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Some preliminary words

Who am I ?

a Computer Scientist specialized in discrete optimization,

developing Artificial Intelligence techniques,

applying them in bioinformatics (genetics, DNA, RNA).

learning protein molecular modeling and biophysics.

I’m happy to learn more

do tell me how to improve my understanding of bio-molecules

during the presentation (if this will help others)

after the presentation (otherwise)
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The Computational Design Problem

Informal definition

Produce a sequence s of amino-acids that spontaneously adopts a conformation X
that performs some function.

Our assumptions on Fold and Function3

The stability of a sequence s in a given conformation X can be estimated through
a real valued energy function E (s,X ).

ps(X ) ∝ e
− E(s,X )

kBT

The “fitness for purpose” of a sequence s in a given conformation X can be
estimated through a real valued energy function F (s,X ).
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What defines a conformation ?

Conformation

quaternary structure: rigid body transforms ρ (docking)

backbone structure: dihedral angles θ (backbone design)

sequence: choice of amino-acid per position (sequence design)

side-chains: torsion angles χ for each side-chain (packing)



E (s,X ) and F (s,X ) are inaccurate

Refined definition

We want to identify a set {(s,X )i} of designs that:

have reasonably good fitness F (s,X )

spontaneously adopt conformation X :

E (s,X ) = min
X

(E (s,X ))

are diversified: ∀i , j ,∆((s,X )i , (s,X )j) > δ ∆: distance

Challenging optimization problem

very high dimensionality, continuous variables (χ, ρ)

non linearities in E (X , s) and possibly F (X , s) too

discrete set of possible sequences s (size 20n)
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Several brain.decades later

The “rigid backbone, discrete rotamers” approach

1 backbones orientations and shapes (ρ, θ) are optimized using simplified energy
and fitness functions (centroid-based).

1 the initial backbones θ are selected among known backbones or designed de novo by
assembling fragments of known backbones or. . .

2 their relative positions ρ are optimized by a variety of docking algorithms.

2 sequence s is discrete, so χ is discretized too.



Many brain.decades later

Rotamer libraries

Each amino-acid is associated with a set of possible side-chain conformations that
represent its most usual conformations (in the PDB, possibly conditional on SS or local
backbone torsion angles).

Existing rotamer libraries12

Tuffery,61 Penultimate,37 Dunbrack54 (bb-dependent),. . .

A rotamer

A rotamer r defines both the amino-acid used (sequence) and its conformation (χi ).
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Final stages

The “rigid backbone, discrete rotamers” approach

1 Each position i has a set of possible rotamers. Together with ρ, θ, this defines all
possible sequence·conformations.

2 A combination of rotamers that optimizes F and E is sought (discrete
optimization).



It’s an ill-posed problem

We adjust (s, χ) to get minimum energy on (ρ, θ).

Even with a perfect E and exact minimization, we have no guarantee that s
should fold in (ρ, θ, χ):

E (s, ρ, θ, χ) = min
ρ,θ,χ

E (s, ρ, θ, χ)

a better backbone configuration for s may exist.

Extra gesticulations

1 θ, ρ, χ may be post-adjusted by quasi-Newton optimization algorithms
(“minimization”) using a full-atom model followed by possible loops to previous
stages.

2 Forward folding: large number of (ρ, θ, χ) predicted from s using protein structure
prediction. Joint plot of RMSD to target and E (funnel expected).
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Why this nevertheless seems to work

Few folds for many sequences

There are less than 2,000 folds for many more sequences. Secondary structure
elements and hydrophobic packing constrain the space.

There is a variety of side-chains, with different physical and chemical properties. It
seems unlikely another fundamentally different stable structure will be more stable.

Remember: we are in control!

We are allowed to make designs very predictable. This is what “forward folding”
checks. Probably far from a necessary and close to a sufficient condition.
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Getting closer to our target problem

The “rigid backbone, discrete rotamers” optimization problem

we are given (ρ, θ), spatially localized rigid backbone(s)

we are given a set Di of usable rotamers for each position (rigid, flexible, mutable).

we are given a function G (X , s) combining E and F (assume G = −E for now).

We want to identify (χ, s) that maximizes G (minimize E ).

(Free) energy function

Bonded terms: dihedrals angles (θ, χ), angles, distances.

