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Abstract 22 

Species distribution models (SDMs) are important statistical tools for ecologists to understand 23 

and predict species range. However, standard SDMs do not explicitly incorporate dynamic 24 

processes like dispersal. This limitation may lead to bias in inference about species distribution. 25 
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Here, we adopt the theory of ecological diffusion that has recently been introduced in statistical 26 

ecology to incorporate spatio-temporal processes in ecological models. As a case study, we 27 

considered the wolf (Canis lupus) that has been recolonizing Eastern France naturally through 28 

dispersal from the Apennines since the early 90’s. Using partial differential equations for 29 

modelling species diffusion and growth in a fragmented landscape, we develop a mechanistic-30 

statistical spatio-temporal model accounting for ecological diffusion, logistic growth and 31 

imperfect species detection. We conduct a simulation study and show the ability of our model 32 

to i) estimate ecological parameters in various situations with contrasted species detection 33 

probability and number of surveyed sites and ii) forecast the distribution into the future. We 34 

found that the growth rate of the wolf population in France was explained by the proportion of 35 

forest cover, that diffusion was influenced by human density and that species detectability 36 

increased with increasing survey effort. Using the parameters estimated from the 2007-2015 37 

period, we then forecasted wolf distribution in 2016 and found good agreement with the actual 38 

detections made that year. Our approach may be useful for managing species that interact with 39 

human activities to anticipate potential conflicts.  40 

 41 

1. Introduction  42 

Assessing the dynamics of species distributions is a fundamental topic in ecology (Elith 43 

& Leathwick 2009). Species distribution models (SDMs) have become tremendously important 44 

tools in the fields of ecology, biogeography and conservation biology to understand and predict 45 

species distribution by correlating occurrence data to environmental covariates (Guisan & 46 

Thuiller 2005). SDMs can be used to study distribution dynamics through time (Elith & 47 

Leathwick 2009; Kéry et al. 2013; Hefley & Hooten 2016; Koshkina et al. 2017), which is 48 

especially relevant in conservation for the management of threatened species, conservation 49 



planning, as well as predicting the likely future range of invasive species at early invasion stages 50 

(Elith & Leathwick 2009; Guillera-arroita et al. 2015). 51 

Despite being the most widely used methods in ecological applications, SDMs based on 52 

regressing presence locations on environmental factors suffer from several limitations (Hefley 53 

& Hooten 2016; Hefley et al. 2017b). These standard SDMs rely on the hypotheses that species 54 

will be present in the most favorable areas and that dispersal is not a limiting factor (Jeschke & 55 

Strayer 2006). However, expanding species may be absent from an area because they have not 56 

yet dispersed to this area, or because of geographical barriers or dispersal constraints (Araújo 57 

& Guisan 2006), not necessarily because conditions are unfavorable. 58 

Species may expand through colonization defined as the ecological process of 59 

populations’ establishment in unoccupied areas, in which populations can often face novel 60 

environments (Koontz et al. 2017). Colonization is therefore a dynamic process, underlying the 61 

past, present and future distribution of species (Clark et al. 2001; Wikle 2003; Wikle & Hooten 62 

2010; Williams et al. 2017). Colonization can be a natural process, or the consequence of 63 

anthropogenic pressures, for example biological invasions (Sakai et al. 2001; Ricciardi 2007). 64 

Being able to understand the underlying mechanisms of the colonization has significant 65 

implications for wildlife managers (Koontz et al. 2017). Ignoring the dynamic process 66 

underlying distribution change can lead to biased inferences and some authors have discouraged 67 

the use of traditional, static SDMs for predictions (Yackulic et al. 2015).  68 

Mechanistic spatio-temporal models have been developed to offer an alternative to 69 

regression-based SDMs that encounter difficulties associated colonization as a consequence of 70 

dispersal processes (Hefley et al. 2017b). Mechanistic models are based on biological 71 

processes, such as survival or dispersal, describing processes through which environmental 72 

factors affect a biological system of interest (Morin & Thuiller 2009; Mouquet et al. 2015; 73 

Gauthier et al. 2016). SDMs accounting for dynamic mechanisms are relevant tools to assess 74 



ecological colonization, because they improve our ability to get predictions in space and time 75 

and at the same time include reliable measures of prediction errors (Williams et al. 2017).  76 

The theory of ecological diffusion is an essential component of mechanistic models to 77 

assess spatial distributions dynamics and population dynamics (Soubeyrand & Roques 2014; 78 

Roques & Bonnefon 2016; Hefley et al. 2017a, 2017b). To model dynamic ecological 79 

processes, mechanistic models are often expressed as partial differential equations (PDEs) 80 

(Wikle & Hooten 2010). Such PDEs can be combined with a probabilistic observation process 81 

in a mechanistic-statistical approach to infer biological sound parameters while considering 82 

complex observational protocols (presence only data, imperfect detection, censoring). In 83 

addition, combining a mechanistic-statistical model with a probabilistic observation process 84 

facilitates forecasting spatio-temporal processes (Wikle et al. 1998).  85 

 86 

Here, we aimed at exploring the use of mechanistic-statistical models to gain insight 87 

into the colonization process of expanding populations of large carnivores, with a particular 88 

emphasis on an explicit modeling of the observation process that links the true states to the 89 

observed data. Indeed, data collection is particularly costly for elusive species that need wide 90 

areas to live and/or disperse. Monitoring large carnivores often requires sampling large areas. 91 

