How Computers Break (Serious) Puzzles with logic and (a different breed of) learning

Thomas Schiex

To cite this version:

Thomas Schiex. How Computers Break (Serious) Puzzles with logic and (a different breed of) learning. French Académie des sciences Symposium on " Machine Learning for Artificial Intelligence ", Feb 2018, Paris, France. hal-02786911

HAL Id: hal-02786911
 https://hal.inrae.fr/hal-02786911

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How Computers Break (Serious) Puzzles with logic and (a different breed of) learning

Thomas Schiex

February 2018
Académie des sciences, Paris, France

Human beings

- Easily rely on quick "intuitions" (ill-defined problems)
- Extreme rigor is painful and slow (logic/arithmetic)

Als (computers)

- Accessible to some "intuition" (problems defined by data)
- Fast and extreme rigor is the default (1 billion op./sec)

Human beings

- Easily rely on quick "intuitions" (ill-defined problems)
- Extreme rigor is painful and slow (logic/arithmetic)

Als (computers)

- Accessible to some "intuition" (problems defined by data)
- Fast and extreme rigor is the default (1 billion op./sec)

It was expected that machines would show superhuman "logical reasoning" performances

Human beings

- Easily rely on quick "intuitions" (ill-defined problems)
- Extreme rigor is painful and slow (logic/arithmetic)

Als (computers)

- Accessible to some "intuition" (problems defined by data)
- Fast and extreme rigor is the default (1 billion op./sec)

It was expected that machines would show superhuman "logical reasoning" performances

1955: Newell \& Simon "Logic Theorist" proved 38 of the 52 theorems in the Principia Mathematica (Russel and Whitehead), and even corrected a proof in it.

- Some problems seems intrisically hard (for Als at least)
- Worst case asymptotic exponential time ($\mathrm{P} \neq \mathrm{NP}$)

NP-hard problems

- Some problems seems intrisically hard (for Als at least)
- Worst case asymptotic exponential time ($\mathrm{P} \neq \mathrm{NP}$)

$n^{2} \times n^{2}$ Sudoku

- NP-complete, 9×9 : 10^{80} cases
- 10^{51} ages of the universe to examine them all
- Fast brute force will fail

							1	
					2			3
			4					
						5		
4		1	6					
		7	1					
	5					2		
				8			4	
	3		9	1				

NP-hard problems

- Some problems seems intrisically hard (for Als at least)
- Worst case asymptotic exponential time ($\mathrm{P} \neq \mathrm{NP}$)

$n^{2} \times n^{2}$ Sudoku

- NP-complete, 9×9 : 10^{80} cases
- 10^{51} ages of the universe to examine them all
- Fast brute force will fail

	E		1		6						D		7	7 F	F		G	в
B					7					A		1			9	D		4
A			2	2	c				1	в							E	
		7							G	F	2							3
	B				1												7	
	9	A				6				1	E					G	B	
		8		c					5		7						1	6
G						2	A		F			3		5	5			c
E		5		c					B									
	c				4				8	5	6							
		9			3	1		c		D		E						
	8	4			5			F	D	3		G	1	1			6	
		c				7	6	6						3		F		G
5				D	F				c			8				9		
	F	2							3			4						
		6										D				c		5

NP-hard problems

- Some problems seems intrisically hard (for Als at least)
- Worst case asymptotic exponential time ($\mathrm{P} \neq \mathrm{NP}$)
$n^{2} \times n^{2}$ Sudoku
- NP-complete, 9×9 : 10^{80} cases
- 10^{51} ages of the universe to examine them all
- Fast brute force will fail

