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Abstract

Computational methods provide approaches to identify epitopes in protein antigens

to help characterizing potential biomarkers identified by high-throughput genomic or

proteomic  experiments.  PEPOP  version  1.0  was  developed  as  an  antigenic  or

immunogenic  peptide  prediction  tool.  We  have  now  improved  this  tool  by

implementing 32 new methods (PEPOP version 2.0) to guide the choice of peptides

that mimic discontinuous epitopes and thus potentially able to replace the cognate

protein antigen in its interaction with an antibody.  In the present work, we describe

these new methods and the benchmarking of their performances.

Benchmarking was carried out by comparing the peptides predicted by the different

methods and the corresponding epitopes determined by X-ray crystallography in a

dataset  of  75  antigen-antibody  complexes.  The  Sensitivity  (Se)  and  Positive

Predictive Value (PPV) parameters were used to assess the performance of these

methods. The results were compared to that of peptides obtained either by chance or

by using the SUPERFICIAL tool, the only available comparable method.

The PEPOP methods were more efficient than, or as much as chance, and 33 of the

34  PEPOP  methods  performed  better  than  SUPERFICIAL.  Overall,  "optimized"

methods (tools that use the traveling salesman problem approach to design peptides)

can predict peptides that best match true epitopes in most cases.
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Introduction

Antigen-antibody interactions are at the heart of the humoral immune response. B-

cell epitopes correspond to the regions of the protein antigen that are recognized by

the antibody paratope. Epitopes can be continuous (a linear fragment of the protein

sequence) or discontinuous (constituted of several fragments scattered in the protein

sequence,  but  nearby  on  the  surface  of  the  folded  protein)  [1–3].  Most  protein

epitopes  are  discontinuous  [4,5] and  thereforevery  difficult  to  map.  Epitope

identification and characterization are, however, pivotal steps in the development of

immunodiagnostic tests [6], epitope-driven vaccines [7] and drug design as well as in

protein function discovery,  biochemical  assays or proteomic studies for biomarker

discovery.  Epitopes  can  be  mapped  using  various  experimental  methods  [8–

12] among  which  crystallographic  analysis  of  antigen-antibody  complexes  is

considered  to  give  the  most  reliable  information  [13,14].  These  techniques  are,

however, time-, resource- and labor-consuming, and, thus, unsuitable for proteomic

applications. Computational methods could be an attractive alternative. B-cell epitope

prediction methods [9,15–17] try to bioinformatically predict the antibody binding site

on a protein sequence or on the 3D structure of a protein antigen. However, epitopes

are not structural entities on their own. Epitopes and paratopes are relational entities

that are defined by their mutual complementarity [18]. Thus, trying to predict a priori

the identity of a protein epitope is a difficult task. For this reason, epitope predictors

that  take  into  account  the  sequence  or  structure  of  the  antibody  have  been

developed [19–21], but are of limited application since available antibody structures

are scarce. Moreover, benchmark studies have highlighted  that tools for predicting

continuous epitopes have low efficiency  [22–24] and that  methods based on the
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antigen 3D structure show limited sensitivity (Se) and positive predictive value (PPV)

[25].

We approached this issue from a slightly different point of view. Considering that the

surface of a protein is a mosaic of potential antigenic epitopes, each of which could

be bound by a cognate antibody [26], we developed the PEPOP 1.0 tool  [27,28] to

generate series of peptide sequences that can replace continuous or discontinuous

epitopes in their interaction with their cognate antibody. Differently from discontinuous

epitope predictors where the output prediction is either a list of amino acids (aa) or

small protein fragments  [29–31], PEPOP proposes peptide sequences that can be

used  directly  in  experiments.  This  tool  promises  to  facilitate  the  manipulation  of

proteins in a way dealing with the output of proteomic studies.

We have previously validated the capacity of PEPOP 1.0 to generate immunogenic

[27] and antigenic peptides that  can be experimentally  probed with  antibodies to

disclose the cognate epitopes [32–35].

As  most  antibodies  against  protein  antigens  recognize  discontinuous  epitopes,

peptide design methods should take into account the structural information and try to

guess (mimic) the epitope discontinuity. We thus improved the PEPOP tool (version

2.0)  by  focusing  on  methods  for  better  predicting  peptides  aimed  at  mimicking

discontinuous epitopes. It is now possible using PEPOP to generate large series of

peptides that, collectively, should represent the accessible surface of the protein with

its mosaic of putative epitopes. Consequently, within these large series of peptides,

at least some should appropriately mimic antigenic epitopes.

In the present work, we describe these new methods and the benchmarking of their

performances. To this aim, we used a comprehensive methodology and a series of

test  proteins  for  which  epitopes  have  been  experimentally  determined  by  X-ray
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crystallography, which is the reference method. We show that the performance of

each  method  is  specific  and  that  one  method  (TSPaa)  performs  better  in  these

specific benchmarking conditions. We also compared the peptides designed by the

different PEPOP methods with those predicted by SUPERFICIAL, in which the 3D

structure  of  the  protein  surface  is  transformed  into  a  peptide  library  [36],  or  by

chance. PEPOP is available at http://pepop.sys2diag.cnrs.fr/.
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Results

