Building a consistent Information System in the different nodes and defining standardisation strategies
Romain David, Jean-Eudes Hollebecq, Pascal Neveu

To cite this version:
Romain David, Jean-Eudes Hollebecq, Pascal Neveu. Building a consistent Information System in the different nodes and defining standardisation strategies. 2. Annual Meeting EPPN2020, Wageningen University and Research Centre (WUR). NLD., May 2019, Wageningen, Netherlands. 32 p. hal-02787524

HAL Id: hal-02787524
https://hal.inrae.fr/hal-02787524
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
2nd Annual Meeting May 2019
WUR - NL

Romain David - Jean-Eudes Hollebecq - Pascal Neveu, INRA
JRA3

‘Building a consistent Information System in the different nodes and defining standardisation strategies’
● Object identification
 Objects: plants, plots, experiments, sensors, events, etc
 Identification: persistent, unambiguous, resolvable

● Variable naming and formalization
 Give (local or global) name to variables
 What (concept), How, Associated controlled contexts

● Data interoperability
 Formats, schemas, semantic
 Representation compatibility and consistency
Object Identification

What do we want to identify?

Organisational objects and actors:
Organisations, Experiments, Locations, Operators, Softwares, etc.

Biological material:
Plants, Leaves, Stems, Flowers, Roots, etc.

Omics data:
Proteins, Spectrum, Transcriptum, etc.

Experimental Material:
Sensors, Pots, Substrats, etc.
Object Identification

What do we want to identify?

Collaborative objects, resources:
Aggregated data, Concepts, Sample-analysis, etc

Events and activities
Faults, Management, Disturbance, Meteo, etc.

Digital resources:
Datasets, Reports, Papers, etc.
Object Identification

Concepts / Classes: Pot, Plant, Leaf

Instances: pot22, pot17, leaf234, plant12
Object Identification

What is an identifier?
An identifier is a sort of name (could be alphanumeric or numeric only) that identifies a specific object (digital or not) in a set of objects.

DOI or URI are string that identifies a particular resources

DOI: 10.1111/nph.15385 → http://doi.org/10.1111/nph.15385
http://www.inra.fr/mp3/2015/arch/exp21/plant227

In an ideal world identifier should be **unique for each object (bijection)**,
In practice this is rarely the case.
Object Identification

How do we want to identify? good **identifier**.

Non ambiguous
An identifier only stands for one resource. Whatever the database or source, two objects can not have the same identifier.

Confusions happens when different resources share the same identifier.

This characteristic is **mandatory** for identifiers.
Object Identification

How do we want to identify? good **identifier**.

Non ambiguous
An identifier only stands for one resource. Whatever the database or source, two objects can not have the same identifier.

Confusions happens when different resources share the same identifier.

This characteristic is **mandatory** for identifiers.

can change over time: e.g. **plot cutting**
Object Identification

How do we want to identify? good **identifier**.

Non ambiguous

Persistent

A persistent identifier is an identifier that is **permanently assigned to an object** (Ideally usable in **several decades**).

Aims: reusability of data over the long term (H2020 requirement)

The problem is that during periods of decades, many changes can occur within databases, but also in institutions or organizations in charge of the data. It is thus necessary to preserve and recover dependencies between these elements, this in time and localisation.
Object Identification

How do we want to identify? With **an efficient identifier**.

- **Non ambiguous**
- **Persistent**
- **Resolvable (Dereferencable)**

An identifier is said to be dereferenceable if it is possible to access the object or all the digital contents describing the object (e.g. URL, URI...).
Identification

What do we want to avoid for an efficient identification?

