Janine Tutor

Thérèse Ponsable

What's a relational database?

A single simple small table, and no relations (use Spreadsheet)

Multi user system (use MySQL, PostgreSQL, . . .) Constantly evolving data structure (use NO-SQL?) Data that cannot be decomposed into tables and relations

Hard to update

Thérèse gives SM to Janine (don't loose Therese) Rename Janine as Bob

Full scan of data What about the "Janine and the Mixtape" band

Hard to evolve

What if you add books, and who owns which book? How to do complex queries :

Database guidelines

Tables (doc : http://www.bkent.net/Doc/simple5.htm)

IntroductionI

 'll not use a spreadsheet. What do I do? When should I use SQLite ? Relations between objects (any DB) Local and single user (SQLite) Exchange data between programs (SQLite) When should I NOT use SQLIte ?

 One data table per real life object with one ID column One table per relation, relations should only reference existing ID's Only columns that contains IDs IDs references objects in data tables (here person and cd) IDs names should match referenced names (see latter NATURAL JOIN) IDs type must match referenced type (here integer) IDs columns are most of the time not null Foreign keys (doc https://sqlite.org/foreignkeys.html) Enable support once with PRAGMA foreign keys = ON; foreign key xxx references ttt(yyy) : each value of column xxx of this table must exists in the column yyy of table ttt; on delete cascade : deleting in referenced table, also delete here.

	SQL : create data table		
	doc : http://cpc.cx/iZm PRAGMA foreign_keys = ON;		
	Example create table person_own_cd(person_id integer not null, SELECT col1, col2, ... Cartesian product :	--columns	
	Be atomic create table person(person_id integer primary key autoincrement, first_name varchar, cd_id integer not null, FROM table1, table2, ... --cartesian product of tables SELECT * from person, person_own_cd foreign key person_id references person(person_id) on delete cascade, foreign key cd_id references cd(cd_id) on delete cascade); JOIN table3 on cond --joints WHERE condition1 person person own cd --condition person id first name last name X person id cd id NO : adress YES: name, street, number, zip code, city, country last_name AND condition2 --other conditions 1 Janine Tutor 1 1 varchar); AND condition3 2 Thérèse Ponsable 1 2 --... 3 Paul Auchon 2 3 Be stable person person own cd
	Guidelines GROUP BY col1, col2,... --group lines person id first name last name person id cd id NO : age (require daily update) YES: birth date ID's as : xxx id integer primary key autoincrment 1 Janine Tutor 1 1 --doc : http://cpc.cx/j0k 1 Janine Tutor 1 2
	Dates HAVING condition 1 Janine = 2 Thérèse 2 Thérèse NO : date as dd-mm-yyyy (alphabetical = chronological) Tutor 2 3 --condition on groupped lines Ponsable 1 1 --doc : http://cpc.cx/j0U Ponsable 1 2 ORDER BY col1, col2,... --sort results 2 Thérèse Ponsable 2 3
	;	NO : daylight saving time, localtime (confusion) datatype description integer integer number like 1, dates as seconds since epoch float floating point number like 3.5 Here, deleting a person or a CD deletes the related lines in 3 Paul Auchon 1 1 --doc : http://cpc.cx/j0l 3 Paul Auchon 1 2 3 Paul Auchon 2 3
		varchar person own cd character string, dates as yyyy-mm-dd	
		Pierre BLAVY (INRA) Pierre BLAVY (INRA)	Introduction to SQLite Introduction to SQLite	2017-04-10 2017-04-10	10 / 28 11 / 28

YES: UTC as yyyy-mm-dd hh:mm:ss YES: seconds since documented epoch (ex unix timestamp)

primary key : indexed, unique, not null autoincrment : new ids are automatically generated Others fileds : xxx datatype (doc : http://cpc.cx/iZl)

Pierre BLAVY (INRA)Introduction to SQLite 2017-04-10

SQLite is available nearly everywhere