PEPOP principle

PEPOP is an algorithm dedicated to the design of peptides that  are predicted to

replace a protein epitope in its interaction with an antibody [27]. To bioinformatically

design a peptide from the 3D structure of a given protein, a reference is chosen as a

starting point. This can be a surface-accessible aa or a segment (i.e., a fragment of

the protein composed of accessible and contiguous aa, from one to n aa, in the

sequence)  determined  by  PEPOP.  After  the  identification  of  the  aa  or  segments

neighboring the reference, a method is used to delineate a path between them and to

link them in order to generate the designed peptide. The aa or segments neighboring

the reference are selected in an area of extension that can be either a cluster or a

patch.  To  form  a  cluster  PEPOP  groups  segments  according  to  their  spatial

distances. A patch is defined around the reference. A requested peptide length has to

be  specified  by  the  user  in  some  methods.  PEPOP proposes  35  methods:  one

method  (the  FPS  method  already  included  in  PEPOP  1.0)  generates  peptides

representing continuous epitopes, whereas the other 34 methods (of which NN and

ONN  were  already  present  in  PEPOP 1.0)  are  focused  on  peptides  mimicking

discontinuous epitopes.

Methods’ redundancy

To assess the  capacity  of  the  different  PEPOP methods to  predict  peptides that

mimic  epitopes,  we  used  a  dataset  of  experimentally  (X-ray  crystallography)

determined epitopes that was filtered to eliminate any epitope redundancy (Table S1)

[25].  The redundancy in the output sequences generated by the different PEPOP
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methods was verified by comparing the set of peptides predicted by each method

(see "Peptide prediction" below). The low output redundancy by the different methods

(Figure  S2)  indicated  that  the  sequences  of  the  generated  peptides  were  highly

diverse, except among methods of the same category. Peptides obtained using the

SHP- and TSP-based methods showed less similarity with peptides obtained with the

other  methods  (from 0% to  53% and  61%,  respectively).  The  OPP,  SHPaa  and

TSPaa methods were the most original methods because their peptides did not show

any or only few similarities with the peptides generated by the other methods (37% at

most).  As the methods were developed to take into account different parameters,

these results indicate that, except for few methods, sampling is large. The PEPOP

methods  are  thus  complementary,  bringing  diversity  in  the  range  of  predicted

peptides.  This  is  useful  when  trying  to  represent  the  huge  diversity  of  possible

epitopes on a protein antigen.

Peptide prediction

Each of the 34 methods was used to generate a series of peptide sequences from

the 3D coordinates of the 75 antigens. As a protein is composed of a mosaic of

epitopes [26,32], any region (cluster or patch) is potentially an epitope. Hence, all the

possible peptides from a protein were predicted: each reference, segments or aa was

used  in  turn  to  design  a  peptide.  In  this  way,  the  whole  protein  surface  was

represented by the set of peptides generated by a given method.

Requested length

To design a peptide using PEPOP, a sequence length for the predicted peptide has to

be chosen (requested length).  Nonetheless,  as  segments  of  variable  lengths  are
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used to build the peptide sequence, the final peptide length might differ  from the

requested length. The appropriate requested length to use for benchmarking was

determined by requesting discrete lengths (ranging from 8 to 16 aa) for the predicted

peptides. The final mean peptide sizes are reported in Table 1. As expected, the

average  final  lengths  were  higher  than the  requested  lengths  by  2  or  3  aa  and

increased with the requested length. According to the chosen method, the average

final peptide lengths could be very different. For benchmarking, the prime and linker

methods should use the same requested length, unless this lead to different peptide

sizes, to allow their comparison and the evaluation of the linker contribution. For the

evaluation,  two  requested  lengths  were  chosen:  12  aa  for  the  prime  and  linker

methods and 16 for the graph-based methods because they lead to an average final

peptide length close to the mean length of the epitopes in the dataset (16.7 aa).

Benchmarking

The 34 methods predicted a total of 119277 peptides (i.e., about 3508 per method

and 1590 per antigen), using the 75 protein antigens of the dataset (Table S1).

The Se (proportion of peptide residues present also in the epitope) and the PPV

(proportion of epitope residues in the predicted peptide) parameters were used to

evaluate the methods’ performance. A perfectly accurate prediction would give Se

and PPV values of  1.  The mean Se ranged from 0.34 to  0.49,  according to  the

method, and the mean PPV was a little higher (between 0.39 and 0.57) (Figure S4).

In  the  evaluation  of  discontinuous  epitope  prediction  tools  carried  out  by

Ponomarenko & Bourne using the same dataset, the mean Se and PPV with the best

method were 0.46 and 0.40, respectively  [25], indicating that many of the PEPOP

approaches are more efficient.
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The  Se  and  PPV  mean  values  give  a  measure  of  the  adequacy  between  the

predicted peptide and the reference epitope, but they do not discriminate between

methods.  However,  a researcher would wish to  have a method that  provides the

highest possible number of peptides for the highest possible number of epitopes. To

know whether  a  method  is  more  performing  than  another,  (i.e.  whether  a  given

method can predict the best possible matching peptides for the widest possible range

of epitopes),  the Se and PPV minimal value (threshold) to consider a method as

theoretically efficient must be determined.

To select an appropriate threshold, we studied the distribution of peptides relative to

their Se and PPV (Figure 2 and Figure S5). On average, a method predicted 7.6% of

peptides with a Se and PPV above 0.6, 1.73% of peptides with a Se and PPV above

0.7 and 0.13% of peptides with a Se and PPV above 0.8 (i.e., about 267, 60 and 4

peptides,  respectively,  based  on  the  mean  number  of  peptides  predicted  per

method). We finally selected the 0.7 value as the threshold because it offers a good

compromise between “quality” and quantity of predicted peptides.