Non usability for operators:
- No semantic in the identifier / excessively long
 - 10908538265365831680853826536583168
 - http://www.domainname.fr/m3p/arch2017c17000915/FMfcgxwCgCSgPwrZxzkZtSHhnmvWWcpp
- Confusing letters
 - Little L and maj i : I & l are not easily differentiable
 - (idem for O letter and 0 number)
- Too much semantic in the identifier (avoid optional metadata)
 - (http://www.domainname.fr/m3p/Program/work_package/Country/Site/Year/Month/Day/Operator/Plant/Leave/Method/Color_of_the_pen/Length)
Identification

Country1/CityC/FieldF/TreatmentT/MaizeA

2sv67sMP

Semantic

Trade of

Opaque

common sense
Identification

Summary of what we want for an efficient identification

- Non ambiguous
- Persistent (based on data authority)
- Potentially resolvable (Dereferencable / web compatible)

And

- Only one language (english, other languages can be generated by alias)
- Minimum recognizable semantic part
 (Human readable to know unambiguously what it is during manipulations)
- Not too long
- Easy to generate and use

Data authority: a community approved and identified institution or body that is responsible of any type of action concerning data on the long term.
Variable naming

Variable naming and variable representation

- Measurements / observations / aggregated / calculated

potentially associated to all object types: biological material, events, organizational objects

And be

- unidimensional or multidimensional
- quantitative, qualitative, symbolic (intervals)
- spatial, temporal, thermal time
- phenotypic, environmental
How to define a variable?

The example of \textit{Plant Height}

- Plant with root?
- Plant with flower?
- Stem and leaves?
- Only the stem?
- Dry or not?
- In the morning or the end of the day?
Variable naming

What do **we want to avoid** in global context

- several names for same variable
- same name for several variable →
- Sharing fuzzy or unstable variables
- Zero semantic name
- Beware I (i) I (L) O and 0 (zero) in names
- No optional metadata in names

Figure From D. Pot, CIRAD
Variable naming

What do **we recommended** in global context

- Unambiguous name (in global context)
- Accessible description of variable
 - Description can be read by machine and human
- Try to reuse existing variable if available
- Use standardized/shared representation schema for formalisation of new variable (and share it)
Variable naming

Variable representation schema for phenotypic variable

Variable = Trait + Method + Unit

Trait = Entity + Attribute (or Quality)

Entity, Attribute, Method and Unit must be referenced (if possible) in references ontologies and semantic resources:

Crop O., Trait O., Plant O., PATO, Agrovoc, ENVO, etc
\(x^2\) Variable Description

Variable

<table>
<thead>
<tr>
<th>Internal Name</th>
<th>GroundCover_GmdCov_percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI</td>
<td>http://www.phenome-fppn.fr/m3p/variable/v000006</td>
</tr>
<tr>
<td>Related References</td>
<td>skos:closeMatch CO_321:0001104</td>
</tr>
<tr>
<td>Definition</td>
<td>Crop ground cover, or the percentage of soil surface covered by plant foliage.</td>
</tr>
</tbody>
</table>

Trait

<table>
<thead>
<tr>
<th>Internal Name</th>
<th>GroundCover</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI</td>
<td>http://www.phenome-fppn.fr/m3p/variable/1000006</td>
</tr>
<tr>
<td>Related References</td>
<td>skos:exactMatch CO_321:0000014</td>
</tr>
</tbody>
</table>

Method

<table>
<thead>
<tr>
<th>Internal Name</th>
<th>GrndCov</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI</td>
<td>http://www.phenome-fppn.fr/m3p/variable/m000006</td>
</tr>
<tr>
<td>Related References</td>
<td>skos:exactMatch CO_321:0000405</td>
</tr>
</tbody>
</table>

Unit

<table>
<thead>
<tr>
<th>Internal Name</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI</td>
<td>http://www.phenome-fppn.fr/m3p/variable/u000006</td>
</tr>
<tr>
<td>Related References</td>
<td>(not set)</td>
</tr>
</tbody>
</table>
Naming rules - concepts

- Quantity
- Unit
- Unit prefix (kilo, ...)
- Type of variable
- Entity of interest
- Type (Environment, trait, etc)
- Method
- Protocol and computation
- Situational metadata
- Sensor
- Value
- DATA
 Collection of measures / observations / simulation
Naming rules

How to give it a name?

BiomassWet

[127, 100, 114, 123, 97, 105, 107, 116, ...]