B		A					L				c			M				1			H				
			G					A		\bigcirc		7	9	3		c				M				B	
N					1					4	P			6	A	E	F	G				c	D	3	
5		K											4		0	L		-		6					
c	H					D	F	G	N		B	E												9 P	P
7											6	4						H			2	1	F		
\square°			1		N	,	E	8				8		c^{7}	7	1		P		F			H	-	
2						K					J	1	P		6	N			A		8	3	M		
	F					6	c	7		3	0	\bigcirc	N		H				M		K	E	P		
		3				P						1	2	F		K		,					N		
\llcorner					k	c	9	N	E	6	H		A	8	M	3		8					2	7	
	N		3			B		M						D			P			\times					-
		5				1	-				9				3	A			,	2	6		L		
P						F			L			6						4		c		H		k	
1	8	G						2		5	4	L	J		к	1	6	c	B	-	E				9
		F						4		7		9	H							${ }^{8}$			c		
		c					1				N		F	k	-	7		-	G	3	1		9	E	
		P	A				H			L	E		1	${ }^{2}$						c	-				8
	9					8		c		E	L	M		${ }^{P}$					'	B	1	k			7
		B						0	6						c										
3														H	6		-	M	c	E			1	P	
						1		$\stackrel{1}{2}$		P	3		B										κ		
	c	8							-	J	G	A				9					3			4	
0						M				G	${ }^{8}$	2	5	9		H		1			A				
		H			\bigcirc	7		9				J			E				5				6		

NP-hard problems

- Some problems seems intrisically hard (for Als at least)
- Worst case asymptotic exponential time ($\mathrm{P} \neq \mathrm{NP}$)

$n^{2} \times n^{2}$ Sudoku

- NP-complete, 9×9 : 10^{80} cases
- 10^{51} ages of the universe to examine them all
- Fast brute force will fail
- Can be solved in milliseconds

							1	
					2			3
			4					
						5		
4		1	6					
		7	1					
	5					2		
				8			4	
	3		9	1				

Logic

- We have a set of variables

From a well defined problem to a solution (Sudoku cells contain a number from 1 to 9)
X_{1}
X_{2}
X_{3}
X_{4}
X_{5}
X_{6}

Logic

- We have a set of variables
- We have a set of properties on these variables (all different rows, columns, super-cells)

From a well defined problem to a solution (Sudoku cells contain a number from 1 to 9)

- We have a set of variables From a well defined problem to a solution
- We have a set of properties on these variables (all different rows, columns, super-cells)
- We want to find an input that satisfies all properties (or prove none exists: refutation).

Intuition (DL)

From examples to a classifier

- We have a set of digital inputs (in \mathbb{B}^{n}) and output (class: one bit).
- We want a function that best predicts seen (and unseen) data in most cases.

Intuition (DL)

From examples to a classifier

- We have a set of digital inputs (in \mathbb{B}^{n}) and output (class: one bit).
- We want a function that best predicts seen (and unseen) data in most cases.

Technological progress

- Increasingly complex useful objects
planes, computers, software, cars, Als
- That must be highly reliable (lives at stake)
- We cannot fully get them under control anymore

Increasing system complexity

- Hardware: Pentium FDIV bug (1994, 3.1 million transistors)
- Software: the Therac-25 (radiation-therapy) kills 6 patients
- Tesla cars: said to carry 100 millions lines of codes
- Convolutional NN: may have billions of parameters

MA

SAT

(1) A set of Boolean variables
(2) A set of clauses (disjunction of variables or negation of)
(3) Must satisfy all clauses (or prove impossible)
(9) Semantics: defines a function from \mathbb{B}^{n} to \mathbb{B}

SAT

(1) A set of Boolean variables
(2) A set of clauses (disjunction of variables or negation of)
(3) Must satisfy all clauses (or prove impossible)
(a) Semantics: defines a function from \mathbb{B}^{n} to \mathbb{B}

Sudoku

(1) cell (i, j) contains k
(2) At least one number per cell i, j
(3) At most one number per cell i, j
(1) Cell (i, j) and $\left(i, j^{\prime}\right)$ must be different

$$
\begin{array}{r}
x_{i j k} \text { true } \\
\left(x_{i j 1} \vee \ldots \vee x_{i j 9}\right) \\
\left(\forall k>k^{\prime} \neg x_{i j k} \vee \neg \neg x_{i j k^{\prime}}\right) \\
\left(\neg x_{i j k} \vee \neg x_{i j^{\prime} k}\right)
\end{array}
$$

More sophisticated/practical function description

- propositions over theories
- non Boolean variables
- numerical output

SAT Modulo Theory ${ }^{9}$
Constraint Satisfaction, Constraint Programming ${ }^{30}$ Weighted MaxSAT ${ }^{25} /$ CSP, 5 Graphical models ${ }^{18}$