Non bonded: electrostatics, Van der Waals (Lennard-Jones, H-bonds,. . . )

Entropy: polar solvent (non trivial).
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Decomposable energy and energy matrices

E (s,X ) = E∅ +
n∑

i=1

Ei (ir ) +
∑

(i ,j)∈I

Eij(ir , js)

ir : the rotamer r ∈ Di used at position i .

E∅: fixed contributions (backbones, rigid side-chains). Useless for optimization.

Ei (ir ): contributions that depend just on one position (internal rotamer energies,
backbone-rotamer interactions, reference energies).

Eij(ir , js): all contributions that result from interacting rotamers (non bonded).

I : cutoff (non bonded interactions ignored beyond some distance threshold -
interaction type dependent).
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Energy matrices

A large energy (“symmetric”) matrix E [ir , js ] can be precomputed.

Size: n.d + n×(n−1)
2 .d2, d = maxi |Di |)

Can be “sparse” (cutoffs).

Computing E (s,X ) becomes easy.
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But energy minimization looks hard

Protein with n residues.

20 amino-acids for each residues: 20n possibilities

up to one hundred conformations per amino-acid type (depends on density of
rotamers and amino-acid of course).

a minimum of 300− 400 sequences-conformations for fully mutable positions
(typical).

Exponentials grow quickly

Especially with base 400.

Does not prove it is hard (it’s easy to find a shortest path in a graph even if the
number of paths in it is horrendous).
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Stronger hint

Assuming arbitrary energy terms

Discrete decomposable pairwise energy minimization is decision Non-deterministic
Polynomial time complete.43

Given e, ∃?(s,X ) s.t. E (s,X ) ≤ e

Membership in NP is easy. Completeness too (MAX2SAT).

Ubiquity of stochastic local search/heuristics

Bio-inspired: Genetic Algorithms (EGAD44).

Physics-inspired: Monte Carlo biased for optimization47

Does this mean there is no hope we can solve the problem exactly?
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NP-complete ≡ cannot be solved ?

Even if P 6= NP, NP-completeness only implies there is an infinite family of energy
minimization problems of arbitrary sizes that can only be solved in asymptotic
exponential time.

Speaks of worst problems and does not say if this is 1.0000001n.

NP is the “New P” (Moshe Vardi, president of the ACM)

1 SAT solvers solve SAT instances with > 106 variables.

2 similar progress in other areas: constraint programming, integer linear
programming, graphical model solving. . .

3 toulbar2 can solve (find and prove minimum of) problems with 21,000,000 states.
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E is approximate. I do not need exact solving

Guaranteed solving: the good

gives a real unbiased access to what minimum energy means (learning energy
parameters, understanding misbehaviors)

can be much faster than Monte Carlo (knows when to stop)

may be asked for weaker guarantees (distance to optimum)

can provide gap-less enumeration

you exactly know what you get (no need to rerun).

Monte Carlo trades time for quality, but you don’t know the exchange rate, may
get really stuck (ergodicity)

and the bad. . .

has the possibility of being utterly slow (is 1 MY ok?)
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Full redesign of 107 short proteins

Rosetta (Dunbrack, Talaris14), Fixbb MC protocol vs. toulbar2

Why full redesigns

1 Challenging

2 Used on β1 domain of protein G to tune energy function parameters2.

The designs

1 Structures extracted from the PDB (September 2014)

2 Length from 50 to 100 AA

3 Resolution better than 2 Å

4 Only representative at < 30% identity
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Looking for the Global Minimum Energy Conformation

How

1 Intel Xeon E5-2690 2.9 GHz (Q1-2012 CPU)

2 toulbar2: 100 hours limit.



Looking for the GMEC



Looking for the GMEC and around

toulbar2 (CFN)

1 98 problems solved to optimality

2 Largest problem solved: 10234, energy matrix of 1.7 GB

3 Smallest unsolved: 10206.

4 exact SCP with Talaris14 feasible even on big proteins.

All sequence·conformations in 0.2 Rosetta unit (100h limit)

1 Gap-less list of sequence·conformation on 92/98 designs

2 Very fast sampling, huge spaces (up to 1.42 109)
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Exploring Sequence·conformations around the GMEC

“SCP branching” algorithm

For each sequence, only finds a good enough conformation

Exhaustively enumerates sequences in larger energy gaps
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Rosetta FixBB protocol

Rosetta/fixbb

1 Best of 1000 runs of fixbb Rosetta protocol

2 Rosetta fixbb found the GMEC on 13 of these problems

3 These 13 problems took 90 hours for fixbb.

4 toulbar2 solved them to optimality in 36 hours.



