Detection of loci under selection from temporal population genomic data through ABC random forest

Vitor Pavinato, Jean-Michel Marin, Miguel Navascués

To cite this version:
Vitor Pavinato, Jean-Michel Marin, Miguel Navascués. Detection of loci under selection from temporal population genomic data through ABC random forest. 7. journées scientifiques du LabEx NUMEV, Nov 2018, Montpellier, France. 2018. hal-02787307

HAL Id: hal-02787307
https://hal.inrae.fr/hal-02787307
Submitted on 1 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Detection of loci under selection from temporal population genomic data through ABC random forest

Pavinato VAC1,2; De Mita S3; Marin JM2; Navascués M1

1UMR CBGP, INRA; 2UMR IMAG, Université de Montpellier; 3UMR IAM, INRA

POST-DOC Fellowship Program: InterLabEx Program

Key words: population genetics; adaptation; time-series, Approximation Bayesian Computation; machine learning; individual-based simulation

Abstract: Recent theoretical works have shown that the interaction between the signal of demography and selection can lead to bias in the inference of population size and the false identification of adaptive loci in genome scans. The joint estimation is a necessity, however not yet fully implemented. We propose the use of ABC Random-Forests to implement the joint inference in temporal population genomics datasets. Preliminary results showed that the method permits the joint inference of demography and selection, allowing distinguish the true demography (census size) and genetic drift (effective population size), as well the estimation of the genetic load (selection).

Pavinato VAC1,2 ; De Mita S3 ; Marin JM2 ; Navascués M1

1UMR CBGP, INRA; 2UMR IMAG, Université de Montpellier; 3UMR IAM, INRA

DESCRIPTION

Traditional population genetic studies use genotypic or allelic frequency data obtained from several populations sampled at the same time point. However, temporal population genetics data offers a more powerful way to study complex dynamics, since we can follow the allele frequency changes through time in the population.

Disentangling the effects of selection and demography is a long-standing difficulty in population genetics. Theoretical works show that selection affecting linked sites may bias inference of demography (Ewing and Jensen 2016; Schrider et al. 2016) and vice-versa. In this way, the ability to jointly make inference about both processes is a necessity not yet fully implemented. One proposed way to co-estimate neutral and selective parameters is with the use of ABC (Li et al. 2012); however, the traditional ABC is computationally expensive. The introduction of random forests in ABC, however, reduces the computational burden, making it possible to study complex dynamics as the presence of linked selection (Pudlo et al. 2016, Raynal et al. 2017).

We propose the use of ABC-RF to co-estimate demography and selection in temporal population genomics data.

RESULTS

To test if the grown random-forest can recovers the expected population size N and the genetic load (selection parameter) we ran an additional 100 simulations with and without selection and used them as pseudo-observed data-set (POD).

We compared the ABC-RF estimated population size N with the moment-based estimated effective population size N_e. The moment-based estimator is based on the averaged allele frequency differences between the time-points and is affected by the neutral (drift) and non-neutral dynamics (selection).