More sophisticated/practical function description

- propositions over theories

SAT Modulo Theory ${ }^{9}$

- non Boolean variables

Constraint Satisfaction, Constraint Programming ${ }^{30}$

- numerical output

NP-complete: can express all NP-complete problems

- the logical puzzles you like (Sudoku, Nonograms...)
- or not (configuration, scheduling, test pattern generation...)
- robot planning
- digital circuit verification (Bounded Model Checking)
- or software verification (FOL, grounding, abstraction)

NP-complete: can express all NP-complete problems

- the logical puzzles you like (Sudoku, Nonograms...)
- or not (configuration, scheduling, test pattern generation...)
- robot planning
- digital circuit verification (Bounded Model Checking)
- or software verification (FOL, grounding, abstraction)

NP-complete, so intractable

Standard argument for less realistic problem reformulation, heuristics or stochastic search

NP-complete: can express all NP-complete problems

- the logical puzzles you like (Sudoku, Nonograms...)
- or not (configuration, scheduling, test pattern generation...) SIEMENS thALES
- robot planning (Rosetta-Philae probe plan, CP, LAAS/Toulouse) decnes
- digital circuit verification (Bounded Model Checking)
- or software verification (FOL, grounding, abstraction)

NP-complete, so intractable

Standard argument for less realistic problem reformulation, heuristics or stochastic search

Real SAT instances with millions of variables/clauses can be solved (with a proof)

$$
\begin{array}{llll}
p & \text { cnf } & 51639 & 368352 \\
-1 & 7 & 0 & \\
-1 & 6 & 0 & \\
-1 & 5 & 0 & \\
-1 & -4 & 0 & \\
-1 & 3 & 0 & \\
-1 & 2 & 0 & \\
-1 & -8 & 0 & \\
-9 & 15 & 0 & \\
-9 & 14 & 0 & \\
-9 & 13 & 0 & \\
-9 & -12 & 0 & \\
-9 & 11 & 0 & \\
-9 & 10 & 0 & \\
-9 & -16 & 0
\end{array}
$$

51,639 variables, 368,352 constraints

$\neg x_{1} \vee x_{7}$

$\neg x_{1} \vee x_{6}$

```
185 -9 0
185-1 0
```



```
121 113 105 97 89 81 73 65 57
49 41 33 25 17 9 1 -185 0
186 -187 0
186 -188 0
```

$$
\begin{aligned}
& \left(x_{177} \vee x_{169} \vee x_{161} \vee x_{153} \vee \cdots \vee\right. \\
& \left.x_{17} \vee x_{9} \vee x_{1} \vee \neg x_{185}\right)
\end{aligned}
$$

4,000 Pages later

```
10236 -10050 0
10236 -10051 0
10236 -10235 0
1000810009 10010 10011 10012 10013 10014 10015 10016 10017 10018
10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029
10030 10031 10032 10033 10034 10035 10036 10037 10086 10087 10088
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099
10100 10101 10102 10103 10104 10105 10106 10107 10108 -55 -54 53 -52
-51 50 10047 10048 10049 10050 10051 10235 -10236 0
10237-10008 0
10237 -10009 0
10237 -10010 0
```

$$
\begin{array}{llllllll}
-7 & 260 & 0 & \\
7 & -260 & 0 & & & & & \\
1072 & 1070 & 0 & & & & & \\
-15 & -14 & -13 & -12 & -11 & -10 & 0 \\
-15 & -14 & -13 & -12 & -11 & 10 & 0 \\
-15 & -14 & -13 & -12 & 11 & -10 & 0 \\
-15 & -14 & -13 & -12 & 11 & 10 & 0 & \\
-7 & -6 & -5 & -4 & -3 & -2 & 0 & \\
-7 & -6 & -5 & -4 & -3 & 2 & 0 & \\
-7 & -6 & -5 & -4 & 3 & -2 & 0 & \\
-7 & -6 & -5 & -4 & 3 & 2 & 0 & \\
-7 & &
\end{array}
$$