Distance to optimum as a function of space size

Blue: best over 1 000 runs

Red: average over 1 000 runs.
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Reliability, distance to optimum and size

Blue: probability of finding the GMEC (sorted)

Red: energy gap to GMEC (sorted)

Histogram: # of unique sequences between GMEC and fixbb best sequence (red:
lower bound)
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Reliability, distance to optimum and size

Blue: probability of finding the GMEC (sorted)

Red: energy gap to GMEC (sorted)

Histogram: # of unique sequences between GMEC and fixbb best sequence (red:
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Getting closer to the GMEC with SA

Worst mean/median energy gap: 2CJJ and 2CKX

1 million runs of fixbb, 2 years of cpu-time each

can estimate the expected gap as a function of time
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What about sequences: Hamming dist. to GMEC

Best energy fixbb vs. GMEC

2.4% core, 7% boundary, 10% surface.

# of mutations

fra
ct

io
n



Distance to native as we get closer to the GMEC

Native sequence

sort of reference (a protein’s life is not just stability).

used to tune energy2,33

Type native fixbb best GMEC

Hydrophobic 2,585 ↘ 2,440 ↘ 2,401
Charged 1,795 ↗ 1,996 ↗ 2,097

Polar 1,817 ↘ 1,730 ↘ 1,662
Aromatic 585 ↗ 616 ↗ 622

Cysteines in disulfide bridges: not counted.
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Possible lessons

Monte Carlo sampling

Fixbb becomes quickly unable to reach lowest energy areas

Energy gap increases steadily with search space size

What about unbiased (MC)MC sampling ?

Why guarantees are good?

GMEC not crucial, but an upper bound on error?

Guaranteed optima have different composition

Talaris favorable for guaranteed optimization (but exponential)

Exhaustive enumeration can be very fast (exponential output)
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Advanced optimization methods for CPD

Some exact NP-complete optimization frameworks

0/1 Linear programming: optimize a linear function under linear constraints
(CPLEX and Gurobi free for academics).

Quadratic Programming: optimize a quadratic criteria under linear constraints
(SDP based, BiqMac, open source).

PWMaxSat: maximize the weighted # of satisfied clauses under hard clauses
(MaxHS, bincd, akmaxsat,. . . ).

Graphical models: minimize a decomposable function

Focus on Graphical Model optimization

All NP-complete: polytime transform from any to the others

ILP used eg. in CLASSY38

Graphical model optimization: direct, fastest exact method



Advanced optimization methods for CPD

Some exact NP-complete optimization frameworks

0/1 Linear programming: optimize a linear function under linear constraints
(CPLEX and Gurobi free for academics).

Quadratic Programming: optimize a quadratic criteria under linear constraints
(SDP based, BiqMac, open source).

PWMaxSat: maximize the weighted # of satisfied clauses under hard clauses
(MaxHS, bincd, akmaxsat,. . . ).

Graphical models: minimize a decomposable function

Focus on Graphical Model optimization

All NP-complete: polytime transform from any to the others

ILP used eg. in CLASSY38

Graphical model optimization: direct, fastest exact method



What is a Graphical Model ?

1 A set of variables, each with a domain

2 We define a joint function on all variables

3 By combining (
⊗

) functions involving few variables

Why “graphical” ?

One vertex per variable

One edge if two variables
participate together in a function

Can describe a function on many
variables concisely

Hard to manipulate (NP-hard
queries)
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The many faces of graphical models

Which ⊗, which query (⊕), which cost domain?

1 (min,∧), B Constraint Networks, CSP/SAT

2 (min,+), N+, Q+ Cost Function Networks, WCSP

3 (min,+), R Minimum energy

4 (max,×), R+ Maximum probability

5 (+,×), R+ Weighted counting, Z

(⊕,⊗) should define a semi-ring.

Different algebras. We will stick to (min,+) and (
∑
,
∏

)

Often closely related/equivalent algorithms45,52,55.

