
HAL Id: hal-02787746
https://hal.inrae.fr/hal-02787746

Preprint submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Unleashing meiotic crossovers in crops
Delphine Mieulet, Gregoire Aubert, Cécile Bres, Anthony Klein, Gaëtan Droc,

Emilie Vieille, Céline Rond-Coissieux, Myriam Sanchez, Marion Dalmais,
Jean-Philippe Mauxion, et al.

To cite this version:
Delphine Mieulet, Gregoire Aubert, Cécile Bres, Anthony Klein, Gaëtan Droc, et al.. Unleashing
meiotic crossovers in crops. 2018. �hal-02787746�

https://hal.inrae.fr/hal-02787746
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Unleashing meiotic crossovers in crops  1 

Delphine Mieulet1,2, Gregoire Aubert3, Cecile Bres4, Anthony Klein3, Gaëtan Droc1,2, 2 

Emilie Vieille3, Celine Rond-Coissieux3,  Myriam Sanchez3, Marion Dalmais5, Jean-3 

Philippe Mauxion4, Christophe Rothan4, Emmanuel Guiderdoni1,2 and Raphael 4 

Mercier6* 5 

1 CIRAD, UMR AGAP, 34398 Montpellier Cedex 5, France 6 

2 Univ Montpellier, CIRAD, INRA Montpellier SupAgro, Montpellier France 7 

3
  Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 8 

Dijon, France 9 

4 UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d’Ornon, France 10 

5 Institue of Plant Sciences, Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, 11 

Université Evry, Université Paris-Saclay, 91405 Orsay, France 12 

6 Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-13 

Saclay, RD10, 78000 Versailles, France. 14 

* Corresponding author. raphael.mercier@inra.fr 15 

 16 

  17 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/343509doi: bioRxiv preprint first posted online Jun. 11, 2018; 

http://dx.doi.org/10.1101/343509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Improved plant varieties are hugely significant in our attempts to face the challenges 18 

of a growing human population and limited planet resources. Plant breeding relies on 19 

meiotic crossovers to combine favorable alleles into elite varieties1. However, meiotic 20 

crossovers are relatively rare, typically one to three per chromosome2, limiting the 21 

efficiency of the breeding process and related activities such as genetic mapping. 22 

Several genes that limit meiotic recombination were identified in the model 23 

species Arabidopsis2. Mutation of these genes in Arabidopsis induces a large 24 

increase in crossover frequency. However, it remained to be demonstrated whether 25 

crossovers could also be increased in crop species hybrids. Here, we explored the 26 

effects of mutating the orthologs of FANCM3, RECQ44 or FIGL15 on recombination in 27 

three distant crop species, rice (Oryza sativa), pea (Pisum sativum) and tomato 28 

(Solanum lycopersium). We found that the single recq4 mutation increases 29 

crossovers ~three-fold in these crops, suggesting that manipulating RECQ4 may be 30 

a universal tool for increasing recombination in plants. Enhanced recombination 31 

could be used in combination with other state-of-the-art technologies such as 32 

genomic selection, genome editing or speed breeding6 to enhance the pace and 33 

efficiency of plant improvement.   34 

Meiotic crossovers shuffle chromosomes to produce unique combinations of alleles 35 

that are transmitted to offspring. Meiotic crossovers are thus at the heart of plant 36 

breeding and any related genetic analysis such as quantitative trait loci (QTLs) 37 

detection or gene mapping. However, crossovers are relatively rare events, which is 38 

intriguing since their molecular precursors (i.e. DNA double stranded breaks and 39 

inter-homologue joint molecules) largely outnumber the final crossover number. 40 