$$
1850
$$

$$
\begin{array}{lllllllll}
-7 & 260 & 0 & \\
7 & -260 & 0 \\
1072 & 1070 & 0 & & & & & & \\
-15 & -14 & -13 & -12 & -11 & -10 & 0 \\
-15 & -14 & -13 & -12 & -11 & 10 & 0 \\
-15 & -14 & -13 & -12 & 11 & -10 & 0 \\
-15 & -14 & -13 & -12 & 11 & 10 & 0 & \\
-7 & -6 & -5 & -4 & -3 & -2 & 0 & & \\
-7 & -6 & -5 & -4 & -3 & 2 & 0 & & \\
-7 & -6 & -5 & -4 & 3 & -2 & 0 & & \\
-7 & -6 & -5 & -4 & 3 & 2 & 0 & & \\
185 & 0 & & & & & &
\end{array}
$$

$$
\begin{aligned}
& \text {-7 } 2600 \\
& 7 \text {-260 } 0 \\
& 107210700 \\
& \text {-15 }-14-13-12-11-100 \\
& -15-14-13-12-11100 \\
& -15-14-13-1211-100 \\
& \text {-15 -14 -13 -12 } 11100 \\
& \text {-7 }-6 \text {-5 }-4 \text {-3 }-20 \\
& -7-6-5-4-320 \\
& -7-6-5-43-20 \\
& -7-6-5-4320 \\
& 1850
\end{aligned}
$$

$$
\begin{aligned}
& \text { Search space } \\
& 2^{50,000} \approx 3.110^{15,051}
\end{aligned}
$$

$$
\begin{aligned}
& \text {-7 } 2600 \\
& 7 \text {-260 } 0 \\
& 107210700 \\
& \text {-15 }-14-13-12-11400 \\
& -15-14-13-12-11100 \\
& -15-14-13-1211-100 \\
& \text {-15 -14 -13 -12 } 11100 \\
& \begin{array}{llllll}
-7 & -6 & -5 & -4 & -3 & -2
\end{array} 0 \\
& -7-6-5-4-320 \\
& -7-6-5-43-20 \\
& -7-6-5-4320 \\
& 1850
\end{aligned}
$$

$$
\begin{aligned}
& \text { Search space } \\
& 2^{50,000} \approx 3.110^{15,051}
\end{aligned}
$$

Solved in one second

How does it work?

Consensus/Resolution (1960's) ${ }^{8.29}$

$$
\frac{(x_{1} \vee \overbrace{I_{1} \vee \cdots \vee I_{n}})(\neg x_{1} \vee \overbrace{r_{1} \vee \cdots \vee r_{m}}^{R})}{(L \vee R)}
$$

Boolean Constraint Propagation (BCP): unit clauses ${ }^{7}$

$$
\frac{\left(x_{1}\right) \quad(\neg x_{1} \vee \overbrace{r_{1} \vee \cdots \vee r_{m}}^{R})}{(R)}
$$

Boolean Constraint Propagation (BCP): unit clauses ${ }^{7}$

$$
\frac{\left(x_{1}\right) \quad(\neg x_{1} \vee \overbrace{1} \vee \cdots \vee r_{m})}{R}
$$

- A clause is shortened by one litteral

Boolean Constraint Propagation (BCP): unit clauses ${ }^{7}$

$$
\frac{\left(x_{1}\right)(\neg x_{1} \vee \overbrace{r_{1} \vee \cdots \vee r_{m}}^{R}}{(R)}
$$

- A clause is shortened by one litteral
- This may create new unit clauses (propagation)

Boolean Constraint Propagation (BCP): unit clauses ${ }^{7}$

$$
\frac{\left(x_{1}\right)(\neg x_{1} \vee \overbrace{r_{1} \vee \cdots \vee r_{m}}^{R}}{(R)}
$$

- A clause is shortened by one litteral
- This may create new unit clauses (propagation)
- If the empty clause \square appears: no solution

SAT state-of-the-art in 1990
Hundreds of variables
Thousands of clauses

Long line of research in "symbolic" Artificial Intelligence ${ }^{3,10,23,24,32}$

- Trace back failure to guesses through propagation ${ }^{a}$
- Do backward resolution from conflict
- Add a new implied clause to the set of clauses

[^0]- Forces to reconsider an earlier guess
- Prevents refailing for a related reason

Learns a more effective formulation of the problem as it solves it

Learning by "Activity based heuristics"26

- On-line estimation of how often a variable is involved in recent clauses/failures
- Try guessing this variable first

Learns weak spots in the problem as it is solved

A lot of free data and free code...