We then calculated the proportion of peptides with a Se and a PPV higher than 0.7

for each method (Figure 3, empty bars). Group of methods were roughly clustered

around similar values. Indeed, 1.4 to 1.9% of peptides generated by using the prime

methods had Se and PPV values above 0.7, whereas this percentage decreased to

0.7% for peptides designed with the ALA methods. Compared to the prime methods,

the performance of the ALA methods decreased due to the beneficial effect of the

addition of Alanine residues between segments on Se and its unfavorable effect on

PPV. The SA methods were slightly more efficient than the prime methods, but not

the SAS methods. This also was the result of a beneficial effect of the addition of aa

linkers on Se and their  negative effect  on PPV.  TSP-based methods,  particularly

10

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/435974doi: bioRxiv preprint first posted online Oct. 5, 2018; 

http://dx.doi.org/10.1101/435974
http://creativecommons.org/licenses/by/4.0/


TSPaa, were the most efficient as they generated the highest percentage of peptides

with Se and PPV above 0.7.

We then calculated for how many antigens, a given method would generate peptides

with a Se and a PPV higher than 0.7 (Fig. 4, empty circles) in order to know whether

a method was efficient with different proteins. As before (see Fig. 3), methods from

the same group showed similar performances and the most efficient were the TSP

methods.  Indeed,  TSPaa,  TSPnat3  and TSPrev4 targeted the  highest  number  of

antigens.

Influence of peptide length

As Wang and collaborators  [37] showed that  their  performance classification was

dependent on the epitope length, we studied the influence of the peptide length on

the methods’ performance. First, we determined the number of peptides with Se and

PPV above 0.7, relative to the peptide-epitope size difference (Fig. 5). We found that

peptides that were closer in size to the epitope performed better. We then analyzed

the influence of the five requested peptide lengths (8, 10, 12, 14 and 16 aa) on the

performance  of  the  methods  (Fig.  6).  The  peptide  length  had,  as  expected,  no

influence  on  the  performance  of  the  SHP and  OPP methods  (because  the  final

peptides are identical whatever the requested peptide length) (Figure 6C). It had a

weak influence on the performance of the ALA methods (the final peptides are longer

than the requested length, but they are only enriched in Ala residues) and on the SA

and SAS methods (peptides are possibly enriched of several aa, and this may have

an  unfavorable  effect  depending  on  the  epitope  composition).  Conversely,  the

performance  of  the  NN,  NNu,  ONN,  FN,  OFN  and  TSP methods  progressively

increased  with  the  peptide  length.  Nevertheless,  TSPaa  remained  the  most
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performing  method.  These  results  also  show  that  when  selecting  the  PEPOP

parameters, it is advisable to request a peptide length close to the epitope size, i.e. a

number of  aa of the peptide close to the average number of  aa contained in an

epitope (17aa).

Amino acid positions

The aa positions were not taken into account for Se and PPV computations because

the nature of the aa and not their  original  position in the protein is important for

antibody recognition. However, the closeness and the order of aa residues in the

peptide  could  be  important  factors  for  protein  mimicry  by  peptides.  Thus,  we

computed again the Se and PPV values by taking into account the aa position in the

predicted peptides compared to their position in the epitope. As expected, the Se and

PPV values of all methods decreased when taking into account the aa positions (Fig.

3,  black  bars,  and  Fig.  4,  black  circles,  and  Figure  S4).  All  methods  showed

comparable mean PPV values, except for the SA and SAS methods (Figure S4A).

The mean Se values, when taking or not into account the aa positions, have similar

profiles (Figure S4B). Despite the overall  reduction in efficiency (i.e., proportion of

peptides with both Se and PPV higher than 0.7) when taking into account the aa

positions, methods followed the same tendency as the analysis that did not take into

account the aa positions. TSPaa again was the most efficient method (Fig.3). When

calculating for how many antigens a given method would generate peptides with a Se

and a PPV higher than 0.7 by taking into account the aa positions, the most efficient

method  was  TSPrev1  instead  of  TSPnat3,  but  overall,  the  TSP  methods  still

performed best  (Fig.4).  On the  other  hand,  SHPaa did  not  produce any efficient
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peptide (Fig.3 and 4). Thus, the results of the Se and PPV computations that take

into account the aa positions confirmed the previous analysis.

Comparison with SUPERFICIAL

We then compared our results with those obtained using SUPERFICIAL (Sfs), the

only other available peptide design tool. This software predicted 143 discontinuous

peptides  from  30  antigens  of  the  dataset,  including  21  peptides  from  only  one

antigen. The proportion of peptides generated by SUPERFICIAL with Se and PPV

values higher than 0.7 was about 0.7% (Figure 3), a value similar to the one obtained

with the lowest performing PEPOP methods. Moreover, SUPERFICIAL did generate

peptides with Se and PPV values higher than 0.7 only for one antigen among the 75

proteins of the dataset (Fig. 4). Finally, SUPERFICIAL did not predict any peptide

with Se and PPV higher than 0.7 when the aa positions were taken into account

(Fig.3).  In  conclusion,  all  PEPOP methods  performed better  than  the  only  other

available peptide design tool.