In this context, opportunistic data produced by semi-structured citizen science are increasingly 92 

used as an efficient source of information to assess the dynamics of such species (Schmeller et 93 

al. 2009; Louvrier et al. 2018; Kelling et al. 2019). The monitoring system often relies on the 94 

only available opportunistic data, leading to a set of presence locations, without any information 95 

about absences (Koshkina et al. 2017). These data need to be analyzed cautiously as they are 96 

collected without any measure of time- and space-varying sampling effort, possibly leading to 97 

biased estimates of the actual factors influencing the distribution (Van Strien et al. 2013). 98 

Furthermore, large carnivores can go undetected at sites where they are actually present, due to 99 

imperfect detection (Kéry 2011). Ignoring the issue of imperfect detectability of individuals can 100 



lead to underestimating the actual distribution (Kéry & Schaub 2011; Kéry et al. 2013; Lahoz-101 

Monfort et al. 2014) and confounding between the environmental factors driving the 102 

distribution dynamics and those governing the observation process (Lahoz-Monfort et al. 103 

2014). 104 

Here, we developed a mechanistic-statistical model accounting for ecological diffusion, 105 

logistic growth and imperfect detection varying in space and time. The goals of our study were 106 

to i) provide a template to simulate scenarios and assess the ability of our method to reliably 107 

forecast the fate of populations in time and space and ii) provide an easy and convenient way 108 

to implement the approach in software heavily used by statisticians and ecologists such as JAGS 109 

and OpenBUGS.  110 

To assess the performance of our approach, we performed a simulation study to assess 111 

bias and precision of parameter estimates and evaluate forecasting performance in contrasted 112 

scenarios of varying species-level detectability and number of monitoring sites. Finally, we 113 

fitted our model to opportunistic data on wolves in South-Eastern France between over nine 114 

years (2007-2015). We considered grey wolves (Canis lupus) as a case study to illustrate the 115 

challenges of using detections/non-detection data to infer the dynamics of a recolonizing large 116 

carnivore population. Wolves disappeared in western European countries during the twentieth 117 

century (Mech & Boitani 2010; Chapron et al. 2014) except for Spain, Portugal and Italy 118 

(Ciucci et al. 2009). The species then naturally recolonized the French Alps from the remnant 119 

Italian population (Valière et al. 2003). Starting in the 1990s, the species then spread outside 120 

the Alpine mountains to reach the Pyrenees and the Massif Central then later, even the Vosges 121 

Mountains in the North. In areas with livestock farming, conflicts may arise between wolf 122 

presence and sheep breeding. Because wolves are protected by law while being a source of 123 

conflicts with shepherds, their recolonization process needs to be carefully monitored. Besides 124 



quantifying the wolf colonization process over the study period, we explored the ability of our 125 

model for short-term forecasts of wolf range expansion.  126 

 127 

2. Material and Methods  128 

2.1.Model 129 

We developed an approach to infer the parameters from a mathematical formulation explaining 130 

the temporal dynamics of the species’ distribution (see also Hooten and Hefley 2019, chapter 131 

28). To do so, we adopted the framework of ecological diffusion (Turchin 1998; Hefley et al. 132 

2017b). We developed a state-space modelling approach in which the model is formulated in 133 

two parts: 1) the observation process that handles the stochasticity in the detections and non-134 

detections (i.e., the observed distribution data) conditional on 2) the latent state process which 135 

is described by the mechanistic model.  136 

 137 

2.1.1. Observation process  138 

Let yijt be a random variable that takes value 1 if at least one individual is detected at site i = 139 

1,..., K at site i within a study area S (i ∈ S ⊂ R2) during secondary occasion (or survey, defined 140 

as a repeated sampling occasion during which the states of a site i remains constant) j = 1,..., J 141 

in year t = 1,..., T, and takes value 0 otherwise. Let Ni,t be the true abundance at site i in year t. 142 

The probability pit for the species to be detected at site i in year t is likely to be influenced by 143 

abundance Nit. To link the detection process to abundance, we used the Royle-Nichols 144 

formulation (Royle & Nichols 2003) developed to deal with heterogeneity in the detection 145 

probability due to variation in abundance and/or surveys (Williams et al. 2017). If at a site i 146 

during year t there are Nit individuals present, assuming that each individual within an occupied 147 



site has an identical detection probability qit, and that there is independence of detections among 148 

individuals, then the probability to detect the species is equal to the probability to detect at least 149 

one of the Nit individuals present. This latter probability is the complementary probability of 150 

failing to detect any individual and can be written as (1 − ��	)��
. Therefore, the probability 151 

to detect at least one individual at site i during year t can be written as follows:  152 

pit = 1 – (1 −  ��	)��
 .    ( 1) 153 

Conditioning the observation yi,j,t on the latent, true abundance Nit through the species-level 154 

detection probability pit, and assuming a binomial observation process, a constant survey effort, 155 

and that qit and Nit remain unchanged across the J surveys, we then have 156 

yit = ∑ ���	�
���   ∼ Binomial(J, pit).     ( 2) 157 

The J repeated surveys within each year t are used to estimate the species-level detection 158 

probability. Note that if Nit = 0 then pit = 0 and yijt = 0 for all j.  159 

Covariates may be incorporated in the individual-level detection probability qi,t using, for 160 

