double MSMEG_5228-5233- mutant was able to grow in cholesterol suggests that in addition to these enzymes other dehydrogenase/isomerases can also catalyse the first reaction of the cholesterol degradation pathway in M. smegmatis, which is not the limiting step of the process.

Introduction

Cholesterol and related steroid compounds are ubiquitous and very abundant in the environment as part of cytoplas-

Received 16 July, 2010; accepted 9 November, 2010. *For correspondence. E-mail bgalan@cib.csic.es; Tel. (+34) 918 373 112; Fax (+34) 915 360 432

mic membranes and as precursors of vitamin D, bile acids and several sexual hormones. In addition, many synthetic steroids (e.g. sexual hormones as estrogens and androgens) frequently appear in municipal and industrial wastewaters as environmental pollutants (Routledge et al., 1998; Poole and Cord-Ruwisch, 2004; Gagné et al., 2006). Although the abundance and ubiquity of steroids have made them a common carbon source for saprophytic microorganisms belonging to various physiological groups their complete degradative pathways remain challenging (Tak, 1942; Brown and Peterson, 1977

Microbiology (2010), 156, 1362~1371

Correspondence

Sharon L. Kendall

skendall@rvc.ac.uk

Received 13 October 2009

Revised 21 January 2010

Accepted 12 February 2010

Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2

ICAL .

Sharon L. Kendall,¹ Philippa Burgess,¹ Ricardo Balhana,¹ Mike Withers,¹ Annemieke ten Bokum,¹ J. Shaun Lott,² Chen Gao,² Iria Uhia-Castro³ and Neil G. Stoker¹

Department of Pathology and Infectious Diseases, The Royal Veterinary College, Centre for Emerging, Endemic and Exotic Disease, Hawkshead Lane, Hertfordshire, AL9 7TA, UK

²Laboratory of Structural Biology and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, New Zealand

³Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain

Mycobacterium tuberculosis is able to use a variety of carbon sources in vivo and current knowledge suggests that cholesterol is used as a carbon source during infection. The catabolized cholesterol is used both as an energy source (ATP generation) and as a source of precursor molecules for the synthesis of complex methyl-branched fatty acids. In previous studies, we described a TetR-type transcriptional repressor, kstR, that controls the expression of a number of genes involved in cholesterol catabolism. In this study, we describe a second TetR-type repressor, which we call kstR2. We knocked this gene out in Mycobacterium smegmatis and used microarrays and quantitative RT-PCR to examine the effects on gene expression. We identified a palindromic regulatory motif for KstR2, showed that this motif is present in three promoter regions in mycobacteria and rhodococcus, and demonstrated binding of purified KstR2 to the motif. Using a combination of motif location analysis, gene expression analysis and the examination of gene conservation, we suggest that kstR2 controls the expression of a 15 gene regulon. Like kstR, kstR2 and the kstR2 regulon are highly conserved among the actinomycetes and studies in rhodococcus suggest a role for these genes in cholesterol catabolism. The functional significance of the regular and implications for the control of cholesterol utilization are discussed

¿ Jacobs, Jr., Albert Einstein College of Medicine, Bronx, NY, and accepted by the Editorial Board December 6, 2006 (received for review (Fig. 1). In some Mycobacterium (4) and Rhodococcus (5, 6) species, the aliphatic side chain at C17 is removed via a process similar to β-oxidation involving progressively shorter carboxylic acids. In these strains, 3-ketosteroid Δ 1-dehydrogenase (KSTD) and 3-ke-

KTR = Tet-R Type thomscultional republics NUPAB / meet + any closes to look for e cluster encoding cholesterol catabolism

pacterium tuberculosis survival in macrophages

arment of Microbiology and Immunology. Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 123; and armacology, University of Oxford, Oxford OX1 3QT, United Kingdom

icrobiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The

DOI 10.1099/mic.0.034538-0

strain RHA1, a soil bacterium related to Mycobacte-

, degrades an exceptionally broad range of organic

scriptomic analysis of cholesterol-grown RHA1 re-

pathway predicted to proceed via 4-androstene-

3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-

bil actinomycete provides insight into

» Geize*, Katherine Yam¹, Thomas Heuser¹, Maarten H. Wilbrink*, Hirofumi Hara¹, nderton², Edith Sim³, Lubbert Dijkhuizen^{*}, Julian E. Davies¹, William W. Mohn¹⁵,

ealed that rhodococci may be useful processes: ≈60% of the 3,999 genes H37Rv are conserved in RHA1, unction (2). M. tuberculosis is the bacterial infection, killing 2 million e each year, and extensive drug TB are now emerging (ref. 13 and sheets/fs104/en/index.html). One nycobacterial physiology that con-

- A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in *Mycobacterium smegmatis* and *Mycobacterium tuberculosis*
- M.Tb TetR-type regulator Rv3574 is implicated in pathogenesis as it is induced in vivo
- Genome-wide essentiality studies show Rv3574 is required for infection.
- Many of these genes are known to be induced by growth on cholesterol in Rhodococci, and palmitate in *M. tb*.

Molecular Microbiology

Volume 65, Issue 3, pages 684-699, 16 JUL 2007 DOI: 10.1111/j.1365-2958.2007.05827.x http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2007.05827.x/full#f3

KstR regulates genes cluster encoding cholesterol catabolism in actinomycetes

- Transcriptomic analysis:
- cluster of genes necessary for microbial steroid degradation.
- more than 83 genes in *M.smeg* and 74 *M.tb*, 18 are essential.
- Identification of a conserved motif within its own promoter (TnnAACnnGTTnnA)

Do we have such motif in *B. dorei D8* and *B. dorei 175*⁷? What are the genes induced by this motif?

202 - 3== Taille 199	Score 99.9 /bdd8_00467.fasta.a3m.D8.batch4.20150203.outBK4 ===> Transcriptional regulator
192 - 1== Taille 191	Score 100.0 /bdd8_01282.fasta.a3m.D8.batch4.20150203.outBK4 ===> TetR/AcrR family transcriptional regulator
198 - 3== Taille 195	Score 100.0 /bdd8_00441.fasta.a3m.D8.batch4.20150203.outBK4 ===> Putative uncharacterized protein
192 - 4== Taille 188	Score 100.0 /bdd8_01261.fasta.a3m.D8.batch4.20150203.outBK4 ===> Putative transcriptional regulator
203- 4== Taille 199 _	Score 100.0 /bdd8_01039.fasta.a3m.D8.batch4.20150203.outBK4 ===> Putative transcriptional regulator

5 putative -or annotated- transcriptional regulators

B. Dorei

215 - 46== Taille 169	dorei-17855/bacdor_01099.fasta.a3m.dorei.outBK4 ===> transcriptional regulator, TetR family
192 - 1== Taille 191 _	dorei-17855/bacdor_00223.fasta.a3m.dorei.outBK4 ===> transcriptional regulator, TetR family
192 - 4== Taille 188 _	dorei-17855/bacdor_00052.fasta.a3m.dorei.outBK4 ===> transcriptional regulator, TetR family
198 - 4== Taille 194 _	dorei-17855/bacdor_03957.fasta.a3m.dorei.outBK4 ===> transcriptional regulator, TetR family
203 - 4== Taille 199 _	dorei-17855/bacdor_02664.fasta.a3m.dorei.outBK4 ===> transcriptional regulator, TetR family
204- 4== Taille 200	dorei-17855/bacdor_01097.fasta.a3m.dorei.outBK4 ===> transcriptional regulator, TetR family

6 putative -or annotated- transcriptional regulator

Analysis in progress to identify genes involved in cholesterol or lipid catabolism.