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We study the evolution of gene frequencies in a spatially distributed population when the dispersal of individuals is not uniform in space. We adapt the spatial Λ-Fleming-Viot process to this setting and consider that individuals spread their offspring farther from themselves at each generation in one halfspace than in the other. We study the large scale behaviour of this process and show that the motion of ancestral lineages is asymptotically close to a family of skew Brownian motions which coalesce upon meeting in one dimension, but never meet in higher dimension. This leads to a generalization of a result due to Nagylaki on the scaling limits of the gene frequencies: the non-uniform dispersal causes a discontinuity in the slope of the gene frequencies but the gene frequencies themselves are continuous across the interface.

Introduction

Landscape genetics studies the influence of geographical features of the environment on evolutionary processes and on the genetic composition of populations. Habitat fragmentation and ecological interfaces play a significant role in this field [START_REF] Manel | Ten years of landscape genetics[END_REF]. Scientists strive to detect, map and quantify the long term effects on genetic diversity of spatial heterogeneities by observing the genetic patterns that they have produced through evolution [START_REF] Slatkin | Gene flow and the geographic structure of natural populations[END_REF]. For example, genetic differentiation between two subpopulations separated by a physical obstacle can be used to measure the reduction in gene flow caused by the obstacle [SQH + 03, RPS + 06, GCR + 07].

Our focus in this work is the special case in which individuals spread their offspring farther from themselves in some parts of space than in others. By comparing the genomes of individuals and the frequencies of different genetic types (called alleles) at different locations, one tries to infer the strength of dispersal (or gene flow ) in these regions and to measure the effect of the interface.

Simple models for the evolution of gene frequencies are then required which can be fitted to field data with reasonable computational power. That is why mathematicians in the field of population genetics establish large scale approximations of microscopic models which take into account the interaction between geographical features and evolutionary forces [START_REF] Malécot | Les Mathématiques de l'Hérédité[END_REF][START_REF] Kimura | The stepping stone model of population structure and the decrease of genetic correlation with distance[END_REF][START_REF] Barton | Neutral evolution in spatially continuous populations[END_REF].

Nagylaki [START_REF] Nagylaki | Clines with Variable Migration[END_REF] studied the effect of a discontinuity in the migration rate in the linear stepping stone model. He considered colonies located at the points k/ √ n, k ∈ Z, which evolve in discrete generations spanning 1/n units of time. At each generation, adjacent colonies to the left of the origin exchange a proportion m/2 of migrants while adjacent colonies to the right exchange a proportion v 2 m/2, as depicted in Figure 1.
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Figure 1: Discrete model with a discontinuity in the migration rate

Letting n → ∞ and considering that the number of individuals in each colony is so large that genetic drift (i.e. fluctuations due to random sampling of individuals at each generation) can be ignored, Nagylaki showed that the proportion of individuals of a given type at location x ∈ R at time t ≥ 0, denoted by p(t, x), is well approximated by the solution to the following equation

       ∂p ∂t (t, x) = m 2 ∂ 2 p ∂x 2 (t, x) if x < 0 ∂p ∂t (t, x) = v 2 m 2
∂ 2 p ∂x 2 (t, x) if x > 0 and, for t > 0, p(t, 0 + ) = p(t, 0 -), ∂p ∂x (t, 0 -) = v 2 ∂p ∂x (t, 0 + ).

In words, allele frequencies must be continuous at zero but their first spatial derivative has a discontinuity which is given as a simple function of the ratio of the migration rates on each side of the habitat (see Figure 4). He extended this result [START_REF] Nagylaki | The influence of spatial inhomogeneities on neutral models of geographical variation. II. The semi-infinite linear habitat[END_REF] to the probability of identity by descent, i.e. the probability that two uniformly sampled individuals have inherited the same allele from a common ancestor and no mutation has ocurred at this locus in either lineage, as a function of the distance between the sampling locations. Nagylaki found similar conditions for the first derivative of the probability of identity as for the allele frequencies. Along with Ayati and Dupont [START_REF] Bruce P Ayati | The Influence of Spatial Inhomogeneities on Neutral Models of Geographical Variation IV. Discontinuities in the Population Density and Migration Rate[END_REF], he further investigated the qualitative properties of the probability of identity in this setting and provided numerical approximations.

In parallel to these developments, a diffusion process has been introduced [IM63, Wal78, HS81] and used to study diffusion in physical systems presenting an interface between different media [ABT + 11]. The so-called skew Brownian motion with parameter α ∈ [0, 1] can be described as an R-valued stochastic process which performs Brownian excursions from the origin, positive with probability α and negative with probability 1α. See [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] for a review of the definition and properties of skew Brownian motion.

In this paper, we study the genealogy of a sample of individuals in the presence of heterogeneous dispersal. This genealogy is described by a system of ancestral lineages which at time t correspond to the positions of the ancestors of the sample t generations in the past. We find that, in the diffusion limit, those ancestral lineages follow skew Brownian motions with different diffusion coefficients on each side of the interface (Proposition 4.1 below). The genealogy of a sample of individuals is then given by a system of skew Brownian motions which coalesce upon meeting in one dimension but never coalesce in higher dimensions (Theorem 2). As a consequence, allele frequencies follow a deterministic partial differential equation in dimensions two and higher while in one dimension, patches of different types form and evolve randomly (Theorem 1). Our method allows for more general assumptions on the microscopic model than [START_REF] Nagylaki | Clines with Variable Migration[END_REF][START_REF] Nagylaki | The influence of spatial inhomogeneities on neutral models of geographical variation. I. Formulation[END_REF] (e.g. continuous spatial structure and non-nearest neighbour migration).

Figure 2: Size of reproduction events

The size of the region affected by a reproduction event depends on the halfspace in which its centre falls (x 1 > 0 or x 1 < 0).

We use the spatial Λ-Fleming-Viot process framework introduced in [BEV10] and [START_REF] Etheridge | Drift, draft and structure: Some mathematical models of evolution[END_REF] to model the evolution of allele frequencies in a continuous space (see [START_REF] Barton | Modeling evolution in a spatial continuum[END_REF] for a review on this process). In this model, reproduction events occur according to a Poisson point process on R + × R d which specifies their time and location. During these reproduction events, a proportion u -called the impact parameter -of individuals in a ball of radius r is replaced by the offspring of a uniformly sampled individual in this ball. To model heterogeneous dispersal, we assume that the radius of the reproduction event is r + (resp. r -) if its center falls in the positive (resp. negative) half space. We study the large scale behaviour of the spatial Λ-Fleming-Viot process (SLFV) under a diffusive rescaling similar to the one considered in the homogeneous setting (i.e. r + = r -) in [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF]. In particular, the impact parameter is kept constant as we rescale space and time.