example, a logit link function. Because we had information about the sampling effort, sites that 161 

were considered sampled were sites where sampling effort was non-null. To the contrary, sites 162 

that were considered as non-sampled (i.e. on which no information about detection can be 163 

made) were sites with a sampling effort equal to zero. To avoid estimating the detection 164 

probability where sampling effort was null, we set the detection probability to zero when 165 

sampling effort was equal to zero.  166 

 167 

2.1.2. State process  168 

We assumed that the true abundance Ni,t at site i during year t was Poisson distributed over a 169 

site i 170 



 ���	 ∼ Poisson(�(�, !) × #�	)
$og(#�	) ∼ Normal(0, ,)  ,    ( 3) 171 

where #�,	 accounts for overdispersion. The variable λ(i,t) is a spatiotemporal process that 172 

describes the dynamics of the number of individuals in site i during year t. We then defined this 173 

variable as follows:  174 

λ(i,t) = - .(/, !)0/ ,1�     ( 4) 175 

where .(x,t) is the intensity of individuals at the spatial location x at time t and Bi is the study 176 

area in which counts occur.  177 

We used Partial Differential Equations (PDE) known as ecological diffusion to describe 178 

diffusion and growth dynamics. The ecological diffusion PDE describing the variation of 179 

density of individuals at location x at time t, .(x,t) over time, in two dimensions with logistic 180 

growth (see also Lu et al. 2019), can be written as follows:  181 

23(4,	)
2	  = ∆(d(x) .(x,t)) + r(x) .(x,t) (1 − 

3(4,	)
5 ),   ( 5) 182 

where ∆ is the Laplace 2D diffusion operator (i.e. the sum of the second derivatives with respect 183 

to the coordinates). This operator describes movement according to an uncorrelated random 184 

walk, with the coefficient d(x) measuring heterogeneous mobility. The term r(x) is the intrinsic 185 

growth rate at low density and K is the carrying capacity. In short, this equations states that the 186 

variation of density of individuals at a location x at time t is the result of a diffusion process and 187 

a logistic growth process. The diffusion process is governed by an inflow of individuals 188 

diffusing from the neighboring cells and an outflow of individuals diffusing to the neighboring 189 

cells, with d(x) accounting for the heterogeneity of these diffusion flows (Hefley et al. 2017b; 190 

Williams et al. 2019). The logistic growth process is governed by a logistic growth parameter 191 

r(x), defined as the rate of increase of a population at site x, and K the carrying capacity, defined 192 



as the maximum number of individuals a site can sustain indefinitely. To fit our model, we 193 

made some assumptions about the parametric distributions about these parameters, which can 194 

be found in sections “Simulations” and “Case study”.  In addition, we assumed reflecting 195 

boundary conditions, meaning that there was no population flow going outside the boundaries 196 

of the study area due to actual barriers (i.e. seas) or symmetric inward and outward flows.  197 

 198 

2.1.3 Approximations 199 

Calculating the density v(x,t) requires solving the PDE described in equation 5. We used the 200 

method of lines (Schiesser 1991; Chow 2003) to approximate the PDE by a system of Ordinary 201 

Differential Equations (ODE) in order to use classical numerical integration algorithm to solve 202 

the dynamical system. The methods of lines consist in discretizing the spatial domain into Cs 203 

grid cells of O rows and L columns leading to the following ODE system, with 6(�, !) the 204 

discretized approximation of .(x,t) at site i: 205 

U	8 = : × U	 ;1 − U	
< = + M U@,                  (6) 206 

where U	B =  Cu(1, t), u(2, t), … , u(HI, t) J is the vector of densities in each cell, :B =207 

 CK̅(1), K̅(2), … , K̅(HI) J is the vector of averaged intrinsic growth rates in each cell and × 208 

indicates the term by term product. M is the Cs x Cs propagator matrix that describes spatial 209 

interactions between direct neighboring cells in the four cardinal directions. The ith row of M 210 

represents the link between the Cs sites to site i. The approximation of the differential operator 211 

in equation 5 is then: 212 



CMU@JIN,O =  �
PQ  RdTUVW�,XYuTUVW�,X, !Y +  dTUVZ�,XYuTUVZ�,X, !Y +  dTUV,XW�YuTUV,XW�, !Y +213 

 dTUV,XZ�YuTUV,XZ�, !Y − 4dTUV,XYuTUV,X, !Y\ ,    (7) 214 

with sk,l the coordinates of the site i, i.e. sk,l = $(] − 1) + $  ; h2 the cell surface ; k = 1,..., O; l 215 