All problems NP-hard (or worse !)
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Cost Function Networks

A CFN (X ,D,C , k)

1 Set X = {1, 2, . . . , n} of variables. i with finite domain Di ∈ D.

2 Set C of cost functions cS , each depending on some variables S ⊂ X ,
cS : DS → {0, . . . , k} (k finite or not)

3 Cost combined by (bounded) addition8

C (x) =
∑
cS∈C

cS(x [S ]) c∅ : lower bound

The Weighted Constraint Satisfaction Problem

Find an assignment x of all variables s.t. C (x) = miny∈DX C (y).

If k = 1, this is the “Constraint Satisfaction Problem” (CSP).
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Energy minimization as Cost Function Networks

You Shift, Scale, Round

Variables: one per residue, domain of available rotamers for the residue.

Cost functions: each energy function E∅, Ei , Eij defines a cost function with a
precision:

cS(x) =

⌈
(ES(x)− min

y∈DS
ES(y))× 10precision

⌉

Just fixed decimal point representation. Adjustable maximum error.

In the rest of the talk, I (often) confound energies ES and costs cS .
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ILP, QP, Graphical model, all NP-complete

All equivalent

Let’s look (or skip) a few slides to check this.



Pairwise CFN as 01LP (infinite k , finite costs)

The local polytope [27, 53, 64]

Minimize
∑
i ,a

ci (a) · xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · yiajb subject to

∑
a∈D i

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈D j

yiajb = xia ∀cij ∈ C , ∀a ∈ D i

∑
a∈D i

yiajb = xjb ∀cij ∈ C , ∀b ∈ D j

xia ∈ {0, 1} ∀i ∈ {1, . . . , n}

nd + e.d r variables. n + 2ed contraintes.



Binary CFN as 01QP (infinite k , finite costs)

Only nd variables

min
∑
i ,a

ci (a).xia+
∑
cij∈C

a∈Di ,b∈Dj

cij(a, b) · xia · xjb subject to

∑
a

xia =1 (∀i ∈ {1, . . . , n})



Fastest exact method?

Benchmark

47 high quality backbones extracted from the protein design literature.

AMBER energy matrices computed using OSPREY (Penultimate rotamer library).

used to compare exact optimization methods for ILP, QP, PWMaxSAT, OSPREY,
Graphical model solvers.

All encodings (polytime transformations) described in David Allouche et al. “Computational
protein design as an optimization problem”. In: Artificial Intelligence 212 (2014), pp. 59–79.
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QP and other PWMaxSAT solvers do not solve any instance.



QP and other PWMaxSAT solvers do not solve any instance.



Dead End Elimination & Neighborhood Substitutability

DEE - Nature (Desmet, de Maeyer et al., 1992) - 791 cites

two rotamers ir , is of the residue i

if the best arrangement of neighbors for is has a larger energy than the worst
arrangement of neighbors for ir , remove is .

E (ir ) +
∑
j 6=i

max
t

E (ir , jt) < E (is) +
∑
j 6=i

min
t

E (is , jt)

isEi (is) +
n∑

j=1

min
t

Eij(is , jt)

irEi (ir ) +
n∑

j=1

max
t

Eij(ir , jt)



Dead End Elimination & Neighborhood Substitutability

DEE - Nature (Desmet, de Maeyer et al., 1992) - 791 cites

two rotamers ir , is of the residue i

if the best arrangement of neighbors for is has a larger energy than the worst
arrangement of neighbors for ir , remove is .

E (ir ) +
∑
j 6=i

max
t

E (ir , jt) < E (is) +
∑
j 6=i

min
t

E (is , jt)

Neigh. Substitutability - AAAI, (Gene Freuder, 1991) - 290 cites

two values ir , is of the variable i

if the best arrangement of neighbors of ir is false whenever the worst arrangement
of the neighbors of is is false, remove ir .

E (ir ) ∧
j 6=i
∧
t
E (ir , jt) ≤ E (is) ∧

j 6=i
∨
t
E (is , jt)



Dead End Elimination

Sufficient condition for suboptimality

Also known as a dominance rule, persistency (Boolean case5,20), substitutability,13

partial optimality,57. . .

