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Superhuman performances of AI

Human beings
Easily rely on quick
“intuitions”
(ill-defined problems)
Extreme rigor is
painful and slow
(logic/arithmetic)

AIs (computers)
Accessible to some
“intuition” (problems
defined by data)
Fast and extreme
rigor is the default (1
billion op./sec)

It was expected that machines would show superhuman “logical reasoning” performances

1955: Newell & Simon “Logic Theorist” proved 38 of the 52 theorems in the Principia
Mathematica (Russel and Whitehead), and even corrected a proof in it.
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Then came complexity theory

NP-hard problems (Cook-Levin, 1970s)

Some problems seems intrisically hard (for AIs at least)
Worst case asymptotic exponential time (P 6= NP)

n² × n² Sudoku

NP-complete, 9× 9: 1080

cases
1051 ages of the universe to
examine them all
Fast brute force will fail

Can be solved in milliseconds
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Logic

Logic From a well defined problem to a solution

We have a set of variables (Sudoku cells contain a number from 1 to 9)

We have a set of properties on these variables (all different rows, columns, super-cells)
We want to find an input that satisfies all properties (or prove none exists: refutation).
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Intuition

Intuition (DL) From examples to a classifier

We have a set of digital inputs (in Bn) and output (class: one bit).
We want a function that best predicts seen (and unseen) data in most cases.
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The modern world needs rigourous logic

Technological progress
Increasingly complex useful objects planes, computers, software, cars, AIs
That must be highly reliable (lives at stake)
We cannot fully get them under control anymore

Increasing system complexity

Hardware: Pentium FDIV bug (1994, 3.1 million transistors)
Software: the Therac-25 (radiation-therapy) kills 6 patients
Tesla cars: said to carry 100 millions lines of codes
Convolutional NN: may have billions of parameters





Propositional logic as an example (SAT)

SAT
1 A set of Boolean variables xi
2 A set of clauses (disjunction of variables or negation of) (¬x1 ∨ x7)
3 Must satisfy all clauses (or prove impossible)
4 Semantics: defines a function from Bn to B

Sudoku
1 cell (i, j) contains k xijk true
2 At least one number per cell i, j (xij1 ∨ . . . ∨ xij9)
3 At most one number per cell i, j (∀k > k ′¬xijk ∨ ¬xijk′ )
4 Cell (i, j) and (i, j ′) must be different (¬xijk ∨ ¬xij′k )
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SAT is the simplest

More sophisticated/practical function description

propositions over theories SAT Modulo Theory9

non Boolean variables Constraint Satisfaction, Constraint Programming30

numerical output Weighted MaxSAT25/CSP,5 Graphical models18
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What can we do with SAT, CP et al.?

NP-complete: can express all NP-complete problems

the logical puzzles you like (Sudoku, Nonograms…)
or not (configuration, scheduling, test pattern generation…)
robot planning
digital circuit verification (Bounded Model Checking)
or software verification (FOL, grounding, abstraction)

NP-complete, so intractable
Standard argument for less realistic problem reformulation, heuristics or stochastic search

Real SAT instances with millions of variables/clauses can be solved (with a proof)
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NP-complete: can express all NP-complete problems

the logical puzzles you like (Sudoku, Nonograms…)
or not (configuration, scheduling, test pattern generation…)
robot planning (Rosetta-Philae probe plan, CP, LAAS/Toulouse)

digital circuit verification (Bounded Model Checking)
or software verification (FOL, grounding, abstraction)

NP-complete, so intractable
Standard argument for less realistic problem reformulation, heuristics or stochastic search
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IBM Bounded Model Checking SAT instance (SATLIB)

p cnf 51639 368352
-1 7 0
-1 6 0
-1 5 0
-1 -4 0
-1 3 0
-1 2 0
-1 -8 0
-9 15 0
-9 14 0
-9 13 0
-9 -12 0
-9 11 0
-9 10 0
-9 -16 0

51, 639 variables, 368, 352
constraints
¬x1 ∨ x7
¬x1 ∨ x6
. . .