= 1,..., L and O x L = Cs. Exceptions are the cells bordering non-habitat cells as the latter are 216 

excluded from the dynamics due to the reflecting boundary conditions. The system 6 was solved 217 

using the lsoda method (Petzold 1983) through the R-package deSolve (Soetaert et al. 2010) 218 

and equation 4 was then approximated as follow: 219 

�(�, !) = ^ .(/, !)0/
1�

≈ ` ` aTb� ∩ dI(V,X)Y6TUV,X, !Y,
e

X��

f

V��
             (8) 220 

where aTb� ∩ dI(V,X)Y is the surface of the intersection between the cell U(], $) and the study 221 

area b� in which counts occur. 222 

2.2. Simulations  223 

We conducted a simulation study to assess the ability of the model to estimate ecological 224 

parameters. We defined four scenarios in which we explored the effect of a variation in the grid 225 

resolution (see section Approximations above) and in the individual-level detectability 226 

parameter q. To mimic the characteristics of the wolf case study (see below), we set the number 227 

of surveys to 4 and the number of years to 20, while we set the carrying capacity to 5 individuals 228 

per 100 km2, the intercept of the diffusion coefficient to 2 individuals per cell (i.e. 5 individuals 229 

per year per cell move to neighboring cells) and the growth rate to 40%. We set the linear and 230 

quadratic effects of forest cover on the growth rate at 0.4 and 0.4 and set the linear and quadratic 231 

effect of human density on the diffusion rate at 0.5 and 0.3 respectively. We randomly simulated 232 

values of forest density and human density between their maximum and minimum values from 233 

the wolf study. Because we discretize the spatial domain, we expected a lower bias and a better 234 

precision of the ecological parameters estimates with increasing grid cell resolution. We defined 235 



a low resolution (LR) scenario in which the spatial domain to fit the model was divided into 25 236 

cells and a high resolution (HR) scenario in which we divided the spatial domain into 100 cells 237 

and fitted the model to this resolution. In both scenarios, we simulated the ecological data on a 238 

grid of 100 sites resolution. Under the Royle-Nichols formulation of the relationship between 239 

abundance and binary detection and non-detection data, individual-level detectability has a 240 

positive effect on the species-level detectability until a certain level of abundance, hence it 241 

influences whether the species is detected or not. We then defined a high detectability (HD) 242 

scenario in which the individual-level detectability was set at 0.8, and a low detectability (LD) 243 

scenario in which this probability was set at 0.2. For each scenario (LR-LD, LR-HD, HR-LD, 244 

HR-HD), we simulated 100 datasets and we fitted the model to each dataset. We calculated the 245 

relative bias and mean squared error (MSE) for the carrying capacity K, the intercept of the 246 

growth rate R, the linear and quadratic effect of forest density on the growth rate, the diffusion 247 

coefficient and the linear and quadratic effect of human density on the diffusion coefficient. 248 

Note that in the simulation study we assumed that K, R and q were constant over space and 249 

time. To explore the ability of our model to forecast the abundance of individuals per site in the 250 

four scenarios, we fitted our model to the first ten years and forecasted the distribution over 251 

second ten years.  252 

2.3. Case study: Wolf colonization in France 2007-2015 253 

Wolf detections and non-detections were made in the form of presence signs sampled all year 254 

round in a network of widely distributed professional and non-professional wolf observers 255 

(Duchamp et al. 2012). Presence signs went through a standardized control process to prevent 256 

misidentification. 257 

To define the observation process, we used a grid to cover the study area with 10x10 km cells 258 

that we used as sampling units (Cs = 975 in the notation above). To ensure that the model we 259 



fitted to this discretization choice produces reliable estimates, we estimated the parameters 260 

based on a 3x3km grid. We then simulated the dynamic model with the estimated parameters 261 

and calculated the relative error (RMSE) in comparison with the finest grid. We found that a 262 

resolution of 10x10 km produced a relatively low error in comparison with a finer grid size 263 

(Appendix 1).  264 

Wolf monitoring occurred mainly in winter from December to March, the most favorable period 265 

to detect the species. Within each winter, four secondary occasions were defined as December, 266 

January, February and March (i.e., J = 4). We focused on the south-eastern part of France and 267 

the period 2007-2015 (T = 9) (Fig. 1). We assumed that the scale at which data were collected 268 

coincides with the numerical scale in which we solve 6(i,t), thus equation 8 becomes  269 

�(�, !) ≈ ℎi6(�, !). We used the sampling effort, defined as the number of observers at site i in 270 

year t (Effit) and the road density at site i (RoadDi) to explain variation in the individual-level 271 

detection probability (qi,t) as: 272 

logit(qit ) = β0 + β1 Effit + β2 RoadDi .    (9) 273 

We expected that the sampling effort had a positive effect and road density had a 274 

negative effect on the individual-level detection probability q. We also used environmental and 275 

anthropogenic covariates to model spatial variation in parameters Ri and Di. Using the CORINE 276 

Land Cover® database (U.E – SOeS, Corine Land Cover 2006), we calculated forest cover as 277 

the average percentage of mixed, coniferous or deciduous forest cover for each site. Because 278 

forests may structure the ungulate distribution (i.e. prey species), we expected that forest cover 279 

would have a positive effect on the logistic growth rate Ri (Louvrier et al. 2018).  280 

Human density was found in previous studies to influence habitat choice and dispersal 281 

of wolves in Italy (Corsi et al. 1999; Marucco & Mcintire 2010). We therefore considered 282 

human density as a candidate covariate possibly explaining spatial variation in the diffusion 283 



parameter Di. Human population density was averaged in each 10x10 km from a 1x1 km raster 284 

from the Earth Observing System Data and Information System (EOSDIS). For both 285 

parameters, we tested a linear and a quadratic effect through a logarithmic, for Di, and a logistic 286 

limited between 0 and 2, for Ri, regression-type relationship. 287 

Finally, we initialized the model with λ = 0.01 for the sites with at least one wolf 288 

detection during the period 1994-2006 preceding our study period, which corresponds to one 289 

individual per 100 km2 cell, and zero otherwise.  290 

To explore the ability of our model to forecast wolf colonization over the short term, we 291 

used the parameter estimates we obtained on the 2007-2015 period and forecasted the 292 

abundance one year ahead (i.e., to 2016). We assessed our predictions qualitatively by 293 

confronting the estimated probability of a site being occupied (forecasted abundance at that site 294 