Comparison with chance

Finally,  we compared the PEPOP methods to a method that predicts peptides by

chance. The performance of the random method was comparable to that of the less

efficient PEPOP methods (ALA methods). It predicted 0.8% of peptides with Se and

PPV values higher than 0.7 for one antigen out of 3. When the aa positions were

taken into account, the random method did not predict any efficient peptide (Fig.3).

These results show that peptides predicted by the PEPOP methods are not efficient

only by chance. This was further confirmed by the probability to predict  the most
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efficient peptide (10E-24). These results indicate that the PEPOP methods perform

much better than chance.

Example

We then wanted to assess how well the most efficient peptides (best Se and PPV)

designed by PEPOP represent the corresponding epitope on the 3D structure of its

antigen (Figure 7). Among all the PEPOP methods, we selected the peptide having

the best Se and PPV without taking into account the aa positions (Fig.7A) and the

peptide  having  the  best  Se  and  PPV when taking  into  account  the  aa positions

(Fig.7B). The two peptides matched pretty well their epitope (all the epitopic aa are

predicted in the peptides).  Nonetheless, the Se and PPV values greatly changed

depending on how they were calculated. For example, the first peptide has Se and

PPV of respectively 1 and 0.864 but if the aa positions are not taken into account, Se

and PPV are of only 0.368 and 0.318 respectively. However, the peptide includes

effectively the same nature of aa than the epitope. This example shows that what is

important for the final peptide is the nature of the aa, not its position in the protein.

We then selected the two best peptides (highest Se and PPV) generated by TSPaa

method when taking (Fig. 7D) or not (Fig.7C) into account the aa positions. These

two predicted peptides also match pretty well their epitope (only one epitopic aa is

not predicted in the peptides). This example shows that even if TSPaa is the best

performing method, it does not actually predict, for every antigen, the most efficient

peptides since these two peptides have Se and PPV slightly  lower than the two

previous peptides. Hence, all the PEPOP methods should lead to efficient peptides.
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In any case, the peptides contained a majority of epitopic aa and thus they should be

recognized by the antibody, particularly because the arrangement between aa was

optimized.
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Discussion

PEPOP (http://pepop.sys2diag.cnrs.fr/) is a prediction tool of antigenic / immunogenic

peptides. It was developed, not to predict epitopes, but to deliver series of peptides

that should mimic epitopes, particularly discontinuous epitopes, which are the more

common ones. It is more complex to predict peptides mimicking discontinuous than

continuous epitopes because the aa order is not already defined. As enumerating all

possible peptides would amount to solving a complex NP-complete problem and it

would anyhow be impossible to test all of them computationally or experimentally, a

limited enumeration must be defined. To this aim, PEPOP version 2.0 was improved

by implementing 32 new methodologies that  exploit  different  criteria,  such as the

distance between segments, their disposition in the peptide and their conformation

relative to the protein antigen, to design discontinuous peptides that match as much

as  possible  the  antigen.  The  main  principle  is  to  find  a  path,  an  arrangement,

between  elements  (segments  or  aa)  of  a  defined  area  on  the  protein  that  will

compose the final peptide.

The prime methods design a peptide from a reference segment and add to it  its

neighboring segments. Compared to the NN method, the FN method was developed

to maintain the reference segment in the central position. The ONN, OFN and OPP

methods  search  for  the  most  natural  path  between  segments  by  minimizing  the

traveled  distance.  The  linker  methods  add  (or  not)  aa  between  segments.  The

purpose of the ALA method is to keep in the peptide the same segment spacing of

the antigen protein to allow the interacting aa of the antibody to establish contacts.

The SA and SAS methods use the  protein  blocks  (PBs)  of  a  structural  alphabet

[38,39] to  facilitate  the  adoption  of  the  protein  conformation.  To  bypass  the  NP-

complete problem of enumerating all possible arrangements between the segments
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composing the peptide (n! permutations) in ONN, ONF and OPP methods, we used

the graph theory. In the graph-based methods, the objective is to find the optimal

path between segments or aa, as this should lead to peptides close to the native

protein context.

Here, we evaluated the performance of the 34 methods included in PEPOP 2.0 by

measuring  the  match  between  the  peptide  composition  and  that  of  known

discontinuous  epitopes and classified  as  efficient  the  methods that  predicted  the

largest number of peptides with both Se and PPV values higher than 0.7 (efficient

peptides). We found that the TSP-based methods, particularly TSPaa, TSPnat3 and

TSPrev2, predicted the best matching peptides in most cases, although they did not

lead to the best peptide (Figure 7). TSPaa was the most efficient method in silico as it

predicted  the  largest  percentage  of  efficient  peptides  for  the  highest  number  of

antigens. These methods performed better because the search of the optimal path

using the TSP allows selecting the correct segment or aa (i.e., the segment or aa

present in the epitope). All PEPOP methods, except OPPala, were more successful

than SUPERFICIAL and more efficient than or as much as the method predicting

peptides by chance.

Benchmarking of different computational methods must be done with precaution as

the tools, datasets and metrics can be different from one analysis to the other, thus

not allowing objective comparisons. Even the definition of epitope can be different.