Our results and their proofs are similar in spirit to those in [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF]. We use the fact that the SLFV has a dual in the form of a system of coalescing particles moving in R d (interpreted as the locations in the past of the ancestors of a random sample of individuals). We show (Theorem 2) that the rescaled dual converges to a system of skew Brownian motions which evolve independently of each other until they meet, and then coalesce instantaneously upon meeting. In particular, when d ≥ 2, the particles never meet and evolve independently of each other. Our approach improves on [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF] as our proof covers any model where the rescaled motion of ancetral lineages converges to a Markov process with continuous paths (and not just Brownian motion).

As a consequence, we obtain a scaling limit of the process describing the evolution of allele frequencies across space (Theorem 1). The limit is deterministic as soon as d ≥ 2 and solves a heat equation on each halfspace. The fact that ancestral lineages follow skew Brownian motions translates into a discontinuity of the first spatial derivative along the normal of the interface, in agreement with Nagylaki's result. When d = 1, each site is occupied by only one type of individuals at any positive time, and the boundaries between patches of different types evolve according to a system of coalescing and annihilating skew Brownian motions.

The proof of the convergence of the motion of lineages to skew Brownian motion is adapted from the work of A. Iksanov and A. Pilipenko [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF], where skew Brownian motion is obtained as a scaling limit of a Markov chain on Z which behaves like simple random walk outside a bounded region around the origin. The difficulty in proving convergence to skew Brownian motion comes from the fact that martingale problem characterizations of the limiting process are ill suited to this setting. (In particular, scale functions of the limiting process do not turn the random walk into a martingale.) Following [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF], we circumvent this by studying the positive and negative parts of the process separately, and then linking the two through their respective local times at the origin. This method turns out to be readily applicable to more general migration patterns than originally studied in [START_REF] Nagylaki | Clines with Variable Migration[END_REF], as we show here by dealing with a continuous spatial structure.

The paper is laid out as follows. We define the SLFV with heterogeneous dispersal in Section 1 and we state our main result (Theorem 1) in Section 2. Section 3 gives a description of the dual of the SLFV and states its convergence under the diffusive rescaling (Theorem 2). The latter is proved in Section 4 and implies Theorem 1. Finally, the convergence of the motion of an ancestral lineage to skew Brownian motion is proved in Section 5.

Definition of the model

Consider a model where individuals are scattered in a continuous space of dimension d and can be of two types, denoted by 0 or 1. We suppose that the density of individuals is constant in space. The population is represented by a random function {w(t, x), t ≥ 0, x ∈ R d }, where w(t, x) ∈ [0, 1] is interpreted as the proportion of type 1 individuals at location x at time t. Define the two halfspaces H + , H -by

H ± = x ∈ R d : ±x 1 > 0 .
Take u ∈ (0, 1] and 0 < r -≤ r + < +∞. We denote the volume of the ball of radius r in R d by V r . The SLFV with heterogeneous dispersal is defined as follows.

Definition 1.1 (SLFV with heterogeneous dispersal). Let Π + (resp. Π -) be a Poisson point process on

H + × R + (resp. H -× R + ) with intensity 1 Vr + dxdt (resp. 1
Vr - dxdt). For each point (x, t) in Π ± , a reproduction event takes place in B(x, r ± ) at time t:

1) Pick a location y uniformly at random in B(x, r ± ) and sample a type k ∈ {0, 1} from the types present at y (i.e. k = 1 with probability 1 Vr ± B(x,r ± ) w(t -, y)dy).

2) Update w(t, z) for z ∈ B(x, r ± ) as follows:

w(t, z) = (1 -u)w(t -, z) + u1 {k=1} .
In other words, a proportion u of individuals in the ball of centre x and radius r ± dies and is replaced by the offspring of an individual sampled uniformly from this ball, and the offspring is of the same type as its parent.

Remark. The factor 1

Vr ± in the rate of the Poisson point processes ensures that the mean lifetime of individuals is the same in both halfspaces (far enough from the interface). Indeed, with this rate, an individual sitting at a distance larger than r + from the interface is hit by a reproduction event at rate 1 in both halfspaces. Further, each time it is hit by a reproduction event, it dies with probability u, hence the mean lifetime of individuals is 1/u in both halfspaces.

Theorem 4.2 in [START_REF] Barton | A new model for evolution in a spatial continuum[END_REF] can be adapted without difficulty to show that there exists a unique càdlàg Markov process (w(t, •)) t≥0 satisfying this definition and taking values in the quotient space Ξ of Lebesgue-measurable maps from R d to [0, 1] that are identified when they coincide up to a Lebesgue-null set. This space can be seen as (a subset of) the space of measures on R d that are absolutely continuous with respect to Lebesgue measure. It is endowed with the following metric d which induces the topology of vague convergence of measures on R d . Let (f n ) n≥1 be a separating family of uniformly bounded, continuous and compactly supported real-valued functions on R d , then

d(w, w ) = ∞ n=1 1 2 n w, f n -w , f n , w, w ∈ Ξ.
2 Large scale behaviour of the SLFV with heterogeneous dispersal

Before stating our main result in Subsection 2.3, we introduce a few definitions.

Skew Brownian motions

In [START_REF] Michael | On skew Brownian motion[END_REF] (see also [START_REF] Walsh | A diffusion with a discontinuous local time[END_REF], [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF] and [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF]) it is shown that for β ∈ [-1, 1], there exists a unique solution to the equation

X t = B t + βL 0 t (X)
, where B is standard Brownian motion and L 0 t (X) is the local time at 0 of X. The process (X t , t ≥ 0) is called skew Brownian motion with parameter α = β+1 2 . (For β = 1, (X t ) t≥0 is reflected Brownian motion.) This result can be extended to the d-dimensional case where the first coordinate of the process follows skew Brownian motion.