Polynomial space/time complexity

More or less effective sufficient conditions exist on values,1,17,34 on pairs and
beyond.35

Not a panacea

polynomial time, so cannot solve the fixed backbone protein design problem in all
cases.

may remove “close to optimal” solutions.

usually solves only a fraction of nowadays “small problems”.
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Needs to be combined with tree search

Which trees ?

the root node is the graphical model to solve (or a preprocessed one).

the sons of a node are obtained by splitting the domain (how) of a chosen (how)
variable in at least two sets (value/variable heuristics).

the leaves are totally assigned graphical models.

Root

X1

X2

X3

0 1

0 1

0 1 0 1

0 1

0 1 0 1



A∗: exact shortest path finding in implicit graphs

Here: used only for search in trees of bounded depth.

open: list of nodes yet to explore (only the root initially).
h(n): lower bound on the best leaf cost under n.

1 Extract n = arg minopen h(n) from open (admissible heuristics)

2 If n is a leaf, we have an optimal solution

3 Else, we insert all sons of n in open and loop to 1

worst case exponential time and space

h(n) quality is crucial (tight/fast)

anytime lower bound (not upper bound)

produces solutions with increasing energies
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DEE/A* (OSPREY) vs. CFN (toulbar2)



Should we forget DEE/A*?

No, DEE/A* powers OSPREY

Open source successful Java tool with AMBER force field.14

Exact methods for continuous rotamers,18 flexible backbone or both19 (harder to
solve).

Recent versions use toulbar2 as a subroutine.

How: 20 years of open source research/evaluation

poly/any space tree search exploration (DFS, HBFS)

strong/fast bounds (preprocessing and during search), crucial

variable/value ordering (activity/bound guided): crucial

variable elimination (preprocessing and during search)

exploiting conditional independencies (tree decompositions)

DEE (preprocessing and during search): minor effects
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Depth First Branch and Bound (DFS)

Dive and backtrack

the tree is “ordered” by the branching heuristics

ordered search: a current position suffices (linear space)

quick first solution, k set to the energy of the best known

if h(n) ≥ k , no better solution below: backtrack

Root

X1

X2

X3

0 1

0 1

0 1 0 1

0 1

0 1 0 1



Enumerating sequences/conformation

Within a δ energy threshold of the GMEC

1 Assume you know the GMEC energy E ∗

2 Set k to E ∗ + δ and never update k during search

3 The energy E of each attained leaf E ∗ ≤ E < E ∗ + δ

Empirically fast sequence·conformation enumeration

Estimation of side-chain conformational entropy
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Enumerating sequences, not conformations

SCP Branching60

1 Same as above plus. . .

2 Branch first on variables with 2 or more AAs in their domain

3 Split on AA identity if possible

4 When a leaf is reached, backtrack to an AA split node.

Exponential speedups.

Enumerations of sequence on larger energy gaps

Sequence libraries!
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Hybrid Best First Search

A∗ mixed with DFS

extract a favorite node n from open

explore the sub-tree below n with DFS (k updated)

stop when a maximum # of nodes have been explored

put all “dangling branches” as new nodes in open

filter open (remove n if h(n) ≥ k)

Benefits

anyspace: if open gets too large, just do more DFS

anytime solutions: we get increasingly good solutions

anytime lower bound: min
n∈open

h(n)

unordered search (a path to diversity?).
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Avenues for time/quality trade-offs

Anytime profiles - HBFS

Increasingly tighter gap: (a solution/upper bound, a lower bound).
-timer=b: stop after b seconds. Trades time for quality with a bound on what you
risk loosing.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1000

HBFS



Bounds and Equivalence Preserving Transformations

Naive lower bound h(n)

Costs are non negative thus c∅ is a lower bound of the optimum.

Main idea

Transform a CFN into an equivalent CFN with a larger c∅
Equivalent: same joint cost C (x) for any assignment x ∈ DX

Equivalent Preserving Transformations (EPTs)

Shift costs between different scopes: 2-bodies terms to 1-body terms, 2-bodies terms
to constant term, or the converse.

never change the joint cost distribution C (·)
never create negative costs

incrementality! Ideal for DFS/HBFS.
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Tightening c∅ by EPTs

Assume that initially c∅ = 0, k = 4

Shift 1 to left b Shift 1 to right a
← →x1 x2

3

1 3

x1 x2

a

b

a

b

1 4

x1 x2

←
Shift 1 from right a

⇓ Shift 1 from x1 to c∅
c∅ = 1

Preserves global energy below k .
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Tightening c∅ by EPTs

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←
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Preserves global energy below k . Dead End Elimination does not



Local consistencies

Properties of CFN such that a well defined set of obvious local deductions have been
performed leading to a fixpoint (closure).