Indeed, some consider the part of the antigen recognized by one antibody as an

epitope on its own, whereas others consider to be an entire epitope all the aa found

to interact with any antibody  [16]. Moreover, some authors think that proteins have

only one or few epitopes on the surface  [40],  whereas others see a protein as a

mosaic  of  epitopes  [26].  Finally,  because  all  the  possible  epitopes  could  not  be

17

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/435974doi: bioRxiv preprint first posted online Oct. 5, 2018; 

http://dx.doi.org/10.1101/435974
http://creativecommons.org/licenses/by/4.0/


discovered,  only  a  few of  the features that  characterize epitopes are used when

trying  to  discriminate  between  epitopic  and  non-epitopic  aa.  This  could  at  least

partially explain why all epitope prediction tools show a weak performance  [22,25].

And,  we believe that  an epitope cannot  be faithfully  predicted without  taking into

account its antibody partner, because epitopes only exist through the interaction with

their cognate antibody [41]. Thus, studies taking into account the antibody partner in

predicting antigen epitopes are of particular interest [19–21,42] although, because of

the  poor  availability  of  antibody  data,  they  currently  cannot  be  applied  in  high-

throughput analyses.

To determine whether some of the 34 methods included in PEPOP version 2.0 for

designing discontinuous peptides are more relevant than others, we carried out a

benchmark  process.  To  this  aim  we  followed  as  much  as  possible  the

recommendations  by  Greenbaum  and  collaborators  [43] for  assessing  the

performances  of  epitope  prediction  methods,  although  PEPOP  goal  is  slightly

different from that of “classical” epitope prediction tools. We decided to use Se and

PPV together  to  select  the  most  efficient  peptides,  although  they  are  threshold-

dependent. Indeed, when used on their own, they do not provide a complete picture

of the method performance. For instance, a peptide with a Se (number of epitopic aa

included in the peptide) close to 1 could also contain many additional aa that might

disturb its recognition by the antibody. Similarly, a peptide with a PPV (number of the

peptide aa included in the epitope) close to 1 could contain not enough epitopic aa

for  antibody recognition.  Considering  a  given antigen-antibody  interaction,  not  all

generated peptides will match the epitope because peptides come from the entire

surface of the protein. However, a method can be considered efficient if it yields an
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elevated number of peptides that closely match the epitope (i.e., with both Se and

PPV higher than 0.7 in our study).

Nevertheless,  benchmarking  under-evaluated  the  linker-based  methods.  Indeed,

even if a peptide generated using these methods included all the aa of the epitope,

its PPV would be lower than the PPV of the same peptide without linker (e.g., a

peptide designed using the ONNala, ONNsa or ONNsas method versus the same

peptide generated using ONN). This despite the fact that the linker methods were

developed to increase the performance, based on the hypothesis that spacing the

segments  by  linker  amino  acids  would  better  mimic  their  real  disposition  on  the

protein and consequently facilitate the peptide recognition by the antibody. Although

this bias was compensated by a slightly higher Se, we feel that the principle on which

these methods are based has been not perfectly appraised.

It is difficult to claim that one method is better than another one. Indeed, the good

performances  of  one  method  in  terms  of  Se  and  PPV  do  not  ensure  that  the

corresponding  peptides  will  actually  be  recognized  by  an  antibody.  Only  their

experimental evaluation can confirm the peptide reactivity. Indeed, the idea behind

the PEPOP tool is that, due to the inherent difficulty to guess an epitope, it would be

preferable  to  generate  a  comprehensive  series  of  peptides  that  can  be

experimentally assessed to determine which ones are endowed with the properties of

a functional  epitope.  The mean number of  peptides predicted per  antigen by the

PEPOP methods was 1590. Experimentally testing the antigenicity  of  about  1500

peptides is feasible by techniques like peptide microarrays [44–46]. Thus, the specific

epitopes  of  a  given  antigen  could  be  identified  by  running  all  PEPOP methods,

synthesizing the generated peptides and testing them in microarrays. Conversely, the

experimental validation of about 120000 peptides (number of peptides designed by
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the  PEPOP  methods  for  the  entire  dataset)  would  require  too  much  time  and

resources and probably would not be feasible for any future peptide design tool.

Testing the immunogenicity of at least 1500 peptides would be even worse. Due to

these difficulties to realize systematic experimental validations, we believe PEPOP,

and others similar tools,  have to be seen as "test  tubes"  which will  gradually be

validated  as  studies  will  be  developed,  until  a  consensus  satisfactory  validation

process is developed. Although some studies begin to explore this problem [47] the

proposed benchmark  is not applicable for all epitope prediction tools neither for all

studies. Anyway,  PEPOP has already been successfully used in several studies of

different goals [27,32–35,48,49].

In the workshop report by Greenbaum et al., Dr Van Regenmortel "emphasized the

need to clarify the purpose of making a specific epitope prediction, and how this

clarification  could  direct  selection  of  the  most  appropriate  prediction  tool  or

development of a new tool, as needed". PEPOP has been or can be used for all the

purposes where surrogate epitopes are needed, purposes such as those cited by

Van Regenmortel,  i.e.  "seeking vaccine candidates"  [49] or "replacing antigens in

diagnostic  immunoassays".  It  can  also  efficiently  help  in  mapping  epitopes  [33–

35,50,51] and  would  be  a  very  informative  tool  for  understanding  the  rules  of

molecular mimicry, a very difficult [23,41,52] but promising research field as testified

by the number of available studies [9,53–56] and tools [30,57,58]. PEPOP could also

help  characterizing  all  new  proteins  discovered  by  high-throughput  technologies,

such as proteomics [59,60], by facilitating their manipulation.