For β ∈ [-1, 1], let D β denote the set of all continuous functions φ : R d → R, twice continuously differentiable on each halfspace H ± , such that

(1 + β) ∂φ ∂x 1 x 1 =0 + = (1 -β) ∂φ ∂x 1 x 1 =0 - . (1) 
Also let ∆ denote the usual Laplace operator acting on functions f : R d → R which are twice continuously differentiable on each halfspace

H ± . Proposition 2.1. Let B = B 1 t , . . . , B d t t≥0 be standard (d dimensional) Brownian motion. Let σ : R d → (0, ∞) be defined by σ 2 (x) = σ 2 ± 1 {x∈H ± } with σ 2 ± > 0 and take x 0 = (x 1 0 , . . . , x d 0 ) ∈ R d . Then, for β ∈ [-1, 1], there exists a unique R d -valued Markov process (X t ) t≥0 satisfying X 1 t = x 1 0 + t 0 σ(X s )dB 1 s + βL 0 t (X 1 ) X i t = x i 0 + t 0 σ(X s )dB i s for 2 ≤ i ≤ d. (2) 
Furthermore, the law of (X t ) t≥0 is the unique solution to the (hence well posed) martingale problem associated with the generator L, defined on the domain D β (defined in (1)) by

Lφ(x) = 1 2 σ 2 (x)∆φ(x), ∀φ ∈ D β .
This result is proved in [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] (Proposition 10) in the case d = 1 and σ + = σ -. The extension to higher dimensions is straightforward and the case σ + = σ -can be treated via a time change depending on the first coordinate. In [START_REF] Portenko | Diffusion processes with generalized drift coefficients[END_REF], [START_REF] Portenko | Stochastic differential equations with generalized drift vector[END_REF], it is proved that L generates a Feller semigroup.

It then follows that, for w 0 : R d → R bounded and measurable, ρ(t, x) = E x [w 0 (X t )] is the (unique) D β valued solution to the following equation

   ∂ρ ∂t (t, x) = σ 2 ± 2 ∆ρ(t, x) if x ∈ H ± , ρ(0, x) = w 0 (x) x ∈ R d (3)

Coalescing skew Brownian motions

For a given set of parameters (σ ± , β), let (A ∞ t ) t≥0 be a system of particles moving in R d according to independent skew Brownian motions (i.e. solutions to (2)) which coalesce instantaneously upon meeting. In particular, in dimension 2 and higher, the particles never meet and (A ∞ t ) t≥0 is a system of independent skew Brownian motions. We denote the locations of the particles at time t by {X 1 t , . . . , X Nt t }. For w ∈ Ξ, set

w, A ∞ t = Nt i=1 w(X i t ). (4) 
Let C c (R d ) be the space of continuous and compactly supported real valued functions on R d . For

ψ : (R d ) j → R + in C c ((R d ) j ) and w ∈ Ξ, set I(w, ψ) = (R d ) j j i=1
w(x i )ψ(x 1 , . . . , x j )dx 1 . . . dx j .

(5)

Proposition 2.2 ([Eva97]

). There exists a (unique) Ξ-valued process (p t , t ≥ 0) which is dual to A ∞ in the sense that, for all ψ ∈ C c ((R d ) j ),

E w 0 [I(p t , ψ)] = (R d ) j E x 1 ,...,x j [ A ∞ t , w 0 ] ψ(x 1 , . . . , x j )dx 1 . . . dx j , (6) 
where E w 0 denotes the expectation with respect to the law of (p t , t ≥ 0) started from w 0 ∈ Ξ.

From (6), one sees that, for Lebesgue almost every (x 1 , . . . ,

x j ) ∈ (R d ) j , E w 0 j i=1 p t (x i ) = E x 1 ,...,x j Nt i=1 w 0 (X i t ) . (7) 
By Lemma 3.2 in [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF], we can then show that, in dimension one, p t (x) is a Bernoulli random variable with parameter ρ(t, x) defined in (3) while in dimensions two and higher, p t (x) is deterministic and equals ρ(t, x). To see this, note that, in dimensions two and higher, skew Brownian motions never coalesce and evolve independently of each other. As a result, one can show (see [BEV13b, Lemma 3.2])

E w 0 p t (x) 2 = (E x [w 0 (X t )]) 2 = (E w 0 [p t (x)]) 2 ,
which is only possible if p is deterministic. In dimension one, since skew Brownian motions coalesce when they meet, at any positive time we have

E w 0 p t (x) 2 = E x w 0 (X 1 t ) = E w 0 [p t (x)]
, which means that p t (x) ∈ {0, 1} for Lebesgue almost every x ∈ R. Small patches of 1's and 0's then form, whose borders can be shown to follow anihilating skew Brownian motions. To see this, assume that p 0 (x) = 1 {x≤0} . Then, by definition, for t ≥ 0, p t (x) = 1 {x≤Zt} for some Z t ∈ R. By (6),

P 0 (Z t ≥ x) = E p 0 [p t (x)] = E x [p 0 (X t )] = P x (X t ≤ 0) .
It can then be seen from the expression of the semigroup of (X t ) t≥0 given in [Lej06, Proposition 3] that (Z t ) t≥0 is skew Brownian motion with parameter -β. Neighbouring patches of the same type thus merge whenever their borders meet, as illustrated in Figure 3. As a result, (p t , t ≥ 0) can be thought of as a continuous space version of the classical voter model, with a bias near the origin when β = 0.

Main result

Our main result states that, on large spatial and temporal scales, the SLFV with heterogeneous dispersal is well approximated by the process

(p t , t ≥ 0) of Proposition 2.2. Fix w 0 : R d → [0, 1] measurable. For n ≥ 1, let (w (n) (t, •), t ≥ 0) be the SLFV with heterogeneous dispersal of Definition 1.1 with w (n) (0, x) = w 0 (x/ √ n). Then set w n (t, x) = w (n) (nt, √ nx),
so that w n (0, x) = w 0 (x) for all n ≥ 1. The main result of this paper is the following. Numerical simulation of (p t (•), t ≥ 0) in a one dimensional space of length 220 with σ 2 -= 0.2, σ 2 + = 0.06 and β = 7/13, started from the initial condition w 0 (x) ≡ 0.5, shown at time t = 10, t = 100 and t = 250. Notice how the number of patches decreases with time as their interfaces meet and annihilate each other. Patches on the right are smaller and more numerous than patches on the left because diffusion is stronger on the left than on the right of the origin.

Theorem 1. As n → ∞, the sequence of Ξ-valued processes (w n (t, •), t ≥ 0) converges in the sense of finite dimensional distributions in the vague topology to the Ξ-valued process (p t , t ≥ 0) of Proposition 2.2 with parameters given by

σ 2 ± = u 2r 2 ± d + 2 and β = r 2 + -r 2 - r 2 + + r 2 - . (8) 
We prove Theorem 1 by studying the dual of the SLFV with heterogeneous dispersal, which is defined in Section 3.

The fact that the solution to (3) has to be found in D β with β ≥ 0 agrees with the findings of Nagylaki [START_REF] Nagylaki | Clines with Variable Migration[END_REF] (equations ( 8) and ( 9)). This transmission condition reflects the fact that individuals living near the frontier between the two halfspaces are more likely to have ancestors coming from H + than from H -(recall that we take r -≤ r + ), see Figure 4.