> 0) in 2016 to the observed detections made in that same year.295 

2.4. Bayesian inference 296 

To complete the Bayesian specification of our model, we specified Gaussian priors with mean 297 

0 and variance 1 for all estimated parameters, except for parameter < for which we used a 298 

logistic function limited between 0 and 0.2. Parameters from the observation process and those 299 

from the state process were updated in two different blocs. We implemented our simulations in 300 

OpenBUGS (Lunn et al. 2010) and the wolf analyses in JAGS using the JAGS package mecastat 301 

(Rey et al. 2018). We used Markov chain Monte Carlo (MCMC) simulations for parameter 302 

estimation and forecasting (Hobbs & Hooten 2015). We ran three MCMC chains with 40,000 303 

iterations preceded by 10,000 iterations as a burn-in. We used posterior medians and 95% 304 

credible intervals to summarize parameter posterior distributions. We checked convergence 305 

visually by inspecting the chains and by checking that the R-hat statistic was below 1.1 (Gelman 306 

& Shirley 2011). We produced distribution maps of the latent states by using a posteriori means 307 



of the Ni,t from the model. We provide the scripts for running the simulations at 308 

https://github.com/oliviergimenez/appendix_mecastat.  309 

2.5. Forecasting  310 

To forecast the abundance of individuals per site, along with the associated prediction 311 

uncertainty, we needed to assess the probability distribution of the true state in the future when 312 

data will be collected, conditional on the collected data in the past (Williams et al. 2018). The 313 

Bayesian formulation of our model allowed assessing the forecast densities by simulating 314 

yearly data from t = 2, …, T + 1 and sampling �(i, T+1) on each iteration of the MCMC chains. 315 

The posterior distribution was then assessed from the forecast distribution by sampling into the 316 

forecast NT+1. In the simulation study, we compared this posterior distribution with the 317 

simulated data for the year 20. For the wolf case study, we assessed the probability that the site 318 

i was occupied, which boiled down to calculating P(zi = 1) where zi is the latent status of the 319 

site (occupied or not) as the number of MCMC iterations producing a strictly positive 320 

abundance, i.e. P(zi = 1) = P(Ni > 0) (since our distribution model is formulated in terms of 321 

latent abundance N). 322 

 323 

3. Results  324 

3.1.Simulations  325 

When the resolution from which we fitted the model increased from 25 cells to 100 cells, the 326 

model produced less biased results for all parameters, except the linear and quadratic effects of 327 

human density on the diffusion coefficient (Fig. 2 and Appendix 2. A.). For the carrying 328 

capacity the bias decreased from -6.09 % in LR-HD and -1.91 % in LR-LD and only 1.57 % in 329 

HR-HD and 0.70 % in HR-LD. The bias also decreased for the intercept of the growth rate 330 

when resolution increased: - 66.63 % in LR-HD and -64.89 % in LR-LD to 10.54 % in HR-HD 331 



and 11.94 % in HR-LD. For the intercept of the diffusion coefficient, the bias was reduced from 332 

-25.62 % in LR-HD, -9.95 % in LR-LD and 1.43 % in HR-LD to 3.67 % in HR-HD.  333 

The model also produced more precise results for all parameters, except the linear and 334 

quadratic effects of human density on the diffusion coefficient (Fig. 2 and Appendix 2. A.). The 335 

largest MSE reduction was found for the carrying capacity. The MSE decreased for the carrying 336 

capacity from 1.89 in LR-HD and 0.80 in LR-LD to 0.22 in HR-HD and 0.21 in HR-LD. For 337 

the intercept of the diffusion coefficient the MSE decreased greatly from 0.43 in LR-HD and 338 

0.34 in LR-LD to 0.06 in HR-HD and 0.01 in HR-LD. We didn’t find any clear pattern in the 339 

change of MSE for the growth rate. In both high and low detectability scenarios, the model 340 

fitted in low resolution largely underestimated the linear and quadratic effects of forest density 341 

on the growth rate.  342 

Without covariates on the diffusion parameter and the growth rate, when the resolution 343 

increased the model produced less biased and more precise results as well (Appendix 2.B. and 344 

2.C.) 345 

When looking at the model’s ability to forecast abundance (Appendix 3), the true 346 

abundance was always within the 95 % credible interval of the estimated abundance in both 347 

high resolution scenarios and in the low resolution high detectability, but not in the low 348 

resolution low detectability scenario. 349 

 350 

3.2.Wolf case study 351 

According to our model, the estimated abundance per site varied between 0 and 19 per 100 km2 352 

(Fig. 3, Appendix 4 for the credible intervals. Overall, the spatio-temporal trends in estimated 353 

abundance matched relatively well the trends in actual detections and non-detections (Fig. 3). 354 