20

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/435974doi: bioRxiv preprint first posted online Oct. 5, 2018; 

http://dx.doi.org/10.1101/435974
http://creativecommons.org/licenses/by/4.0/


Experimental procedures

Structural data

The dataset of 165 X-ray-determined epitopes was from (Ponomarenko & Bourne,

2007).  To  avoid  bias  caused  by  the  over-  or  under-representation  of  an  epitope

described by several 3D structures of the same antigen-antibody complex, epitope

redundancy was eliminated by keeping only one crystallography of a given antigen-

antibody complex. Therefore, 90 antigen-antibody complexes were rejected. The final

dataset was of 75 unique antigen-antibody complexes (Table S1).

The epitope size varied from 4 to 23 residues with only one exception (52 aa). The

average  size  of  an  epitope  was  16.7  aa  (median:  17  aa).  Epitopes  were  all

discontinuous and were composed of 3 to 14 segments, each containing 1 to 12

contiguous aa. An epitope contained on average 7 to 8 segments of 2.38 aa. These

data are in accordance with the literature [56,61,62].

Epitope definition

An epitope was defined as a series of aa included in the protein antigen. These aa

contained at  least  one atom that  establishes a contact  (i.e.,  a  distance threshold

lower than or equal to 4Å) with an atom from the antibody.

PEPOP methods

Peptides that mimic the discontinuous epitopes of the dataset were designed using

the different PEPOP methods (Figure 1). To build a peptide, the PEPOP algorithm

concatenates either segment sequences (a continuous stretch of surface-accessible

aa)  or  single  surface-accessible  aa  from  the  antigen  3D  structure.  Based  on
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Euclidian distances, the PEPOP methods first select the neighboring segments or aa

and then determine in which order assemble them to form the final linear peptide

sequence  supposed  to  mimic  the  discontinuous  epitope.  PEPOP  2.0  has  been

improved by addition of 34 new methods to the two already present in PEPOP 1.0.

These methods are  based on different  criteria  because precise  rules  for  peptide

design are lacking due to our poor understanding of the mechanisms underlying the

molecular mimicry of a native protein by a linear peptide. These methods can be

classified in three main groups: (a) prime methods, (b) linker methods and (c) graph-

based methods.

a)  In  the prime  methods (Figure  1  and  Figure  S1)  neighboring  segments  are

collected around a reference segment (starting segment). Therefore, starting from the

reference  segment  and  until  a  defined  peptide  length  is  reached,  the  methods

concatenate the segments as follows:

 the  nearest  neighbor  (NN)  method adds  the  sequence  of  the  nearest

neighbor segment C-terminally to the forming peptide;

 the upset nearest neighbor (uNN) method adds the sequence of the nearest

neighbor segment C-terminally in the natural or the reverse sense according to the

distance of the C-terminus of the forming peptide;

 the  flanking  nearest  neighbor  (FN)  method adds  the  sequence  of  the

nearest neighbor segment in turn C-terminally and N-terminally to build the peptide.

More  sophisticated  prime  methods  are  directly  derived  from  these  three  firsts

methods and are used to determine the optimized path between segments, i.e. in

which order assemble them, by enumerating all possible arrangements. The sums of

the  distances  between  segments  are  then  calculated.  The  optimized  path
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corresponds  to  the  arrangement  with  the  shortest  total  distance.  No  extra  aa  is

added. Thus, the optimized path can be calculated by using:

 the optimized nearest neighbor (ONN) method for segments found using the

NN method.

 the optimized flanking nearest neighbor (OFN) method: for segments found

with the FN method.

 the  optimized  patched  segments  path  (OPP)  method: for  the  set  of

segments present in a 10Å-radius patch.

b) Linker methods. As in the prime methods no intermediate aa is added, 16 linker

methods were  then derived from these methods to  add extra  aa  (Figure  1 and

Figure S1) between segments generated by one of the prime methods (NN, ONN,

FN, OFN, OPP):

 the ALA linker methods (NNala, uNNala, ONNala, FNala, OFNala, OPPala)

add an alanine linker, as many times as the distance between segments allows the

insertion of a peptide bond. Alanine is often considered as the most average aa in

terms of length, volume and polarity.

 the structural alphabet-based linker (SA) methods (NNsa, ONNsa, FNsa,

OFNsa, OPPsa) add zero, one or two aa as linkers. Protein blocks (PBs) [38,39] form

a library of 16 small protein fragments of five residues in length that can approximate

every part of a protein structure. PBs are overlapping, so each PB is followed by a

limited number of PBs (i.e., some specific transitions exist between PBs). First, the

transitions  between  segments  are  verified  in  the  segments  transcribed  into  PBs,

based on the protein 3D structure. According to the PB transition matrix  [63], if the

transition between the last PB of a segment and the first PB of the following segment

is allowed, no aa is added between these segments. If the transition is not allowed, a
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PB is virtually added by searching the one leading to the best PB transition. Adding a

PB means adding an aa. The most favorable aa is determined from data calculated

from the PDB file that reports each aa statistical preferences for each positions in

each PB [38]. If a transition cannot be found, the process is repeated by adding two

PBs. If also this does not work, the peptide is not possible.