- International competitions ($>50,000$ benchmarks with many real problems)
- Open source solvers (autocatalytic)

A lot of free data and free code...

- International competitions ($>50,000$ benchmarks with many real problems)
- Open source solvers (autocatalytic)

Strong French presence

- Award winning solvers
(Glucose, ${ }^{2}$ toulbar2 ${ }^{15}$)
- Constraint programming solver/startup
- Strong presence in international conferences

2017: proving an "alien" theorem?

A conjecture in combinatorics
When one splits \mathbb{N} in 2 , one part must contain a Pythagorean triple

$$
\left(a^{2}=b^{2}+c^{2}\right)
$$

A conjecture in combinatorics

When one splits \mathbb{N} in 2 , one part must contain a Pythagorean triple

$$
\left(a^{2}=b^{2}+c^{2}\right)
$$

No known proof, puzzled mathematicians for decades (one offered a $100 \$$ reward)

A conjecture in combinatorics

When one splits \mathbb{N} in 2 , one part must contain a Pythagorean triple

$$
\left(a^{2}=b^{2}+c^{2}\right)
$$

No known proof, puzzled mathematicians for decades (one offered a $100 \$$ reward)

```
SAT solver proofl4,22
200TB proof, compressed to 86GB (stronger proof system) }\mp@subsup{}{}{a
```

[^1]- Not only there exists true unprovable statements (in powerful enough consistent sets of axioms ${ }^{12}$)
- There may be true provable statements we will never be able to prove because of their extremely long proofs ${ }^{20}$

Is it bio-compatible?

Biology

- Many discrete object ($\{A, T / U, G, C\}$, amino acids, genes, alleles, enzymes...)
- Lots of experimental data

Is it bio-compatible?

Biology

- Many discrete object ($\{A, T / U, G, C\}$, amino acids, genes, alleles, enzymes...)
- Lots of experimental data

Exploiting Data + knowledge: Machine Learning

- (Stochastic) models can be built from knowledge and data
- And used to predict a "Most Likely/Optimal State" $\quad \Rightarrow$ easily NP-hard

Biology

- Many discrete object ($\{A, T / U, G, C\}$, amino acids, genes, alleles, enzymes...)
- Lots of experimental data

Most active molecules of life
Sequence of "amino-acids", each chosen among a set of 20 natural ones

Folding

Transporter, binder, regulator, motor, catalyst... Hemoglobine, TAL effector, ATPase, dehydrogenases...

Protein Design

Most active molecules of life
Sequence of "amino-acids", each chosen among a set of 20 natural ones

Inverse folding

Fiber

Transporter, binder, regulator, motor, catalyst... Hemoglobine, TAL effector, ATPase, dehydrogenases...

Eco-friendly chemical/structural nano-agents

- New catalysts for biomass transformation (biofuels, food and feed, cosmetics...),
- New drugs for medicine
- New components for nanotechnologies

Eco-friendly chemical/structural nano-agents

- New catalysts for biomass transformation (biofuels, food and feed, cosmetics...),
- New drugs for medicine
- New components for nanotechnologies

Eco-friendly chemical/structural nano-agents

- New catalysts for biomass transformation (biofuels, food and feed, cosmetics...),
- New drugs for medicine
- New components for nanotechnologies
20^{n} sequences!
intractable for experimental techniques

CPD: From bits to atoms
From information to functional matter

- mind blowing mass 3d printing-like capacities at atomic level (bacterias)
- structural and functional purposes (powerful origami)
- produced new folds, ${ }^{19}$ catalysts, ${ }^{31}$ nano-components ${ }^{36}$

Ingredients

- Full atom model of a protein backbone
(assumed to be rigid) (≈ 400 overall)
- Catalog of all 20 amino acids in different conformations
- Full atom energy function
- Maximum stability \equiv Minimum energy
(bonds, electrostatics, solvant, statistics...)
NP-hard ${ }^{28}$

Large input (> 1GB)
NP-hard problem
Toulbar2 is able to...