In the northern part of the study area, we estimated a non-null abundance at sites where no 355 

detections were made in the last four years of the study.  356 

 The detection probability increased when the sampling effort increased and decreased 357 

when road density increased (Fig. 4 and Appendix 5). We found that the logistic growth rate 358 

increased when the forest cover increased. The carrying capacity was estimated around 1 359 

individual per 100 km2 site (9.41x10-3 CRI: 7.97x10-3; 1.11x10-2). Last, when human density 360 

increased, the diffusion parameter increased as well.  361 

Turning to the forecasting exercise now, we predicted a median abundance varying 362 

between 0 and 1 individual per site, while the 95% credibility interval predicted an abundance 363 

varying between 0 and 17 individuals per site (Appendix 6). For the forecasted occupancy, we 364 

predicted that a large part of sites with a forecasted occupancy probability > 0.6 were indeed 365 

detected occupied in year 2016 (Fig. 5). Amongst the 137 sites that were detected occupied in 366 

2016, we found only 10 of them in the South-Western part which were forecasted with a low 367 

occupancy probability. This leads to a false negative rate of 7.30%. However, the model 368 

forecasted a higher number of sites with a high occupancy probability than the number of 369 

detected occupied sites.  370 

 371 

4. Discussion   372 

We estimated the distribution of wolves using a model explicitly incorporating biological 373 

mechanisms and making best use of the information contained in species detections and non-374 

detections. Besides, we explored the possibility of forecasting the potential future distribution 375 

of a large carnivore, which could be used to target management areas or focus on potential 376 

conflictual areas (Marucco & Mcintire 2010; Eriksson & Dalerum 2018).  377 

 378 

4.1.Simulations  379 



In the simulation study, we showed that ecological parameters were sensitive to the way we 380 

discretized space to solve the PDE. Our model performed well when the resolution was high, 381 

with less biased and more precise parameter estimates than in the low-resolution scenario. We 382 

note however that the low-resolution scenario was an unrealistic example used to test the model 383 

in extreme conditions.  384 

 385 

4.2.Wolf study  386 

We found that the logistic growth rate increased when forest cover increased. Although wolves 387 

can adapt to various ecosystems, this pattern also matches with the suitable habitats of the key 388 

prey species for wolves (Darmon et al. 2012). We found that when human density increased, 389 

the diffusion coefficient increased possibly due to the increase of linear features, which have 390 

been found to be selected over natural linear features for wolves’ movements (Newton et al. 391 

2017). 392 

As expected, we found that when sampling effort increased, the individual-level 393 

detectability increased, while it decreased when road density increased. We also expected that 394 

road density would influence wolf detectability by facilitating observers survey and site 395 

accessibility. Other studies have found that linear features also facilitate wolf travel and prey 396 

encounter rate. On the contrary, we found that the increase in road density negatively affected 397 

the species detection. This result was found in previous studies as well  corroborating the fact 398 

that wolves avoid roads and leave fewer marks in sites with highly frequented roads or pathways 399 

(Whittington et al. 2005; Falcucci et al. 2013; Votsi et al. 2016; Louvrier et al. 2018).  400 

 We estimated a maximum number of 19 individuals per grid cell on average. 401 

Wolves pack size was documented on average at 3.8 individuals per pack in France (Duchamp 402 

et al, 2012) varying from 2 to a dozen individuals. Considering the average wolf territory size 403 



commonly reported between 100 and 400 km2 in western and central Europe (Ciucci et al. 2009; 404 

Mech & Boitani 2010; Duchamp et al. 2012), our estimate overestimated the standard range of 405 

wolf densities reported elsewhere (Mech & Boitani for a review). The fact that we found a non-406 

null abundance at sites in the northern part of the study area could be explained by the fact that 407 

in the Western and Southern part of the study area, the human density is at its highest values, 408 

with two of the three most important cities in France, Lyon and Marseille that are found in the 409 

Western and Southern part of the study area respectively. The model accounted for the 410 

imperfect detection and estimated those sites with a non-null abundance despite the fact that no 411 

detection was made. This also explains the number of forecasted occupied sites higher than 412 

observed.  413 

 414 

4.3.Model Assumptions  415 

We built our model based on several assumptions that need to be discussed. We assumed that 416 

the sampling effort was constant across surveys and that the individual-level detectability and 417 

the local abundance remained unchanged. First, it is likely that the sampling effort varies 418 

between surveys (months) due to human factors. However, we could only quantify the sampling 419 

effort between years, and had no information at the month level. Second, it is also likely that 420 

the individual-level detectability varies between months partly due to the varying sampling 421 

effort between months, but also to environmental conditions, such a snow cover represented by 422 

the month of survey (Louvrier et al. 2018). Third, the local abundance at a site is also likely to 423 

change between surveys. The choice to consider the wintering data survey, during which the 424 

social organization of packs is the most stable (Mech & Boitani 2010), may prevent a large part 425 

of this sampling heterogeneity according the sampling protocol implemented in the Alps by the 426 

wolf network (Duchamp et al, 2012). However, we cannot exclude that mortality or movements 427 

occur inside or outside the sites. In this case, the estimates for local abundance can be 428 



overestimated as the same individuals can be detected in two neighboring sites for instance., 429 

The distribution should in any case be interpreted cautiously and considered as area of use 430 

(MacKenzie 2006).  431 

Under the Royle-Nichols model, the species-level detectability is a function of the 432 

individual-level detectability, but the relationship between these two parameters is not always 433 

linear and depends on the abundance of individuals at a site. If abundance is large (i.e., above 434 