Node consistency (NC)

For any variable i , there exists ir s.t. ci (ir ) = 0 and no value is such that
c∅ + ci (is) ≥ k .

Arc consistency (AC*)

NC + for any variable i and value ir and cost function cij , there exists js ∈ Dj s.t.
cij(ir , js) = 0.
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EPTs for Node consistency
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EPTs for Arc consistency
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EPTs for Arc consistency
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EPTs for Arc consistency
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EPTs for Arc consistency

(3) a b X1

a bX2 a b X3

c∅ = 0

2

0 2

1

8 6

42 1 6

(4) a b X1

a bX2 a b X3

c∅ = 0

2 1

0

8 7

42 1 6

(5) a b X1

a bX2 a b X3

c∅ = 0

2 1

8 7

42 1 6



EPTs for Arc consistency
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EPTs for Arc consistency
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EPTs for Arc consistency
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Increasingly strong local consistencies

1 2000: Arc Consistency51

2 2003: (Full) Directional Arc Consistency31

3 2005: Full Existential Directional Arc Consistency32

4 2008: Virtual Arc Consistency9,10,25,64

5 also in image processing. Look for TRWS,25,64 OpenGM.23

Local consistency enforcing

only remove solutions that have energy ≥ k (adjustable).

does not change the problem (below k)

gives an incremental lower bound
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5 also in image processing. Look for TRWS,25,64 OpenGM.23
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does not change the problem (below k)
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Virtual Arc Consistency

Bool(P) [9]

Given a CFN P = (X ,D,C , k), Bool(P) is the CSP (X ,D,C − {c∅}, 1).

Bool(P) forbids all positive cost assignments, ignoring c∅.

Virtual AC

A CFN P is Virtual AC iff Bool(P) has a non empty AC closure.

Virtual AC

Same fixpoints as TRW-S [26], MPLP1[56], SRMP [24], Max-Sum diffusion [10, 29],
Aug-DAG[28]. . .
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Connection with Constraint Satisfaction

Virtual AC10

1 solves tree-structured problems,

2 solves CFNs with submodular cost functions (Monge matrices)

3 solves CFNs for which AC is a decision procedure in Bool(P).

1 Any solution of Bool(P) has cost c∅ and is therefore optimal.

2 A problem which is VAC and has only one value a in each domain such that
ci (a) = 0 is solved.

3 There is always at least one such value (or else not VAC).
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How do we enforce VAC ?

Iterative procedure

1 Enforce AC in Bool(P) until a wipe-out occurs (record EPTs)

2 Extract a minimal set of EPTs sufficient for the wipe-out

3 Apply cost EPTs on P using suitable cost moves



How do we enforce VAC ?

Iterative procedure

1 Enforce AC in Bool(P) until a wipe-out occurs (record EPTs)

2 Extract a minimal set of EPTs sufficient for the wipe-out

3 Apply cost EPTs on P using suitable cost moves



A “simple” example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

Original problem

Costs in Q. In practice: fixed point representation.
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Complexity

Table cost functions

1 Each iteration is in O(ed r ), ε-convergence in O(ed r .k/ε)

2 accelerates CPLEX on the ILP formulation of a CFN/CPD (local polytope64).

Prusa and Werner showed that any “normal” LP can be reduced to a “local polytope”
problem in linear time (constructive proof).

toulbar2 uses EDAC, possibly VAC at root node or during search (pairwise cost
functions). h(n) = c∅.
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Variable/value ordering

Heuristics are crucial for efficiency

node: which node should I choose in open (A∗/HBFS)

variable: which variable should I split (DFS/HBFS)

value: which son should I explore first (DFS/HBFS)

General principles

node, value: most promising one (low h(n), deep)

variable: max. increase in h(n) (first fail principle)

Clever variable ordering heuristics that learn which variables are “hard” during search.
Eg.: weighted degree.6



Variable/value ordering

Heuristics are crucial for efficiency

node: which node should I choose in open (A∗/HBFS)

variable: which variable should I split (DFS/HBFS)

value: which son should I explore first (DFS/HBFS)

General principles

node, value: most promising one (low h(n), deep)

variable: max. increase in h(n) (first fail principle)