- provide a proven minimum energy solution
- exhaustively enumerate sequences close to it
- in spaces of size $>10^{200}$

COMPUTATIONAL CHEMISTRY

Showed that an highly tuned biased Monte Carlo increasingly fails to find the optimal sequence ${ }^{a}$

[^2]

Asymptote: Size matters!
Asymptotic convergence can be arbitrarily slow...

C8 pseudo-symetric 20VP symmetrized into a nano-component

C8 pseudo-symetric 20VP symmetrized into a nano-component

- Tako: (R)evolution + Rosetta/talaris14

C8 pseudo-symetric 20VP symmetrized into a nano-component

\square
Ika: toulbar2 + talaris14

- Tako: (R)evolution + Rosetta/talaris14 4 fold

Tako

lka

C8 pseudo-symetric 20VP symmetrized into a nano-component

-
 Ika: toulbar2 + talaris14
 4 fold

Assemble as 8-bladed propeller

- Ika* more stable than Tako8
- Temperature
- Chemical denaturation

Asymptotes: size matters

NP is not exactly as we tend to think

- Als have made drastic progress in their logical capacities
- This progress also comes from (gradient-free) learning
- More progress is needed to supplement our limited human capacities

Synergies between Logic and Intuition

- Logic can analyze and exploit learnt models
- Intuition can help logic without tainting it
(not only Neural Nets) (guidance)

```
Al/toulbar2
S. de Givry (INRA)
G. Katsirelos (INRA)
M. Zytnicki (PhD, INRA)
D. Allouche (INRA)
H. Nguyen (PhD, INRA)
M. Cooper (IRIT, Toulouse)
J. Larrosa (UPC, Spain)
F. Heras (UPC, Spain)
M. Sanchez (Spain)
E. Rollon (UPC, Spain)
P. Meseguer (CSIC, Spain)
G. Verfaillie (ONERA, ret.)
JH. Lee (CU. Hong Kong)
C. Bessiere (LIMM, Montpellier)
JP. Métivier (GREYC, Caen)
S. Loudni (GREYC, Caen)
M. Fontaine (GREYC, Caen)
```

Protein Design
A. Voet (KU Leuven)
D. Simoncini (INSA, Toulouse)
S. Barbe (INSA, Toulouse)
S. Traoré (PhD, CEA)
C. Viricel (PhD)
RosettaCommons (U. Washington)
W. Sheffler (U. Washington)
PyRosetta (U. John Hopkins)
B. Donald (U. North Carolina)
K. Roberts (U. North Carolina)
T. Simonson (Polytechnique)
J. Cortes (LAAS/CNRS)