50 individuals), then individuals can be detected during all surveys, and no variability in the 435 

species-level detectability will be observed, which leads to the inability to characterize the 436 

abundance distribution (Royle & Nichols 2003). Overall, the Royle-Nichols model  was 437 

originally developed to deal with heterogeneity in the detection probability due to heterogeneity 438 

in abundance and its outputs should be interpreted cautiously. Finally, our approach was based 439 

on a logistic growth, but other forms of growth could be investigated. For example, a growth 440 

accounting for an Allee effect would be of particular relevance for wolves for which the 441 

probability of finding a mate decreases in areas with low density (Hurford et al. 2006).  442 

Another assumption relies on the model construction considering the diffusion equally 443 

for all individuals. Wolves have a strong social organization in packs and future works may 444 

consider the social aggregation of individuals when modeling the dynamic of the wolf 445 

distribution (see for instance Lewis et al. 1997 and Potts & Lewis 2014)). 446 

We need to highlight here the fact that our model was realistic only because we fitted it 447 

on data from the core distribution of wolves in France. However, if we had extended our model 448 

to the whole country, we would expect less realistic estimates due to the fact that wolves not 449 

only disperse at short distance but also at long distance, especially on colonization fronts (Mech 450 

and Boitani 2010). In Louvrier et al. (2018), we found that the number of observed occupied 451 

sites at long distance also influenced the probability for a site to be occupied. Our model was 452 

deterministic and if we were to extend our model to the whole country, we would need to 453 



account for stochasticity in events when the population is at low density (Hurford et al. 2006). 454 

To do so, we could assimilate the detections for a year in which long distance dispersal occurred 455 

and was not predicted by the model and use these data to initialize the model for the next year. 456 

Finally, when we calculated the values of the covariates, we used the mean for each grid of 457 

10x10km. By doing so, we lost information at a finer scale. Based on the error measure we 458 

found when we approximated the model on a 10x10km scale we considered the loss of 459 

information to be within a tolerable range.  460 

 461 

4.4. Comparison with dynamic site-occupancy models  462 

In Louvrier et al. (2018), a dynamic site-occupancy model was fitted to the same dataset, at a 463 

national level and between 1994 and 2016. We found in this previous study that when forest 464 

cover was high, the probability for an unoccupied site to be colonized the year after increased 465 

as well. This can be related to the logistic growth rate parameter, because once a site is 466 

colonized, the population will start growing. We found the same effects of sampling effort and 467 

road density on the species-level detectability, which can be explained by the fact that 468 

maximum abundance per site is low enough to guarantee a linear correspondence between 469 

species- detectability and individual-level detectability. In comparison with the map of 470 

occupancy estimated with a dynamic site occupancy model (top right panel of Figure 7 in 471 

Louvrier et al. 2018), we found that the mechanistic approach predicted more sites with an 472 

average occupancy probability > 0.6 than the dynamic site-occupancy model. The latter 473 

approach estimated a smaller number of occupied sites. This difference could be explained by 474 

the fact that occupancy models are regression-type models, which means that the estimated 475 

occupancy is linked to the data, while our mechanistic approach is based on a continuous model 476 

over time, which allows the spreading of individuals over several sites without having to be 477 

detected. Another explanation could be that we assumed a Poisson distribution for the number 478 



of individuals per site in our mechanistic model. A first way to overcome this problem is to use 479 

a negative binomial distribution to relax the constraint of equal mean and variance inherent to 480 

the Poisson distribution (White & Bennetts 1996). Another approach would be to directly model 481 

the dependence between individuals by explaining the pack structure in the mechanistic part of 482 

our model (Lewis et al. 1997). 483 

484 

4.5.Forecasting capacities 485 

In the current context of fast-changing environments, predicting the future distribution or 486 

abundance of species is an increasing challenge in the field of ecology, where ecologists are 487 

calling for a more “predictive ecology” (Mouquet et al. 2015; Dietze 2017; Houlahan et al. 488 

2017; Dietze et al. 2018; Maris et al. 2018). Ecological forecasting is the process of predicting 489 

the state of an ecological system with fully specified uncertainties (Clark et al. 2001). Forecasts 490 

should therefore be probabilistic (Gneiting & Katzfuss 2014; Dietze & Lynch 2019) to provide 491 

reliable uncertainties. Not accounting for uncertainties associated with predictions of future 492 

change in distributions can lead to misguided decisions by policymakers or managers (Gauthier 493 

et al. 2016). The Bayesian method provides a natural framework for making probabilistic 494 

forecasts because it easily handles uncertainty and variability in all components of a statistical 495 

model (Hefley et al. 2017b). We demonstrated using simulations that our model had satisfying 496 

forecasting capabilities. When we applied our approach to the wolf, we produced satisfying 497 

forecasts for the presence of wolves. In 2016, 137 sites were detected as being occupied, out of 498 

which 10 sites were not forecasted as occupied by our model. These sites were found at the 499 

edge of the distribution core in the South-Western part of the study site. This part of the 500 

distribution was recently colonized by wolves with first detections of wolves occurred there in 501 

2014 and 2015 for the first time. Wolves are highly flexible and can live in various areas from 502 

maize cultures to high mountains (Kaczensky et al. 2012). This South-Western part are places 503 



where forest cover is lower and human density is higher than in the Alpine range. In the future 504 

we might expect the effects of forest cover to be weaker as wolves expand in different 505 

landscapes.  506 

507 

5. Conclusion508 

509 

Mechanistic-statistical models are valuable tools to bring insight into the dynamic of species 510 

distribution. However, ecologists are often faced with cryptic species with detectability less 511 

than one. Here we developed a mechanistic-statistical model accounting for imperfect detection 512 

for wolf management in France. The model is flexible and can be used in a variety of contexts 513 

to assess the dynamic of species distribution by amending the observation process if required. 514 

By forecasting the distribution of wolves in France, we illustrate that our approach may provide 515 

a new tool in the context of the management of a species with possible conflictual interactions 516 

with human activities. Our approach resonates with the adaptive management framework where 517 

ecologists need to make decisions based on yearly estimates of population abundance and 518 

distribution (Marescot et al. 2013).  519 
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Figure 1: Maps of the yearly detections of wolf in the study area in France from years 

2007 to 2015.  