As already noted by Nagylaki [START_REF] Nagylaki | Clines with Variable Migration[END_REF], β depends on the microscopic model in a rather intricate way. In the case of the SLFV of Definition 1.1, we are able to express it as an explicit function of the parameters of the model ( 8), but we shall see that this is due to specific symmetry properties of this model. Hence, different modelling assumptions would lead to different (and possibly less tractable) relations between β and the other parameters. This dependence on the choice of the model is a potential issue when trying to infer demographic parameters from genetic data. One thus has to choose between inferring β as an independent parameter (potentially reducing the power of the estimation) or choosing a particular model somewhat arbitrarily and let β be a function of the other parameters.

The dual of the SLFV with heterogeneous dispersal

We now define a system of coalescing particles whose displacements are driven by the same Poisson point process of reproduction events as the SLFV. The particles at time t describe the positions of the set of ancestors at time -t of a sample of individuals alive at time 0. Since the Poisson point processes Π ± are reversible with respect to time, the reproduction events which took place in the past have the same distribution as those which occur forwards in time.

Definition 3.1 (Dual of the SLFV with heterogeneous dispersal). Let Π + (resp. Π-) be a Poisson point process on

H + × R + (resp. H -× R + ) with intensity 1
Vr ± dxdt. Let (A t ) t≥0 be a system of finitely many particles whose dynamics are as follows. For each point (x, t) in Π ± , a reproduction event takes place in B(x, r ± ) at time t:

1) Pick a location y uniformly at random in B(x, r ± ).

2) Each particle sitting inside B(x, r ± ) at time t -is marked with probability u, independently of each other.

3) All marked particles coalesce and move to y.

We denote the number of particles present at time t by N t and their spatial locations by ξ 1 t , . . . , ξ Nt t , so that A t = {ξ 1 t , . . . , ξ Nt t }. Let B ± (x, r) denote the intersection of B(x, r) and H ± and let |•| denote the Lebesgue measure on R d . The motion of one particle is a jump Markov process on R d with infinitesimal generator

Lf (x) = u R d Φ(x, y)(f (y) -f (x))dy (9) 
with

Φ(x, y) = |B + (x, r + ) ∩ B + (y, r + )| V 2 r + + |B -(x, r -) ∩ B -(y, r -)| V 2 r - . (10) 
This is seen by noting that, in order to jump from x to y, a particle needs to find itself in the region affected by a reproduction with its center z either in B(x, r + ) ∩ B(y, r + ) if z 1 > 0 or in B(x, r -) ∩ B(y, r -) if z 1 < 0. See [START_REF] Barton | Modeling evolution in a spatial continuum[END_REF] (paragraph 3.5) for a more detailed justification in the homogeneous case. The law of (A t ) t≥0 started from j lineages at locations x = (x 1 , . . . , x j ) is denoted by P x (•).

Let us now give the (weak) duality relation between (w t ) t≥0 and (A t ) t≥0 . Recall the definition of I(•, ψ) in (5) and set, as in (4),

w, A t = Nt i=1 w(ξ i t )
.

Let E w 0 denote the expectation with respect to the distribution of the SLFV with heterogeneous dispersal (Definition 1.1) with initial condition w 0 and let E x denote the expectation with respect to the distribution of (A t ) t≥0 (Definition 3.1) started from x = {x 1 , . . . , x j }. Then, for any j ∈ N,

for ψ ∈ C c ((R d ) j ), [BEV10, Theorem 4.2] E w 0 [I(w t , ψ)] = (R d ) j E x [ w 0 , A t ] ψ(x)dx. ( 11 
)
Since the linear span of functions of the form I(•, ψ) and constant functions is dense in C(Ξ) (Lemma 4.1 in [START_REF] Barton | A new model for evolution in a spatial continuum[END_REF]), one can prove Theorem 1 by showing that, for any

0 ≤ t 1 < . . . < t k and ψ 1 , . . . , ψ k in C c ((R d ) j ), lim n→∞ E k i=1 I(w n t i , ψ i ) = E k i=1 I(p t i , ψ i ) (12) 
where (p t , t ≥ 0) is as in Proposition 2.2. We shall do this using the duality relation (11) above.

For n ≥ 1, define the rescaled dual process (A n t ) t≥0 by

E x [f (A n t )] = E √ nx f 1 √ n ξ 1 nt , . . . , 1 √ n ξ Nnt nt
for all continuous and bounded f : ∪ j≥1 (R d ) j → R. Then (A n t ) t≥0 is dual to (w n t ) t≥0 in the sense that

E w 0 [I(w n t , ψ)] = (R d ) j E x [ w 0 , A n t ] ψ(x)dx.
In order to prove Theorem 1, we thus need to show that the finite-dimensional distributions of (A n t , t ≥ 0) converge to those of (p t , t ≥ 0). This is the object of Theorem 2 below. In [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF], it is shown that it implies (12) and hence Theorem 1 (see their proof of Theorem 1.1).

Theorem 2. As n → ∞, (A n t ) t≥0 converges in the sense of finite dimensional distributions to (A ∞ t ) t≥0 . Moreover, for k ∈ N and 0 ≤ t 1 < . . . < t k , suppose that we start A n with j 0 particles at locations x 0 , let the process evolve until time t 1 , add j 1 lineages at locations x 1 , let the process evolve until time t 2 and so on. Call the resulting process Ân and define Â∞ analogously. Then for any t ≥ 0, Ân t converges in distribution to Â∞ t as n → ∞.

We prove this in two steps: we first show that the rescaled motion of each particle in (A t , t ≥ 0) converges to a solution to (2) (Proposition 4.1 below), and then we control the coalescence events in (A n t , t ≥ 0). This is done in Section 4 while convergence to skew Brownian motion is proved in Section 5.

Remark. Lineages coalesce instantaneously upon meeting because the impact parameter u (which should be interpreted as the inverse of the effective population size) is kept constant as we rescale time and space. Other scalings would result in different limiting behaviours. If u is of order 1/

√ n, then we expect that, in the limit, lineages coalesce when the local time of their difference at zero exeeds an independent exponential random variable, as in [START_REF] Durrett | One-dimensional stepping stone models, sardine genetics and Brownian local time[END_REF]. The evolution of allele frequencies is then described by a stochastic partial differential equation in one spatial dimension (but remains deterministic in higher dimensions as skew Brownian motions never meet), as in [START_REF] Etheridge | Rescaling limits of the spatial Lambda-Fleming-Viot process with selection[END_REF]. Moreover, if u = o (1/ √ n), lineages never coalesce in the limit, even in one dimension, and the evolution of allele frequencies is deterministic (and follows (3)).

Proof of Theorem 2

We begin by stating the convergence of the motion of individual lineages in (A n t , t ≥ 0) to skew Brownian motions (i.e. solutions to (2)). Let D [0, T ], R d denote the Skorokhod space of càdlàg functions from [0, T ] to R d , endowed with the usual topology.