 the  structural  alphabet  superposition-based  linker  (SAS)  methods

(NNsas, ONNsas, FNsas, OFNsas, OPPsas) add one aa as linker according to the

structural  superposition of  the segment using the structural  alphabet  approach to

facilitate the peptide folding in the same fold as the corresponding fragments in the

protein.

c) Graph-based methods (Figure 1) use the graph theory to model a given protein,

its segments and its aa, in order to find the neighboring segments or aa. They employ

three different graphs where edges are weighted by Euclidian distances. The first

graph ("natural" graph) is oriented. The nodes are protein segments and can only be

added  in  their  natural  sense,  from N-terminus  to  C-terminus.  The  second  graph

("reversed" graph) is the non-oriented version of the previous one. The third graph

("aa"  graph)  is  non-oriented and  the  nodes are  surface-accessible  aa  instead of

segments. Two algorithms used these graph to find the optimal path, i.e. in which

order assemble the segments or aa:

 SHortest  Path  (SHP)-based methods (three methods):  from a  set  (i.e.,  a

cluster or a patch, see definitions below) of elements (segments or aa), a peptide is

the shortest path between two elements that include most aa residues. The SHPnat

method uses the "natural" graph, SHPrev the "reversed" graph and SHPaa the "aa"

graph.
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 Traveling Salesman Problem (TSP) based methods (nine methods): from a

set (cluster or patch) of elements (segments or aa), the TSP algorithm is used to find

the optimal path (shortest distance) between elements. The TSPnat methods use the

"natural"  graph,  the  TSPrev methods  use  the  "reversed"  graph  and  the  TSPaa

method uses the "aa" graph. From the optimal path between the elements defined by

the TSP algorithm, all possible peptides of the requested length are computed. The

final peptide, identified using the:

 TSPnat1 and  TSPrev1 methods, is the peptide with the highest score (see

"peptide scoring")

 TSPnat2 and  TSPrev2 methods,  is  the  peptide  with  the  shortest  traveled

distance

 TSPnat3 and TSPrev3 methods, is the peptide for which the traveled distance

according to the number of segments of the peptide is the shortest

 TSPnat4 and TSPrev4 methods, is the peptide that includes the two closest

segments

 TSPaa method, is the peptide for which the traveled distance is the shortest.

The protein area used in the SHPnat, SHPrev, TSPnat and TSPrev methods is a

cluster or a 15Å-radius patch (see definitions below). The area used in the SHPaa

and TSPaa methods is a varying patch.

Definition of cluster and patch

In PEPOP, clusters are segments grouped according to their spatial distances. They

are  calculated  using  Kitsch  from  the  PHYLIP package  v3.67  [64],  as  previously

described  [27].  PEPOP uses  three  types  of  patches.  The  10Å-  and  15Å-radius

patches gather segments within a fixed distance, respectively 10Å and 15Å, from the
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center of gravity of a reference segment. The third patch type gathers the aa at a

distance that varies from 15 to 20Å from a reference aa: the final radius is the one in

which  the  average number of  aa between radius  15,  16,  17,  18,  19 and 20Å is

collected.

As each segment is used in turn to define a patch, the number of 10Å- and 15Å-

radius  patches is  equal  to  the  number  of  segments  (Figure  S3).  The number  of

varying patches is equal to the number of accessible aa because each aa is used in

turn to define a varying patch.

Peptide scoring

In  PEPOP,  the  score  of  a  peptide  is  the  sum  of  the  scores  of  the  segments

composing the peptide [27]:

Sp=∑ Ss

Ss=Naa+Naccess+Nhyd+Nwryp+Nturn

where Sp is the peptide score, Sp the segment score, Naa the number of amino

acids composing the segment, Naccess the average accessibility  of the segment,

Nhyp the number of hydrophobic amino acids, Nwryp the number of specific amino

acids (W, R, Y or P) and Nturn the number of amino acids involved in a β–turn.

Peptide predictions

Depending on the  PEPOP method,  each segment  or  surface-accessible  aa  of  a

protein antigen is used as a reference to design a peptide.
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In the prime (NN, uNN, ONN, FN, OFN, OPP methods) and linker methods (ALA,

SA and  SAS  methods),  peptides  are  predicted  from  each  segment  defined  by

PEPOP. The number of peptides generated by these methods corresponds to the

number of segments.

In  the  graph-based  methods that  model  protein  segments  (SHPnat,  SHPrev,

TSPnat1, TSPnat2, TSPnat3, TSPnat4, TSPrev1, TSPrev2, TSPrev3 and TSPrev4),

peptides are predicted in PEPOP clusters and in 15Å-radius patches. As each protein

segment  is  successively  considered as  a  reference segment,  there are  as  many

patches  as  segments.  The  number  of  peptides  predicted  by  these  methods

corresponds to the number of clusters plus the number of segments.

In  the  graph-based methods that  model  the  surface-accessible  aa  of  the  protein

(SHPaa  and  TSPaa),  peptides  are  predicted  in  PEPOP clusters  and  in  varying

patches.  The  number  of  aa  is  computed  for  all  radii  between  15  and  20Å  (1Å

increment per step), and the radius leading to the average number of aa defines the

final patch. The number of peptides predicted by these methods corresponds to the

number of clusters plus the number of segments.

In each method, redundant peptide sequences are eliminated; however, two different

methods can predict the same peptide sequence.

