Development of a protocol based on linear programming
to assess the amount of free sugars in processed foods in France
Romane Poinsot ${ }^{1,2}$, Marine Oseredczuk ${ }^{3}$, Lucile Royer ${ }^{4}$, Florent Vieux ${ }^{1}$, Nicole Darmon ${ }^{2}$, Matthieu Maillot ${ }^{1}$
${ }^{1}$ MS-Nutrition, Marseille, France / ${ }^{2}$ MOISA, INRA, CIHEAM-IAMM, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
${ }^{3}$ French Agency for Food, Environmental and Occupational Health Safety (ANSES), Paris, France / ${ }^{4}$ Regional Centre for Innovation and Technology Transfer (CRITT), La Rochelle, France

INTRODUCTION

WHO recommends a free sugars intake lower than 10% of total energy intake

BUT
Free sugars are not available in nutritional composition database neither on food label.

OBJECTIVE

To develop and test a protocol using linear programming (LP) to estimate free sugars content in a batch of products.

Free sugars are defined as monosaccharide and disaccharide, regardless of sweetening powers, added to food and also total sugars naturally occurring in honey, syrups, fruit juices and fruit juices from concentrate.

MATERIALS AND METHODS

Selection in OQALI database of 3 different products per food item that have the lowest, median and highest amount of total sugars (+ 2 for nectar containing banana puree or glucose syrup).

$=26$ different products

+ 1 additional product, whose yield factor and all ingredients amounts were known.

Extraction of nutrition and ingredients information :
1 Ingredients list as indicated on the label
Ingredients : orange juice from concentrate (65\%), water sugar citric acid

2 Nutrition facts label (NFL)

3 A database of all ingredients nutritional composition: energy, proteins, fats, carbohydrates,
total sugars, salt, free sugars (estimated using Louie et al. method)

PROTOCOL applied to each product to assess free sugar content

Linear programming models

Variables : amounts of each ingredient

Constraints:

- Sum of ingredients $=100 \mathrm{~g}$
- Amount of ingredient (when known) set to the labeled value
- Ingredients order conserved
- Total sugars set to the labelled value

Objective function : Minimize deviation from NFL (i.e. nutritional deviation)
$\rightarrow \mathbf{4}$ different LP models varying according to the way to express the nutritional deviation

RESULTS

For 2 products,

- The 4 LP models were unfeasible due to uncertainties in NFL or in nutrient compositions for ingredients or due to non-inclusion of manufacturing processes.

Biscuit topped with strawberry 53 g of total sugars (median)
«petit-beurre» biscuit 22 g of total sugars (median)

For 24 products,

- The 4 models resulted in similar ingredients amounts and free sugars content

For the additional product,

- Amount of free sugars calculated with known ingredients amounts and yield factor (0.92) $=27.5 \mathrm{~g} / 100 \mathrm{~g}$
- Average free sugars content estimated from the $\mathbf{4}$ models $=\mathbf{2 7 . 1} \mathrm{g}$
estimation of free sugars content is close to the calculated value

Figure 1 : Average free sugars content among 24 products, in $\mathrm{g} / 100 \mathrm{~g}$

This protocol, fast when nutritional content of ingredient is available and easily reproducible seems to provide an acceptable free sugars estimation, but further work might be needed to improve models and validate the approach.