Proposition 4.1 (Convergence to skew Brownian motion). Let (ξ t ) t≥0 be an R d -valued Markov process with infinitesimal generator L given in (9). For n ≥ 1 and t ≥ 0, set ξ n t = 1 √ n ξ nt and suppose ξ n 0 is deterministic and converges to x 0 ∈ R as n → ∞. Fix T > 0. Then, as n → ∞, (ξ n t ) t≥0 converges in distribution in D [0, T ], R d to (X t ) t≥0 , solution to (2) with σ ± and β given by (8).

To show Theorem 2, we thus need to control the coalescence of the particles. The following proposition helps fulfill this goal. 

T F ≤ lim inf n→∞ T n F , lim sup n→∞ T n O ≤ T O .
This proposition is proved in Appendix A. An immediate consequence is that if a sequence of processes {(X n t ) t≥0 , n ≥ 1} converges in distribution in D [0, T ], R d to a continuous process (X t ) t≥0 , and if T O = T F a.s. when F is the closure of O (defining T F , T O , T n F and T n O as the first hitting times of these sets by the processes (X t ) t≥0 and (X n t ) t≥0 respectively), then, by the Skorokhod representation theorem, both T n O and T n F converge in distribution to

T O = T F .
Proof of Theorem 2. We prove the first part of the result when starting from two particles; the proof is easily extended to a larger sample (see the proof of Lemma 4.1 in [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF]). The two particles in

A n = {ξ n,1 • , ξ n,2
• } evolve independently of each other until they come within a distance 2r + / √ n of each other (since r -≤ r + ). Let us then define T n as the first time at which the two particles come close to each other in the rescaled setting

T n = inf t ≥ 0 : ξ n,1 t -ξ n,2 t ≤ 2r + √ n . ( 13 
)
When d ≥ 2, we show that P x 1 ,x 2 (T n ≤ t) → 0 as n → ∞ for all t > 0. For ε > 0, define

T ε n = inf t ≥ 0 : ξ n,1 t -ξ n,2 t ≤ 2r + ε .
This is the first hitting time of the closed set {(x, y) : |x -y| ≤ 2r + ε} by the process (ξ n,1 t , ξ n,2 t ) t≥0 . Since ξ n,1 and ξ n,2 are independent up to time T n and, for n large enough, T n ≥ T ε n , by Proposition 4.1 and Proposition 4.2, T ε n converges in distribution to T ε , defined as the first hitting time of {(x, y) : |x -y| ≤ 2r + ε} by two independent solutions to (2) started from x 1 and x 2 . As a result, since T n ≥ T ε n a.s. for n large enough,

lim sup n→∞ P x 1 ,x 2 (T n ≤ t) ≤ P x 1 ,x 2 (T ε ≤ t) .
The right-hand-side vanishes as ε ↓ 0 when d ≥ 2, yielding the result in this case. We treat the case d = 1 in two steps. First we prove that the trajectory of the two particles up to time T n converges in distribution to the motion of two independent skew Brownian motions up to their meeting time. Then we argue that the coalescence happens soon enough once the two particles are close to each other that the delay between T n and the coalescence time (denoted by (ξ n,1 t , ξ n,2 t ) t≤Tn converges in distribution to (X 1 t , X 2 t ) t≤T ∆ , the trajectory of two independent skew Brownian motions stopped at the first time when they hit each other.

T c n ) vanishes
We now show that the two particles coalesce quickly once they come within a distance 2r + / √ n of each other. This is a consequence of the following result, which is proved as in [START_REF] Barton | A new model for evolution in a spatial continuum[END_REF], Proposition 6.4.

Lemma 4.3. Let T c denote the coalescence time of the two particles ξ 1 t , ξ 2 t in (A t ) t≥0 (i.e. in the original time scale). Then

lim t→∞ sup |y 1 -y 2 |≤2r + P y 1 ,y 2 (T c > t) = 0.
By the strong Markov property,

P x 1 ,x 2 (T c n -T n > t) = E x 1 ,x 2 P √ nξ n,1 Tn , √ nξ n,2 Tn (T c > nt) . (14) 
The term inside the expectation on the right-hand-side is bounded by sup |y 1 -y 2 |≤2r + P y 1 ,y 2 (T c > nt), which converges to zero as n → ∞ by Lemma 4.3. In addition, the distance covered by ξ n,i between T n and T c n vanishes as n → ∞. Indeed, in Section 5, we prove the following. Lemma 4.4. For any ε > 0 and T > 0,

lim δ↓0 lim sup n→∞ P sup s,t∈[0,nT ] |s-t|≤δn |ξ s -ξ t | > ε √ n = 0. Write P ξ n,i T c n -ξ n,i Tn > ε ≤ P sup s,t∈[0,nT ] |s-t|≤δn |ξ s -ξ t | > ε √ n + P (|T c n -T n | > δ) + P (T n > nT ) + P (T c n > nT ) .
Letting n → ∞, the second term on the right-hand-side converges to zero by ( 14). So do the last two terms since both T n and T c n converge in distribution as n → ∞. Then letting δ ↓ 0, the first term vanishes by Lemma 4.4. As a consequence, (ξ n,1 T c n , T c n ) converges in distribution (and even in probability) to (X 1 T ∆ , T ∆ ). Since the remaining particle after the coalescence event follows a Markov process with infinitesimal generator L, we know by Proposition 4.1 that (ξ n,1 T c n +t ) t≥0 converges in distribution to skew Brownian motion started at X 1 T ∆ . This proves the convergence in distribution of A n t to A ∞ t when started from two particles. For larger samples, it is enough to note that three particles (or more) almost never simultaneously come within a distance 2r + / √ n of each other. The proof of the convergence of the finite dimensional distributions and that of the second part of the statement follow the same lines, using the Markov property at suitable times. Details can be found in Section 4 of [START_REF] Berestycki | Large scale behaviour of the spatial Lambda-Fleming-Viot process[END_REF].

Convergence to skew Brownian motion

We now give the proof of Proposition 4.1. The arguments are adapted from the work of Iksanov and Pilipenko [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF]. We limit ourselves to the one dimensional case for the proof, but the generalisation to higher dimensions is straightforward. Iksanov and Pilipenko treat the case of a discrete time Markov chain on Z which behaves like a simple random walk outside a bounded region centered at the origin. We extend their proof to continuous time jump Markov processes with continuous state space.