127

127

Biomass

Mass

g

1g = 0.001kg

QUDT Ontology

Controlled Context

Barley

Trait

Operator: Henri-René ;
LastCalibration: 12/04/2019 ;
LastWatering: 18/04/2019 ;
CutHeight: <2cm

FreshBiomassNoRoot

Cut the plant, measure weight, round to 1g

PrecisionScale01

How to give it a name?
What we could use

- Naming based on URI
 - share representation schema
 - Poor semantic URI
- Shared representation schema
- for “What”, “How”, “Context”, “Dimension”, etc (e.g. “height” of a “plant”)
- A part of the method / context / other
- can appear in aliases if necessary
 - Plant_Height_Met12
 - Plant_Height_Stem
 - Plant_Height_StemRoot
 - ...

Figure From D. Pot, CIRAD
Naming rules

What do we want to control in the name (or in alias)?

Importance of a controlled context

Example of an UAV for remote sensing in the field

Controlled context data
- X, Y, Z, time, speed
- Sensor type (RGB, NDVI, etc.)
- Wind mean measurement

Not controlled context: Cloud, variability of wind

Not controlled context *affect the measure* (example of the clouds for the light)
Interoperable Information systems allow data exchange and reuse among scientific disciplines, organisations and countries through syntactically parseable and semantically understandable operations.
Interoperability

Improvement needs:
- Data format
- Data typology
- Shared semantics
- Rate of database updates

Interoperability ?

Compatibility

Standard

Interoperability

- Architecture
- Data qualification
- Taxonomic framework
- Repository of actors
- Conditions of use
- Accessibility
- Geographical repository
- …
Interoperability

Bad practices?

A & B are compatibles *in another way* than C & D:

Harder now to interoperate A & B with C & D

Interoperability is *not only* with your domain:

Do not create your own format / ontology without prospecting communities approved standards *(in & outside of your community)*
Interoperability

Improvement locks:
Too much standards and speed of standard evolution

Data format, Data typology, semantics & ontologies, Data qualification, Data standards… tools, technologies, groups...

Skills availability

Data cost
Interoperability

Interoperating in a safe way:

Working on interoperability also needs to work on traceability

Provenance → Data traceability is the capability to trace data and **each stage of their transformation**.

Challenge:
- Identifying 100% objects,
- 100% actors,
- 100% transformations
Interoperability

Provenance (data traceability) challenge

Provenance is the capability to trace data and each of their transformation.

- ability to verify the
 - History / origin
 - location
 - curation
- keep track of a given set of information
 - in several distant information systems
 - within time
- keep track of the different versions

- by means of
 - Well documented
 - Metadata availability
 - Unambiguous identification
 - Naming
Interoperability

Interoperating in an efficient way:

Working on quality level of interoperability

Need to be maintained on the long term!
take into account the persistence of human resources and skills

Useful resources

CROP Ontology: https://github.com/bioversity/Crop-Ontology
DOI: https://www.doi.org/
ePIC: https://www.pidconsortium.eu/
GUID: https://fr.wikipedia.org/wiki/Globally_Unique_Identifier
Handle System Namespace and Service Definition: http://www.ietf.org/rfc/rfc3651.txt
HTML: https://www.w3.org/html/
HTTP protocol: https://www.w3.org/Protocols/IRI: https://www.ietf.org/rfc/rfc3987.txt
Linked data: https://www.w3.org/wiki/LinkedData
LSID: http://www.lsid.info/
ORCID: https://orcid.org/

OWL: https://www.w3.org/OWL/Plant Trait Ontology: https://github.com/Planteome/plant-trait-ontology
PURL: https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator
RDF (W3C): https://www.w3.org/RDF/RDF-S:
RDF-S: https://www.w3.org/TR/rdf-schema
SKOS: https://www.w3.org/TR/skos-reference
SPARQL: https://www.w3.org/TR/rdf-sparql-query
URI: https://www.w3.org/wiki/URI
URL: https://www.w3.org/TR/url
URN: https://www.w3.org/urn/UUID: https://www.w3.org/wiki/UriSchemes/uuid
XRI (OASIS): https://www.oasis-open.org/committees/xri/