Figure 2: Performance of the model in the high resolution / high detectability scenario (left panels) and in the low resolution / high detectability 

scenario (right panels). For each of the 100 simulated datasets (on the Y-axis), we displayed the median (circle) and the 95% credible interval 

(horizontal solid line) of the parameter. The actual value of the parameter is given by the vertical dashed red line. The estimated bias (noted as 

“B”) and MSE are provided in the legend of the X-axis.  
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  697 Figure 3: Maps of the estimated abundance of wolves per 100 km2 site in South-East France between 2007 

and 2015. Black dots represent detections in a year. 



 

 

Figure 4: Estimated relationship between individual-level detectability and i) standardized sampling effort (top 

left) or ii) standardized road density (top right), between logistic growth rate and standardized forest cover 

(bottom left) and between diffusion and standardized human density (bottom right). 



 

Figure 5: Map of the forecasted probability of occupancy for the year 2016 obtained from our 

mechanistic-statistical model fitted to the 2007-2015 period. The blue squares represent sites 

where detections occurred in 2016 and the black dots capture the prediction uncertainty, with 

the size of a black dot proportional to the standard deviation of the forecasted occupancy in the 

corresponding site (varying between 0 and 0.25).  
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Appendix 1: RMSE of models fitted at different resolution, the RMSE was calculated in 699 

comparison with the estimates from the finest grid cell resolution defined as 3kmx3km. The 700 

Black line represents the observed error while the blue dotted line represents the theoretical 701 

error calculated as the quadratic term of the resolution. The black dotted line represents the 702 

resolution we chose for fitting our model on the wolf dataset. 703 

704 



Appendix 2: A. Performance of the model in the high resolution / low detectability scenario (left panels) and in the low resolution / low detectability 705 

scenario (right panels). For each of the 100 simulated datasets (on the Y-axis), we displayed the median (circle) and the 95% credible interval 706 

(horizontal solid line) of the parameter. The actual value of the parameter is given by the vertical dashed red line. The estimated bias and MSE are 707 

provided in the legend of the X-axis 708 

709 



Appendix 2. B. Performance of the model without covariates in the high resolution / high 710 

detectability scenario (left panels) and in the low resolution / high detectability scenario (right 711 

panels). For each of the 100 simulated datasets (on the Y-axis), we displayed the median (circle) 712 

and the 95% credible interval (horizontal solid line) of the parameter. The actual value of the 713 

parameter is given by the vertical dashed red line. The estimated bias and MSE are provided in 714 

the legend of the X-axis.  715 

 716 
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Appendix 2. C. Performance of the model without covariates in the high resolution / low 718 

detectability scenario (left panels) and in the low resolution / low detectability scenario (right 719 

panels). For each of the 100 simulated datasets (on the Y-axis), we displayed the median (circle) 720 

and the 95% credible interval (horizontal solid line) of the parameter. The actual value of the 721 

parameter is given by the vertical dashed red line. The estimated bias and MSE are provided in 722 

the legend of the X-axis.  723 
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 725 

Appendix 3: Estimated abundance evolution for 10 years from the posterior median (red solid line) and the 95 % credible intervals (grey dashed line) in comparison 

with the true abundance (blue dashed line) for the first 25 sites in the two “high resolution” scenarios and the 25 sites in the two “low resolution” scenarios.  
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Appendix 4: Maps of the quantiles of the estimated abundance of wolves per site in South-East France between years 

2007 and 2015. Black dots represent detections during a year.  



 

Appendix 5: Median and 95% credibility intervals for the parameters and the effects of 

ecological variables on wolf distribution dynamics between years 2007 and 2015 in South-

Eastern France.  
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 2.50% 50% 97.50% 

Species-level detectability q    

Intercept -2.83 -2.59 -2.30 

Linear effect of sampling effort 0.21 0.34 0.45 

Quadratic effect of sampling effort -0.85 -0.71 -0.59 

Logistic growth rate R     

Intercept _-0 .47 -0.44 -0.41 

Linear effect of forest cover 0.35 0.43 0.46 

Quadratic effect of forest cover  -0.47 -0.44 -0.32 

Carrying capacity K     

Intercept 7.97x10-3 9.41x10-3 1.11x10-2 

Diffusion parameter D      

Intercept  0.92 1.25 1.55 

Linear effect of human density  1.89 2.61 2.77 

Quadratic effect of human density 0.11 1.26 2.11 



Appendix 6: Maps of the quantiles, median and mean of the forecasted abundance of wolves per site in South-East 

France for 2016. Blue squares represent detections in year 2016.  