Clever variable ordering heuristics that learn which variables are “hard” during search.
Eg.: weighted degree.6



Variable/value ordering

Heuristics are crucial for efficiency

node: which node should I choose in open (A∗/HBFS)

variable: which variable should I split (DFS/HBFS)

value: which son should I explore first (DFS/HBFS)

General principles

node, value: most promising one (low h(n), deep)

variable: max. increase in h(n) (first fail principle)

Clever variable ordering heuristics that learn which variables are “hard” during search.
Eg.: weighted degree.6



Variable elimination

Relies on two simple operations on cost functions

Sum of 2 cost functions. O(d |S∪T |)

fS∪T = gS + hT defined as fS∪T (x) = gS(x [S ]) + hT (x [T ])

min-Elimination of a variable. O(d |S|)

g−iS (x) = min
r∈D i

gS(x · ir )

Each x has an associated arg min, denoted as x+i .
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Variable elimination

Eliminating variable i

1 Let Ci = {cS ∈ C | i ∈ S}
2 compute mT = (

∑
cS∈Ci

cS)−i

3 replace i and Ci by mT

one less variable and same optimal energy

x , optimal solution can be extended to an optimal solution of the original problem
using x [T ]+i .

Eliminate any variable i with degree less than δ or such that |Di | = 1 on the fly, at
each node.30
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Tree decomposition

Cutoffs generate sparsity

Distant residue have no interacting terms generating conditional independencies that
can be captured in a “tree decomposition”.



Tree decomposition

Cutoffs generate sparsity

Distant residue have no interacting terms generating conditional independencies that
can be captured in a “tree decomposition”.

Definition (Tree decomposition of G = (V ,E )4,48)

Pair (K ,T ), K is a set of subsets of V (clusters), (K ,T ) is a tree.

1 Clusters cover all variables: ∪l∈Kl = V

2 Clusters cover edges: ∀e ∈ E , ∃l ∈ K | e ⊂ l

3 RIP: if i ∈ V appears in two clusters l and m, then i appears in all clusters
between l and m in T (unique path).



Tree decomposition

Cutoffs generate sparsity

Distant residue have no interacting terms generating conditional independencies that
can be captured in a “tree decomposition”.



Tree decomposition

Combined with DFS or HBFS

assigning all variables of a separator creates disjoint problems.

they can be solved independently (additive complexity, not multiplicative).

2006: dynamic programming4 based algorithm introduced for side chain packing
by Xu and Berger (JACM). Space complexity issues. Heuristically simplified in
SCWRL3 and 4.63

2003: combined with tree search and local consistencies for CFN.11,16,22 Much
better space/time behavior.
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Beyond pairwise finite energies

Constraints

You may add constraints (cost +∞) that could break ergodicity.

3-bodies terms

It is possible to use terms involving more than 2 variables.

Or even an arbitrary number of variables

If it has a suitable semantics. This is a global cost function.
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Examples of “global cost functions”

Global Cardinality Constraint on S ⊂ X

Is the set of variables S , the number of times each possible value is used is constrained
by a lower and upper bound.

Regular (Grammar) on S ⊂ X

A finite state automata (grammar) defines the language of the authorized assignment
of S . Can be weighted.

Local consistency enforced by graph algorithms (mincost flow for GCC) or
decomposition in ternary cost functions (WeightedRegular). More than just these (see
the doc).
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More complex design models

The time needed to solve these models has to be tested.
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Internal local search method

INCOP - IdWalk39

A stochastic local search algorithm that provides a non trivial upper bound. Does not
deal with global cost functions.

You just need to add -i to your command line.
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Stochastic local search

Neighborhoods

x ∈ DX an assignment. x ′ ∈ DX is a neighbor of x iff it can be obtained by
perturbating x . Eg. change the value of one or more variables.

Stochastic Local Search starting from x

Build x ′ (best/random) neighbor of x (p, 1− p)

If E (x ′) ≤ E (x), accept it (unless taboo move)

Else (possibly) accept with probability e
E(x)−E(x′)

T

Adjust T , p, taboo moves list and repeat.

Monte Carlo, Taboo, Greedy Stochastic. . .
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Variable Neighborhood search

Variable Neighborhood Search

Set of neighborhoods: {N1, . . . ,Nn}. i = 1.