Proof of Proposition 4.1

Recall that (ξ t ) t≥0 is a Markov process with generator L given by (9) and ξ n t = 1 √ n ξ nt . As announced above, we restrict ourselves to d = 1. Set X± (t) = ±ξ t 1 {±ξt>r + } Proposition 4.1 follows from the above lemmas and Proposition 2.1 in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF]. Lemma 5.1 is proved in Subsection 5.3. The proof of Lemma 5.2 does not differ significantly from the one given for Lemma 2.2 in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF] and we omit the details. The proof of Lemma 5.3 is given in Subsection 5.4.

Occupation time of the boundary

We begin with the following result controlling the time spent by (ξ t ) t≥0 in the region [-r + , r + ]. This lemma is used in the proof of Lemma 5.2 (see the proof of Lemma 2.3 in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF]) and in the proof of Lemma 5.3.

Lemma 5.4. For t ≥ 0, define ν(t)

= t 0 1 {|ξs|≤r + } ds. Then i) lim t→∞ ν(t) = +∞ almost surely, ii) sup x∈R E x [ν(t)] = O √ t a.s. as t → ∞.
Proof. Since (ξ t ) t≥0 is neighbourhood-recurrent, ν(t) → ∞ as t → ∞. Set ζ 0 = 0 and

ς i = inf {t > ζ i-1 : |ξ t | ≤ r + } , i ≥ 1, ζ i = inf {t > ς i : |ξ t | > r + } , i ≥ 1.
Then ν(t) can be written as the sum of the lengths of the excursions inside [-r + , r + ] up to time t,

ν(t) = i≥1 (ζ i ∧ t -ς i ∧ t) . Hence E x [ν(t)] ≤ E x   i≥1 E [ ζ i -ς i | F ς i ] 1 {ς i ≤t}   .
Noting that there exists ε > 0 such that, for all dt > 0 small enough, P ( |ξ(t + dt)| > r + | ξ t = x) ≥ εdt for all |x| ≤ r + , we see that ζ iς i is stochastically dominated by an exponential random variable with parameter ε. Hence

E x [ν(t)] ≤ 1 ε E x   i≥1 1 {ς i ≤t}   .
In addition, the number of visits to [-r + , r + ] before time t is less than the number of visits to this set before the first excursion longer than t, i.e.

i≥1

1 {ς i ≤t} ≤ m(t) := inf{i ≥ 1 : ς i+1 -ζ i > t}.
Let (W t ) t≥0 be a continuous time random walk on R with infinitesimal generator

Gf (x) = u R (f (y) -f (x)) |B(x, 1) ∩ B(y, 1)| V 2 1 dy.
Then for any x > r + ,

P ±x (ς 1 -ζ 0 > t) ≥ P 0 inf 0≤s≤t W s ≥ 0 .
(Notice that the right-hand-side isn't changed if W is replaced by r ± W .) As a result m(t) is stochastically dominated by a geometric random variable with parameter

p(t) = P 0 inf 0≤s≤t W s ≥ 0 .
Furthermore, there exists η > 0 such that, for all t ≥ 0, p(t) ≥ η √ t , (see pp. 381-382 in [BGT89] or equations (3.4) and (3.5) in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF]). As a result, for all x ∈ R,

E x [ν(t)] ≤ 1 εp(t) ≤ √ t εη .

Tightness of

(ξ ± n , M ± n , L ± n ) n≥1
Let us now give the proof of Lemma 5.1. To prove that the sequence

(ξ ± n , M ± n , L ± n ) n≥1 is tight in D [0, T ],
R 6 , we use the following criterion proved by Aldous [START_REF] Aldous | Stopping times and tightness[END_REF].

Theorem 3 (Aldous [Ald78]). Suppose (X n , n ≥ 0) is a sequence of random variables taking values in D ([0, T ], R) such that i) (X n (0), n ≥ 0) and sup t≥0 |X n (t) -X n (t -)| , n ≥ 0 are tight in R,
ii) for any sequence {τ n , δ n } such that τ n is a stopping time with respect to the natural filtration of X n and δ n ∈ [0, 1] is a constant such that δ n → 0 as n → ∞,

X n (τ n + δ n ) -X n (τ n ) -→ n→∞ 0 in probability. Then (X n , n ≥ 0) is tight in D ([0, T ], R).
Proof of Lemma 5.1. From (15), and the fact that

i≥0 ξ(τ ± i )1 {τ ± i ≤t<σ ± i } ≤ r + ,
it is enough to prove the tightness of ξ ± n and M ± n . We use Aldous' criterion to prove that M ± n is tight and then we use the fact that the increments of ξ are bounded by those of M := M + -M - (equation (17) below) to show that ξ n is tight.

From the definition of ξ, we have M ± n (0) = 0 and

sup t≥0 M ± n (t) -M ± n (t -) ≤ 2r + √ n .
Moreover, since outside [-r + , r + ], ξ behaves as a simple random walk, for any stopping time S and δ > 0,

E M ± n (S + δ) -M ± n (S) 2 ≤ σ 2 ± δ.
The assumptions of Theorem 3 are thus satisfied, proving the tightness of (M ± n ) n . Now take 0 ≤ s ≤ t. If ξ does not visit [-r + , r + ] between time s and time t, then ξ tξ s = M (t) -M (s). If it does visit this set, then let α be the first time ξ enters [-r + , r + ] after time s and θ the last time ξ leaves this set before time t. Then (17)

|ξ t -ξ s | ≤ |ξ t -ξ θ | + |ξ θ -ξ α | + |ξ α -ξ s | ≤ 2r + + |M (t) -M (θ)| + |M (α) -M (s)| .
The tightness of (ξ n ) n then follows from that of (M 

|M (s) -M (t)| > ε √ n = 0. ( 18 
)
It remains to prove (16). Note that any limit point

(X ± ∞ , M ± ∞ , L ± ∞ ) satisfies X ∞ (t) = X + ∞ (t) -X - ∞ (t) = M + ∞ (t) -M - ∞ (t) + L + ∞ (t) -L - ∞ (t) = M ∞ (t) + L ∞ (t).
From the definition of M ± n and Lemma 5.4, one shows, as in the proof of Lemma 2.3 in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF], that M ∞ is a stochastic integral with respect to standard Brownian motion

(B t ) t≥0 M ∞ (t) = t 0 σ(X ∞ (s))dB s .
In addition, L ± ∞ is a continuous process with locally bounded variation. As a result X ∞ t = M ∞ t and (16) follows from the occupation density formula.

Note that (18) proves Lemma 4.4.