10 Pages later

185 -9 0
185 -1 0
177 169 161 153 145 137 129
121 113 105 97 89 81 73 65 57
49 41 33 25 17 9 1 -185 0
186 -187 0
186 -188 0
…

(x177 ∨ x169 ∨ x161 ∨ x153 ∨ · · · ∨
x17 ∨ x9 ∨ x1 ∨ ¬x185)



4,000 Pages later

10236 -10050 0
10236 -10051 0
10236 -10235 0
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018
10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029
10030 10031 10032 10033 10034 10035 10036 10037 10086 10087 10088
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099
10100 10101 10102 10103 10104 10105 10106 10107 10108 -55 -54 53 -52
-51 50 10047 10048 10049 10050 10051 10235 -10236 0
10237 -10008 0
10237 -10009 0
10237 -10010 0
…



Finally 15,000 Pages later

-7 260 0
7 -260 0
1072 1070 0
-15 -14 -13 -12 -11 -10 0
-15 -14 -13 -12 -11 10 0
-15 -14 -13 -12 11 -10 0
-15 -14 -13 -12 11 10 0
-7 -6 -5 -4 -3 -2 0
-7 -6 -5 -4 -3 2 0
-7 -6 -5 -4 3 -2 0
-7 -6 -5 -4 3 2 0
185 0

Search space

250,000 ≈ 3.1 1015,051

Solved in one second

How does it work?
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Logic: Do systematic simple logical deductions

Consensus/Resolution (1960’s)8,29

(x1 ∨
L︷ ︸︸ ︷

l1 ∨ · · · ∨ ln) (¬x1 ∨
R︷ ︸︸ ︷

r1 ∨ · · · ∨ rm)
(L ∨ R)

A clause is shortened by one litteral
This may create new unit clauses (propagation)
If the empty clause � appears: no solution
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Logic: Try to guess and reconsider (DPLL7)

SAT state-of-the-art in 1990
Hundreds of variables
Thousands of clauses



Logic: Learn from failure

Long line of research in “symbolic” Artificial Intelligence3,10,23,24,32

Trace back failure to guesses through propagationa

Do backward resolution from conflict
Add a new implied clause to the set of clauses

aRichard M Stallman and Gerald J Sussman. “Forward reasoning and dependency-directed backtracking in a system for
computer-aided circuit analysis”. In: Artificial intelligence 9.2 (1977), pp. 135–196.

Forces to reconsider an earlier guess
Prevents refailing for a related reason (safe generalization)

Learns a more effective formulation of the problem as it solves it



Intuition: Choose a variable and try to guess its value

Learning by “Activity based heuristics”26

On-line estimation of how often a variable is involved in recent clauses/failures
Try guessing this variable first

Learns weak spots in the problem as it is solved (safe)



Human intuition based on…

A lot of free data and free code…
International competitions (> 50, 000 benchmarks with many
real problems)
Open source solvers (autocatalytic)

Strong French presence

Award winning solvers (Glucose,2 toulbar215)
Constraint programming solver/startup (Choco)
Strong presence in international conferences (# of accepted papers in CP4)
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2017: proving an “alien” theorem?

A conjecture in combinatorics ∞
When one splits N in 2, one part must contain a Pythagorean triple (a2 = b2 + c2)

No known proof, puzzled mathematicians for decades (one offered a 100 $ reward)

SAT solver proof14,22

200TB proof, compressed to 86GB (stronger proof system)a

aOliver Kullmann. “The Science of Brute Force”. In: Communications of the ACM (2017).
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A finitized Gödelian flavor (K. Gödel, 1931)

Whether it’s maths or not… Size matters!
Not only there exists true unprovable statements (in
powerful enough consistent sets of axioms12)
There may be true provable statements we will never be
able to prove because of their extremely long proofs20



Is it bio-compatible?

Biology

Many discrete object ({A, T/U, G, C}, amino acids, genes, alleles, enzymes…)
Lots of experimental data



Is it bio-compatible?

Biology

Many discrete object ({A, T/U, G, C}, amino acids, genes, alleles, enzymes…)
Lots of experimental data

Exploiting Data + knowledge: Machine Learning

(Stochastic) models can be built from knowledge and data
And used to predict a “Most Likely/Optimal State” ⇒ easily NP-hard
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Proteins

Most active molecules of life
Sequence of “amino-acids”, each chosen among a set of 20 natural ones

Folding

→ → Fiber

Transporter, binder, regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…



Protein Design

Most active molecules of life
Sequence of “amino-acids”, each chosen among a set of 20 natural ones

Inverse folding

Fiber → →

Transporter, binder, regulator, motor, catalyst…
Hemoglobine, TAL effector, ATPase, dehydrogenases…



Why is it worth designing new proteins

Eco-friendly chemical/structural nano-agents

New catalysts for biomass transformation (biofuels, food and feed, cosmetics…),
New drugs for medicine
New components for nanotechnologies

20n sequences! intractable for experimental techniques

CPD: From bits to atoms From information to functional matter
mind blowing mass 3d printing-like capacities at atomic level (bacterias)
structural and functional purposes (powerful origami)
produced new folds,19 catalysts,31 nano-components36
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Protein Design as the inverse of folding