1 Let x ′ ∈ Ni (x)

2 Greedy local search from x ′ using Ni

3 If solution improved x ← x ′, i ← 1

4 Else i ← i + 1



Combining VNS and exact search

VNS+toulbar241

1 Ni : change f (i) randomly chosen variables (f increasing).

2 Greedy local search → toulbar2, partial search mode (LDS21,36).

3 Outer loop increasing partial search scope (until complete).

4 Tree decomposition aware + parallelized (MPI).

Provides better solutions sooner but HBFS better at proving optimality.



Beyond optimization

Computing the partition function Z

A #-P complete problem. One call to a #-P oracle can solve any problem in the
PH.59 Intimidating.

Z =
∑
x∈DX

e
− E(x)

kBT

Z and affinity in a solvated complex A + B

Ka = e
−GAB−(GA+GB )

kBT =
ZAB

ZAZB

Ka ≈ e
− EAB−(EA+EB )

kBT

Possible guaranteed access to fixed BB/sequence “free energy”
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Computing Z with ε-guarantees

Deterministic Finite Distance Guarantees

1 (Weighted) #SAT solvers (Cachet,49,50 SharpSAT58)

2 Knowledge compilers: compile graphical models in a target “language” where
counting is easy (ACE,7 minic2d42). Rely on SAT solvers.

3 K ∗: extension of DEE/A* search.15,40 Exploits A∗ capacity to sort solutions in
increasing order of energy.

Limited to very small problems.



Computing Z with ε-guarantees

Deterministic Finite Distance Guarantees

1 (Weighted) #SAT solvers (Cachet,49,50 SharpSAT58)

2 Knowledge compilers: compile graphical models in a target “language” where
counting is easy (ACE,7 minic2d42). Rely on SAT solvers.

3 K ∗: extension of DEE/A* search.15,40 Exploits A∗ capacity to sort solutions in
increasing order of energy.

Limited to very small problems.



A CFN approach

Z ∗ε
62

1 (DFS)+(upper bound z̄(n) on Z )+(search invariant)

2 Enumeration-based: accumulate probability masses in Ẑ < Z

3 Boosted by (+,×) on the fly variable elimination

4 Maintains an upper bound U on thrown away probability mass

5 Prunes if U + z̄(n) ≤ εẐ (invariant)

Z ≥ Ẑ ≥ Z

1 + ε

Simple upper bounds (c∅ and unary cost functions) or (dynamic programming on a
tree cover). Reinforced by local consistencies.
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3 Boosted by (+,×) on the fly variable elimination

4 Maintains an upper bound U on thrown away probability mass

5 Prunes if U + z̄(n) ≤ εẐ (invariant)
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1AHW0 - Skempi (most cases: little E vs. G difference)

Using beta nov15, 11 mutations+WT

∆∆E : R = −0.18 ∆∆G : R = 0.65

A pure enumeration of ≈ 85% of Z took 5 days CPU time.

Guaranteed Z ∗10−3 took 5 minutes.

Bound Unbound

0A Complex of Extracellular Domain of Tissue Factor with an Inhibitory Fab



Practicals this afternoon

Virtual machines with PyRosetta, toulbar2, OSPREY

Computing energy matrices with PyRosetta (OSPREY)

Solving the SCP problem with Pyrosetta and toulbar2

Designing with PyRosetta and toulbar2

Enumerating sequence·conformations

Enumerating sequences only

Biasing the energy function with fitness.

Affinity: ∆∆G and ∆∆E



Many thanks. . .

Juan Cortes, Frederic Cazals, Charles Robert, Yann Ponti (organizers)

D. Simoncini, C. Viricel (Postdoc, PhD student)

S. de Givry, G. Katsirelos, D. Allouche, M. Zytnicki (toulbar2)

J. Larrosa, E. Rollon, J. H Lee. . . (toulbar2)

S. Barbe, S. Traoré, I. André (protein design, LISBP)

B. Donald, K. Roberts (U. North Carolina, OSPREY)

D. Baker lab., W. Sheffler (U. Washington, Rosetta), S. Lyskov (J. Hopkins,
Pyrosetta)

many people I met and which gave useful advices (Juan, Frederic, Thomas. . . ).



Thank you!
Please do come to chat a bit. I’m always happy to discuss and discover new stuff
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