The left and right local time at zero of (ξ t ) t≥0

The proof of Lemma 5.3 is adapted from that of Lemma 2.3 in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF]. Recall the expression for the left and right local time of (ξ t ) t≥0 ,

L ± (t) = ± i≥0 (ξ(σ ± i ) -ξ(τ ± i ))1 {σ ± i ≤t} .
For any particular visit of ξ to [-r + , r + ], the value of ξ(σ ± i )ξ(τ ± i ) depends on the value of ξ when it enters this set. However, over many visits to [-r + , r + ], L ± (t) only records an average of these values. The "typical" value of ξ(σ ± i )ξ(τ ± i ) can thus be expressed with the help of the stationary distribution of the process describing the visits of ξ to [-r + , r + ] (Y below). The left and right local time of ξ then become asymptotically proportional to the occupation time of the boundary ν(t) = t 0 1 {|ξs|≤r + } ds, with different coefficients whose expressions can be found below. Set, for t ≥ 0, α(t) = inf{α > 0 : ν(α) > t}.

Define Y (t) = ξ(α(t)) for t ≥ 0. The process (Y (t)) t≥0 is a jump Markov process taking values in [-r + , r + ], describing the values taken by ξ inside this region. Let ᾱ denote the left-continuous version of α, i.e. for t ≥ 0, ᾱ(t) = sup{α ≥ 0 : ν(α) < t}.

If t ≥ 0 is such that ᾱ(t) = α(t), then ξ makes an excursion outside [-r + , r + ] between time ᾱ(t) and time α(t).

Let V ± be defined by

V ± (t) = ± (Y (t) -Y (0)) ± 0<s≤t (ξ( ᾱ(s)) -ξ(α(s)))1 {±ξ( ᾱ(s))>r + } .
Then (V ± (t), t ≥ 0) is a process which has the two following nice properties.

Lemma 5.5. For all t ≥ 0,

V ± (ν(t)) -L ± (t) ≤ 4r + .
Lemma 5.6. The process (Z ± (t), t ≥ 0) defined by

Z ± (t) = V ± (t) - t 0 h ± (Y (s))ds (19) with h ± (x) = ±u R Φ(x, y)1 {±y≤r + } (E y ξ α(0) -x)dy ± u R Φ(x, y)1 {±y>r + } (y -x)dy (20) 
is a square-integrable martingale with respect to the filtration (F α(t) , t ≥ 0) (where (F t , t ≥ 0) is the natural filtration of (ξ t , t ≥ 0)). Furthermore, for all t ≥ 0,

Z ± t ≤ 4ur 2 + t.
These two lemmas are proved in Subsection 5.5. In addition, we have the following. Let π denote the uniform probability measure on [-r + , r + ].

Lemma 5.7. The probability measure π is a stationary measure for the Markov process (Y (t), t ≥ 0) and this process is ergodic with respect to π. Lemma 5.8. We have

[-r + ,r + ] h ± (x)π(dx) = σ 2 ± 4r + .
Lemma 5.7 and Lemma 5.8 are proved in Subsection 5.6. With these results, it now becomes straightforward to prove Lemma 5.3.

Proof of Lemma 5.3. First note that, by Lemma 5.6 and Theorem 1 in [START_REF] Lépingle | Sur le comportement asymptotique des martingales locales[END_REF],

1 t V ± (t) - 1 t t 0 h ± (Y (s))ds -→ t→∞ 0
almost surely. Then, by Lemma 5.7 and the pointwise ergodic theorem,

1 t t 0 h ± (Y (s))ds -→ t→∞ [-r + ,r + ] h ± (x)π(dx)
almost surely. From Lemma 5.5 and Lemma 5.4.i, we obtain that

1 ν(t) L ± (t) -→ t→∞ [-r + ,r + ] h ± (x)π(dx)
almost surely, and Lemma 5.8 then implies

lim t→∞ L + (t) L -(t) = σ 2 + σ 2 - .

The stationary distribution of Y

Proof of Lemma 5.7. Let L Y denote the infinitesimal generator of (Y (t), t ≥ 0). For f and g two bounded and measurable functions on a set B ⊂ R, let f, g B = B f (x)g(x)dx.

We want to show

L Y f, g [-r + ,r + ] = f, L Y g [-r + ,r + ] . (22) 
Recall the definition of the operator E in (21) and note that, L Y f = LEf , where L is defined in (9). In addition, since Φ(x, y) = Φ(y, x), for any f, g ∈ L 2 (R),

Lf, g R = f, Lg R .
However, Ef / ∈ L 2 (R). To circumvent this, for A ≥ r + , define Further let (ξ A t , t ≥ 0) be a random walk on R with generator

L A f (x) = u R Φ A (x, y)(f (y) -f (x))dy (23) 
which coincides with (ξ t , t ≥ 0) up to time T A = inf{t ≥ 0 : |ξ t | > A}. Finally, for |x| ≤ A, define

E A f (x) = E x f (ξ A T A 0 ) , with T A 0 = inf{t ≥ 0 : ξ A t ≤ r + }. (24) 
Then the operator L A is self-adjoint in L 2 ([-A, A]) and

L A E A f (x) = 0 for r + < |x| ≤ A, (25) 
E A f (x) = f (x) for |x| ≤ r + . ( 26 
)
As a result, for f, g : [-r + , r + ] → R bounded and measurable,

L A E A f, E A g [-A,A] = E A f, L A E A g [-A,A] .
By (25) and (26), this is

L A E A f, g [-r + ,r + ] = f, L A E A g [-r + ,r + ] .
It thus remains to let A → ∞. First note that, for A large enough, L A f (x) = Lf (x) for all x ∈ [-r + , r + ]. Furthermore, since T A → ∞ as A → ∞ almost surely, ξ A T A 0 → ξ α(0) as A → ∞ almost surely. Hence, by dominated convergence, for all x ∈ R and for all bounded and measurable f ,

E A f (x) -→ A→∞ Ef (x). (27) 
We thus obtain LEf, g [-r + ,r + ] = f, LEg [-r + ,r + ] ,

which is (22). As a result the uniform measure on [-r + , r + ] is invariant for Y . The fact that (Y (t), t ≥ 0) is ergodic then follows from the form of its generator, noting that L Y f ≡ 0 implies that f is almost everywhere constant.