Ingredients

Full atom model of a protein backbone (assumed to be rigid)
Catalog of all 20 amino acids in different conformations (≈ 400 overall)
Full atom energy function (bonds, electrostatics, solvant, statistics…)
Maximum stability ≡ Minimum energy NP-hard28



Exact vs. Stochastic search

Large input (> 1GB) NP-hard problem
Toulbar2 is able to…

provide a proven minimum energy solution
exhaustively enumerate sequences close to it
in spaces of size > 10200

Showed that an highly tuned biased Monte Carlo increasingly fails to find the optimal sequencea

aDavid Simoncini et al. “Guaranteed Discrete Energy Optimization on Large Protein Design Problems”. In: Journal of Chemical
Theory and Computation 11.12 (2015), pp. 5980–5989. DOI: 10.1021/acs.jctc.5b00594.

https://doi.org/10.1021/acs.jctc.5b00594


Unbounded error

Asymptote: Size matters!
Asymptotic convergence can be arbitrarily slow…



From bits to atoms (TBS, col. A. Voet, KU Leuven, D. Simoncini, INRA/INSA)

C8 pseudo-symetric 2OVP symmetrized into a nano-component

Tako: (R)evolution + Rosetta/talaris14 8 fold

Ika: toulbar2 + talaris14 4 fold
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Assemble as 8-bladed propeller

Ika* more stable than Tako8

Temperature

Chemical denaturation



Final messages

Asymptotes: size matters

NP is not exactly as we tend to think
AIs have made drastic progress in their logical capacities
This progress also comes from (gradient-free) learning
More progress is needed to supplement our limited human capacities

Synergies between Logic and Intuition

Logic can analyze and exploit learnt models (not only Neural Nets)
Intuition can help logic without tainting it (guidance)



Thanks

AI/toulbar2

S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
H. Nguyen (PhD, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen)

Protein Design

A. Voet (KU Leuven)
D. Simoncini (INSA, Toulouse)
S. Barbe (INSA, Toulouse)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
RosettaCommons (U. Washington)
W. Sheffler (U. Washington)
PyRosetta (U. John Hopkins)
B. Donald (U. North Carolina)
K. Roberts (U. North Carolina)
T. Simonson (Polytechnique)
J. Cortes (LAAS/CNRS)
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Absolutely Reliable but…

We do not understand the sources of their efficiency

CDCL solvers have an expected polynomial O(nk) runtime on SAT instances whose primal
(Gaifman) graph has treewidth k .

Without ever trying to compute a treewidth/decomposition (NP hard).



Solving PSPACE problems ?

Go on a n × n goban is PSPACE-hard
PSPACE-hard to decide if there is a winning strategy
AlphaGo 0 does not solve 19× 19 Go
It plays better than humans (and that’s amazing!)







Intuition: Restart, forget useless stuff, speed by lazyness

Additional ingredients (patented for some)

(I) stops, restarts with a better understanding of the problem13

(I) forgets learnt information predicted as “useless” (Glue clauses2)
Lazy data structures26

Absolutely reliable combination of logic and intuition
but we don’t really understand why it can be so efficient1,16



Logical analysis of deep Neural Nets

Neural nets and safety critical settings
It doesn’t seem too hard to fool a standard Convolutional Neural Neta

aChristian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint arXiv:1312.6199 (2013).
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From deep Neural Nets to SAT

Binarized Deep NN: ±1 activations/weights6

Lin: affine transformation with learnt binary weights (float bias).
Bn: (Batch normalization) rescaling with learnt floats.
Bin: binarization using the Sign function.

A learnt block can be described as a SATa formula (SMT(LI)17 for ReLU)
aNina Narodytska et al. “Verifying properties of binarized deep neural networks”. In: arXiv preprint arXiv:1709.06662 (2017).
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Resistance to manipulation

Adversarial Robustness of a classifier
A positive test input cannot be slightly modified to change class

Certified robusteness by SAT
As a SAT formula: Neural Net + input + bounded perturbation + missclassification

MNIST dataset, 4 blocks BNN with 100 to 200 neurons per layer, L∞ norm
Millions of clauses: Glucose2 certifies (non) robustness for most input in < 5′ CPU time
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Deciphering genomic DNA



Segmenting genomic DNA



Segmenting genomic DNA



Deciphering genomic DNA with EuGene

Optimization + decomposable probability distribution (Semi-CRF)21

Derived from an actual human processor (S. Rumbauts, PhD)a

Discriminative learning (don’t try to model evidence!)
Optimizes an empirical loss function (performance on a testing set: quality is crucial)

aS Foissac et al. “Genome Annotation in Plants and Fungi: EuGène as a Model Platform”. In: Current Bioinformatics 3.2
(2008), pp. 87–97.

…

Prediction is in P
Main difficulty: collecting evidence, training and testing.