[1] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. "Clause-learning algorithms with many restarts and bounded-width resolution". In: Journal of Artificial Intelligence Research 40 (2011), pp. 353-373.
[2] Gilles Audemard and Laurent Simon. "Predicting Learnt Clauses Quality in Modern SAT Solvers.". In: International Joint Conference in Al. Vol. 9. 2009, pp. 399-404.
[3] Maurice Bruynooghe and Luis Moniz Pereira. "Deduction revision by intelligent backtracking". In: (1984).
[4] Association for Constraint Programming. Publication statistics in CP per country every year. URL http://www.a4cp.org/cparchive/countries_by_year.
[5] Martin C Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174.7 (2010), pp. 449-478.
[6] Matthieu Courbariaux et al. "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1". In: arXiv preprint arXiv:1602.02830 (2016).
[7] Martin Davis, George Logemann, and Donald Loveland. "A machine program for theorem-proving". In: Communications of the ACM 5.7 (1962), pp. 394-397.
[8] Martin Davis and Hilary Putnam. "A computing procedure for quantification theory". In: Journal of the ACM (JACM) 7.3 (1960), pp. 201-215.
[9] Leonardo De Moura and Nikolaj Bjørner. "Satisfiability modulo theories: introduction and applications". In: Communications of the ACM 54.9 (2011), pp. 69-77.
[10] Rina Dechter. "Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition". In: Artificial Intelligence 41.3 (1990), pp. 273-312.
[11] S Foissac et al. "Genome Annotation in Plants and Fungi: EuGène as a Model Platform". In: Current Bioinformatics 3.2 (2008), Pp. 87-97.
[12] Kurt Gödel. "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". In: Monatshefte für mathematik und physik 38.1 (1931), pp. 173-198.
[13] Carla P Gomes, Bart Selman, Henry Kautz, et al. "Boosting combinatorial search through randomization". In: AAA///AA/ 98 (1998), pp. 431-437.
[14] Marijn JH Heule, Oliver Kullmann, and Victor W Marek. "Solving and verifying the boolean pythagorean triples problem via cube-and-conquer". In: International Conference on Theory and Applications of Satisfiability Testing. Springer. 2016, pp. 228-245.
[15] Barry Hurley et al. "Multi-language evaluation of exact solvers in graphical model discrete optimization". In: Constraints (2016), pp. 1-22.
[16] Peter Jeavons and Justyna Petke. "Local consistency and SAT-solvers". In: Journal of Artificial Intelligence Research 43 (2012), pp. 329-351.
[17] Guy Katz et al. "Reluplex: An efficient SMT solver for verifying deep neural networks". In: International Conference on Computer Aided Verification. Springer. 2017, pp. 97-117.
[18] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[19] Brian Kuhlman et al. "Design of a novel globular protein fold with atomic-level accuracy". In: science 302.5649 (2003), pp. 1364-1368.
[20] Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).
[21] John Lafferty, Andrew McCallum, and Fernando CN Pereira. "Conditional random fields: Probabilistic models for segmenting and labeling sequence data". In: Proc. of the $18^{t} h$ International Conference on Machine Learning (ICML). 2001.
[22] Evelyn Lamb. "Maths proof smashes size record: supercomputer produces a 200 -terabyte proof-but is it really mathematics?" In: Nature 534.7605 (2016), pp. 17-19.
[23] João P Marques-Silva and Karem A Sakallah. "GRASP: A search algorithm for propositional satisfiability". In: IEEE Transactions on Computers 48.5 (1999), pp. 506-521.
[24] David A McAllester. An Outlook on Truth Maintenance. Tech. rep. Massachusetts Inst Of Tech, Cambridge, Artificial Intelligence Lab., 1980.
[25] Antonio Morgado et al. "Iterative and core-guided MaxSAT solving: A survey and assessment". In: Constraints 18.4 (2013), pp. 478-534.
[26] Matthew W Moskewicz et al. "Chaff: Engineering an efficient SAT solver". In: Proceedings of the 38th annual Design Automation Conference. ACM. 2001, pp. 530-535.
[27] Nina Narodytska et al. "Verifying properties of binarized deep neural networks". In: arXiv preprint arXiv:1709.06662 (2017).
[28] Niles A Pierce and Erik Winfree. "Protein design is NP-hard". In: Protein engineering 15.10 (2002), pp. 779-782.
[29] John Alan Robinson. "A machine-oriented logic based on the resolution principle". In: Journal of the ACM (JACM) 12.1 (1965), pp. 23-41.
[30] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Elsevier, 2006.
[31] Daniela Röthlisberger et al. "Kemp elimination catalysts by computational enzyme design". In: Nature 453.7192 (2008), p. 190.
[32] Thomas Schiex and Gérard Verfaillie. "Nogood recording for static and dynamic constraint satisfaction problems". In: International Journal on Artificial Intelligence Tools 3.02 (1994), pp. 187-207.
[33] David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs. jctc.5b00594.
[34] Richard M Stallman and Gerald J Sussman. "Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis". In: Artificial intelligence 9.2 (1977), pp. 135-196.
[35] Christian Szegedy et al. "Intriguing properties of neural networks". In: arXiv preprint arXiv:1312.6199 (2013).
[36] Arnout RD Voet et al. "Computational design of a self-assembling symmetrical β-propeller protein". In: Proceedings of the National Academy of Sciences 111.42 (2014), pp. 15102-15107.

We do not understand the sources of their efficiency

CDCL solvers have an expected polynomial $O\left(n^{k}\right)$ runtime on SAT instances whose primal (Gaifman) graph has treewidth k.

Without ever trying to compute a treewidth/decomposition (NP hard).