The first term on the right hand side is zero because Φ(x, y) = Φ(y, x) and the second term is zero by Lemma 5.9. Replacing y by x + z in the last term, we have O ≤ t, leading to a contradiction. For the second inequality, suppose that lim inf T n F < T F and take ε > 0 such that lim inf T n F ≤ T F -2ε. There exists a subsequence (n k ) k such that for all k ∈ N, T n k F ≤ T F -2ε. Since f is continuous, the image of [0, T Fε] by f is a compact set which does not intersect F , hence there exists η > 0 such that its η-neighbourhood is in R d \ F . By the locally uniform convergence of f n to f , sup{|f n k (t)f (t)| : t ∈ [0, T Fε]} converges to zero as k → ∞. Taking k large enough that this quantity is smaller that η, we have that f n k (t) / ∈ F for t ∈ [0, T Fε]. Hence T n k F ≥ T Fε, which is a contradiction.
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 3 Figure 3: The process (p t , t ≥ 0) in dimension one
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 4 Figure 4: Diffusion of an allele with heterogeneous dispersalGraphical representation of x → ρ(t, x) started from a Heaviside initial condition 1 {x<0} at time t = 12 with parameters: σ + = 0.5, σ -= 1, β = -0.6. Note the discontinuity in the first spatial derivative at x = 0.
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 2 Let O ⊂ R d be an open set and let F ⊂ R d be a closed set. Suppose that a sequence of functions (or processes) f n : R + → R d converges uniformly on every compact interval to a continuous function f : R + → R d . Define T n O = inf{t ≥ 0 : f n (t) ∈ O} and T n F , T O and T F accordingly. Then

  As a result, for δ > 0, sup |s-t|≤δn |ξ sξ t | ≤ 2r + + 2 sup |s-t|≤δn |M (s) -M (t)| .

Φ

  A (x, y) = Φ(x, y) if |x| ≤ A and |y| ≤ A, 0 otherwise.

A

  , x + z)1 {x+z>r + } zdzdx.But for x + z > r + , B(x + z, r -) ∩ H -= ∅ andΦ(x, x + z) = |B(x, r + ) ∩ B(x + z, r + )| V 2 r + = Φ(r + , r + + z).Furthermore, the expression above is zero when z ≥ 2r + . Changing the order of integration, we obtainh + + , r + + z)z 2 dz Inequalities for hitting times Proof of Proposition 4.2. We first prove the inequality for T n O . Suppose that lim sup T n O > T O and fix ε > 0 such that T O + ε ≤ lim sup T n O . There exists a subsequence (n k ) k such that for all k ∈ N, T n k O ≥ T O + ε. By the definition of T O , there exists t ∈ [T O , T O + ε) such that f (t) ∈ O. By the convergence of f n to f , f n k (t) converges to f (t) as k → ∞. Since f (t) ∈ O which is open, for k large enough, f n k (t) ∈ O and T n k

  in the limit. By the Skorokhod representation theorem and by Proposition 4.1, there exist sequences of processes ( ξn,1 ∆ almost surely as ε ↓ 0, yielding the almost sure convergence of Tn to T ∆ . As a result, ( ξn,1

	(defined in (9)),
	ii) ( X1

t , ξn,2 t ) t≥0 and ( X1 t , X2 t ) t≥0 defined on some probability space such that i) ( ξn,1 t ) t≥0 and ( ξn,2 t ) t≥0 are independent Markov processes with infinitesimal generator L t ) t≥0 and ( X2 t ) t≥0 are independent solutions to (2), iii) ( ξn,i t ) t≥0 converges uniformly on compact time intervals to ( Xi t ) t≥0 almost surely for i ∈ {1, 2}. Defining Tn analogously to (13), ( ξn,1 t , ξn,2 t ) t≤ Tn has the same distribution as (ξ n,1 t , ξ n,2 t ) t≤Tn . Suppose that X1 0 > X2 0 and define the first hitting time of the diagonal by ( X1 t , X2 t ) t≥0 as T ∆ = inf{t ≥ 0 : X1 t ≤ X2 t }. Let us show that Tn -→ n→∞ T ∆ almost surely. Set T ∆ n = inf{t ≥ 0 : ξn,1 t ≤ ξn,2 t } and note that since the jumps of ξn,i are of size at most 2r + / √ n, the two lineages cannot jump over one another without coming within a distance 2r + / √ n of each other, i.e. Tn ≤ T ∆ n almost surely. Moreover, define T ε n and T ε as the first hitting times of {(x, y) : |x -y| ≤ 2r + ε} by ( ξn,1 t , ξn,2 t ) t≥0 and ( X1 t , X2 t ) t≥0 respectively. By Proposition 4.2, T ∆ n -→ n→∞ T ∆ a.s. and T ε n -→ n→∞ T ε a.s. As a result, for all ε > 0, T ε ≤ lim inf n→∞ Tn ≤ lim sup n→∞ Tn ≤ T ∆ a.s. By the continuity of t → ( X1 t , X2 t ), T ε → T t , ξn,2 t ) t≤ Tn converges almost surely to ( X1 t , X2 t ) t≤ T ∆ . In other words,
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and

One can then write the decomposition (see formula (2.1) in [START_REF] Iksanov | A functional limit theorem for locally perturbed random walks[END_REF])

with

Here, M + (t) (resp. M -(t)) is the sum of the jumps of ξ from {x ∈ R : ±x > r + } up to time t. Note that these jumps are all independent centred random variables, so (M ± (t), t ≥ 0) is a martingale with respect to the natural filtration of ξ. On the other hand, L ± (t) is an increasing process which only increases when ξ escapes from {±x ≤ r + }, and should be thought of as an analogue of the left (for L -) or right (for L + ) local time of ξ at zero. Also set

Let ξ + t = ξ t ∨ 0 and ξ - t = (-ξ t ) ∨ 0. The following now holds. Lemma 5.1. For any fixed T > 0, the sequence of random variables

∞ are non-decreasing almost surely and satisfy

almost surely.

5.5

The process (V ± (t), t ≥ 0) Proof of Lemma 5.5. Note that ±ξ(ᾱ(s)) > r + with s > 0 if and only if ᾱ(s) = σ ± i for some i ≥ 0, and in this case, α(s) = τ ± i+1 . In addition, s ≤ ν(t) if and only if ᾱ(s) ≤ t, as a result

Proof of Lemma 5.6. We start by introducing the following notation. For f : [-r + , r + ] → R measurable and bounded and x ∈ R, let

(recall that α(0) = inf{t ≥ 0 :

We then note that (Y (t), V ± (t)) t≥0 is a jump Markov process with respect to the filtration (F α(t) , t ≥ 0) with generator

Noting that, for f (x, v) = v,

we obtain that (Z ± (t), t ≥ 0) defined in ( 19) is a local martingale with respect to this filtration and that its predictable quadratic variation is

We then conclude by noting that |Q(x)| ≤ 4ur 2 + .

Before proving Lemma 5.8, let us show the following.

Lemma 5.9. For any f : [-r + , r + ] → R bounded and measurable,

Proof. Recall the definition of L A and E A in ( 23) and (24). By (25), for any f : [-r + , r + ] → R bounded and measurable,

But

The above term is thus

Since Φ A (x, y) = Φ A (y, x), we obtain

Letting A → ∞ and using (27), we obtain the first statement of Lemma 5.9. The second statement follows by a similar argument.

We now prove Lemma 5.8.