Performance evaluation metrics

The capacity of each peptide generated by a given PEPOP method to mimic the

epitope described in the reference dataset for that protein was evaluated using two

criteria: the sensitivity (Se) and the positive predictive value (PPV).

FNTP

TP
Se




FPTP

TP
PPV



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TP (True Positive) is the number of aa belonging to both the generated peptide and

the reference epitope.  FP (False  Positive)  is  the  number  of  aa  belonging to  the

peptide, but not to the epitope. FN (False Negative) is the number of aa belonging to

the epitope, but not to the peptide. Hence, Se represents the proportion of epitope aa

present in the peptide, whereas PPV is the proportion of peptide aa present in the

epitope.

The aa nature or  the aa position in the peptide and reference epitope was then

compared by not taking and by taking into account the aa positions of the protein.

The aa used in linker methods (ALA, SA and SAS) were considered in the evaluation

that takes into account the aa positions only after all the other aa of the peptide were

compared with the epitopic aa. We chose to take into account the supplementary aa,

because otherwise it would have amounted to evaluate again the results of the prime

methods. Indeed, the only difference between prime and linker methods is the aa that

are added between segments  and that  do not  correspond to  any position in  the

protein.

To measure the correlation between performance and size between peptides and

epitopes, the absolute value was calculated.

Chance

Random method

Peptides were designed as sequences of  randomly selected aa according to  the

protein aa composition. The peptide length was randomly computed according to the

distribution of peptide lengths designed by PEPOP using the dataset of 75 antigens.

The number of peptides was randomly chosen according to the number of peptides

designed by each PEPOP method.
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Probability

If X is a surface-accessible aa (alanine, cysteine, …, tyrosine), nX  and pX  represent

the number of occurrences of X in the protein and the peptide, respectively.  The

probability  to  obtain  a specific  peptide sequence by chance is  thus given by the

following formula:

with:

where n=nA+nC+nP+...+nY is the number of surface-accessible aa in the protein and

p= pA+ pC+ pP+...+ pY the number of aa in the peptide.

SUPERFICIAL

The aim of SUPERFICIAL [36] is to design peptides that mimic regions at the surface

of a given protein, starting from its 3D structure. SUPERFICIAL first computes the

surface-accessibility of each aa and then builds segments as surface-accessible and

contiguous  aa  sequences.  Peptides  can  be  made  of  several  segments  close  in

space, linked together in order to conserve the local conformation of the targeted

protein surface. SUPERFICIAL finds the linkers by calculating the number (not the

type) of aa needed to link two segments, based on the distances and angles between

their C- and N-termini.
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Table 1. Mean peptide size according to the requested peptide length.

mean L=8 L=10 L=12 L=14 L=16

of the means 11.66 13.35 14.95 16.45 17.70

standard deviation 2.16 2.34 2.66 3.02 3.29

Prime methods 10.44 11.97 13.53 15.14 16.65

ALA methods 14.98 17.24 19.06 20.36 21.05

SA methods 11.45 13.13 14.77 16.44 17.88

SAS methods 12.96 14.87 16.72 18.47 19.80

Prime and Linker methods 12.48 14.33 16.05 17.62 18.84

Graph-based methods 10.16 11.55 12.96 14.31 15.59

SHP based methods 13.27 13.27 13.27 13.27 13.27

TSP based methods 9.13 10.98 12.85 14.66 16.37

TSPaa method 8.00 9.99 11.99 13.98 15.97

TSPnat and TSPrev methods 9.27 11.10 12.96 14.75 16.42
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Figure 1. Flowchart describing how PEPOP predicts a series of peptide sequences

("Peptide Bank" section of the web site of PEPOP).

Figure 2. Example of the distribution of the Se (upper panel) and PPV (lower panel)

values  of  the  peptides  predicted  by  the  OFN  methods  (OFN,  OFNala,  OFNsa,

OFNsas) without taking into account the aa positions.

Figure 3. Performances of the methods: proportion of peptides with Se and PPV >

0.7. Empty bars, the aa positions were not taken into account; solid bars, the aa

positions were taken into account.

Figure 4. Robustness of the performance of  the methods.  For each method, the

number of antigens is plotted with a circle size proportional to the number of peptides

having Se>0.7 and PPV>0.7. Empty circles, the aa positions have not been taken

into account; solid circles, the aa positions have been taken into account.

Figure 5. Relationship  between peptide  performance and size  similarity  between

epitope and peptide. Aa positions were taken into account.

Figure 6. Influence of the requested peptide length on the methods’ performance. A.

Se and B. PPV distribution according to the requested peptide length. C. Proportion

of peptides with Se and PPV >0.7 based on the requested peptide length, from 8

(solid bars) to 16 (empty bars) aa with an increment of 2 at each step.
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Figure 7. 3D views of the most efficient peptides generated with the dataset using all

PEPOP methods (A and B) or TSPaa (C and D). A and C, peptides having the best

Se and PPV computed without taking into account the aa positions (WTK); B and D,

peptides  having  the  best  Se  and  PPV computed  by  taking  into  account  the  aa

positions (TK). The peptide aa are in red, the epitope aa are in blue and common aa

are in purple. The antibody is in grey.

41

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/435974doi: bioRxiv preprint first posted online Oct. 5, 2018; 

http://dx.doi.org/10.1101/435974
http://creativecommons.org/licenses/by/4.0/


Figure 1
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Figure 2
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Figure 3
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Figure 5
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