Solving PSPACE problems ?

Go on a $n \times n$ goban is PSPACE-hard

- PSPACE-hard to decide if there is a winning strategy
- AlphaGo 0 does not solve 19×19 Go
- It plays better than humans (and that's amazing!)

Additional ingredients (patented for some)

(I) stops, restarts with a better understanding of the problem ${ }^{13}$
(I) forgets learnt information predicted as "useless" (Glue clauses ${ }^{2}$)

- Lazy data structures ${ }^{26}$
- Absolutely reliable combination of logic and intuition
- but we don't really understand why it can be so efficient ${ }^{1,16}$

Neural nets and safety critical settings

It doesn't seem too hard to fool a standard Convolutional Neural Net ${ }^{a}$

[^3]

Logical analysis of deep Neural Nets

Neural nets and safety critical settings
It doesn't seem too hard to fool a standard Convolutional Neural Net ${ }^{a}$

[^4]

Logical analysis of deep Neural Nets

Neural nets and safety critical settings
It doesn't seem too hard to fool a standard Convolutional Neural Net ${ }^{a}$
${ }^{a}$ Christian Szegedy et al. "Intriguing properties of neural networks". In: arXiv preprint arXiv:1312.6199 (2013).

Binarized Deep NN: ± 1 activations/weights ${ }^{6}$

- Lin: affine transformation with learnt binary weights (float bias).
- Bn: (Batch normalization) rescaling with learnt floats.
- Bin: binarization using the Sign function.

Binarized Deep NN: ± 1 activations/weights ${ }^{6}$

- Lin: affine transformation with learnt binary weights (float bias).
- Bn: (Batch normalization) rescaling with learnt floats.
- Bin: binarization using the Sign function.

A learnt block can be described as a SAT ${ }^{a}$ formula

Adversarial Robustness of a classifier
A positive test input cannot be slightly modified to change class

Adversarial Robustness of a classifier
A positive test input cannot be slightly modified to change class

Certified robusteness by SAT

As a SAT formula: Neural Net + input + bounded perturbation + missclassification

Resistance to manipulation

Adversarial Robustness of a classifier

A positive test input cannot be slightly modified to change class

Certified robusteness by SAT

As a SAT formula: Neural Net + input + bounded perturbation + missclassification

- MNIST dataset, 4 blocks BNN with 100 to 200 neurons per layer, L_{∞} norm
- Millions of clauses: Glucose ${ }^{2}$ certifies (non) robustness for most input in $<5^{\prime}$ CPU time

Deciphering genomic DNA

DNA

GENE 2
GENE 3

Similarities

Sequence stats
Site predictors
RNA-Seq Markov chains

SVM
\%Rfam UniProt

Optimization + decomposable probability distribution

- Derived from an actual human processor (S. Rumbauts, PhD$)^{a}$
- Discriminative learning (don't try to model evidence!)
- Optimizes an empirical loss function (performance on a testing set: quality is crucial)

[^5]

[^6]
[^0]: ${ }^{a}$ Richard M Stallman and Gerald J Sussman. "Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis". In: Artificial intelligence 9.2 (1977), pp. 135-196.

[^1]: ${ }^{\text {a }}$ Oliver Kullmann. "The Science of Brute Force". In: Communications of the ACM (2017).

[^2]: ${ }^{a}$ David Simoncini et al. "Guaranteed Discrete Energy Optimization on Large Protein Design Problems". In: Journal of Chemical Theory and Computation 11.12 (2015), pp. 5980-5989. DOI: 10.1021/acs. jctc.5b00594.

[^3]: ${ }^{a}$ Christian Szegedy et al. "Intriguing properties of neural networks". In: arXiv preprint arXiv:1312.6199 (2013).

[^4]: ${ }^{a}$ Christian Szegedy et al. "Intriguing properties of neural networks". In: arXiv preprint arXiv:1312.6199 (2013).

[^5]: ${ }^{\text {as }}$ Foissac et al. "Genome Annotation in Plants and Fungi: EuGène as a Model Platform". In: Current Bioinformatics 3.2 (2008), pp. 87-97.

[^6]: Prediction is in P
 Main difficulty: collecting evidence, training and testing.