Indeed, It was recently shown that active mechanisms limit the formation of meiotic 41 

crossovers in Arabidopsis 2–5,7–9. Forward genetic screens identified three anti-42 
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crossover pathways that rely on the activity of FANCM, RECQ4 and FIGL1, 43 

respectively. RECQ4 appears to be the most important anti-crossover factor, as the 44 

mutation of the corresponding genes (RECQ4A and RECQ4B) led to an almost four-45 

fold increase in recombination in Arabidopsis hybrids2,10. RECQ4 is a DNA helicase 46 

homologue of mammalian BLOOM and yeast Sgs111,12. FANCM, which encodes 47 

another conserved DNA helicase, is also an important anti-crossover factor in 48 

Arabidopsis. Mutation of this gene also leads to a large increase in recombination, 49 

but only in pure lines (~3-fold) with a very limited effect in hybrids 2,3,5,13. FANCM was 50 

also shown to limit crossovers in a Brassica rapa pure line 14. The third pathway 51 

depends on the AAA-ATPase FIGL1. Mutation in FIGL1 alone leads to a relatively 52 

modest increase in recombination (+25% in Arabidopsis hybrids), but when combined 53 

with recq42  it leads to an almost eight-fold increase. Mutation in FIGL1 leads to full 54 

sterility in rice15, raising doubts about the pertinence of manipulating this gene in crop 55 

species. 56 

Here we tested the effect of recq4, fancm and figl1 mutations on recombination in 57 

three crop species. We chose rice (Oryza sativa), the cultivated pea (Pisum sativum) 58 

and tomato (Solanum lycopersium) for their economic importance and because they 59 

represent distant clades. Indeed they are members of the three major clades of 60 

flowering plants, monocots, eudicots rosids and eudicots asterids, respectively 16. 61 

Rice is the staple of more than half of mankind and as such is the number one cereal 62 

consumed. It belongs to the Poaceae family that also contains maize, wheat and 63 

barley 16. Pea, in addition to be the genetic model used by Mendel, is the second 64 

most cultivated pulse crop in the world (http://faostat.fao.org/) and belongs to the 65 

Fabaceae family that contains many crop species such as chickpea, beans and lentil. 66 

Tomato, the second most cultivated fresh-market vegetable crop, is one of the most 67 
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important nutrient-dense superfoods and belongs to the Solanaceae family, which 68 

includes potatoes, eggplant and peppers.  69 

We first explored the conservation and copy number of RECQ4, FANCM and FIGL1 70 

in flowering plants (Figures S1-3, Dataset S1). For FANCM and FIGL1, a single 71 

homolog of each gene was identified in most species including pea, tomato and rice. 72 

Several copies of FANCM17 and FIGL1 were found only in very recent polyploids (e.g 73 

wheat). Several copies of RECQ4, on the other hand, appear to have been retained 74 

from earlier whole genome duplications in several clades, leading to the presence of 75 

two or more copies in several species (e.g. Arabidopsis4,11, cabbage, lettuce, 76 

soybean, sunflower).  77 

We then assessed the role of OsRECQ4 (Os04g35420) and OsFANCM 78 

(Os11g07870) in meiotic recombination in rice. We screened mutant collections of 79 

two different cultivars, Nipponbare 18,19 and Dongjin 19, that are both from the 80 

japonica temperate sub group. Comparison of 25X Illumina sequencing of Dongjin 81 

and the Nipponbare reference genome, showed a divergence of one single 82 

nucleotide polymorphism (SNP) per ~11kb (M&M). We identified one insertion mutant 83 

in each cultivar for both genes (Figures 1A and S4). As mentioned above, mutation of 84 

FIGL1 was recently shown to cause sterility in rice and was thus not further studied 85 

here15. We produced Dongjin/Nipponbare F1 hybrids mutant for both OsRECQ4 86 

alleles, or for both OsFANCM alleles and wild type siblings (M&M and Figure S5). 87 

Hybrid fertility was not affected by either the bi-allelic Osfancm or the Osrecq4 88 

mutation (Figure 1B). No defects in meiosis progression were observed during male 89 

meiosis in Osrecq4 hybrids (Figure S6), which is consistent with normal fertility. F1 90 

plants were self-fertilized to generate F2 populations that were genotyped for an 91 
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average of 19 SNP markers per chromosome (on the 12 chromosomes for the 92 

RECQ4 populations and five chromosomes for the FANCM populations). We 93 

analyzed 149 Osrecq4 -/- F2 plants, 108 Osfancm -/- F2 plants and a total of 262 wild 94 

types (Dataset S2). In Osrecq4 -/-, we observed an increase in the genetic size of all 95 

12 chromosomes leading to a 3.2-fold increase in the total genetic map compared to 96 

wild type (total size ± 95% confidence interval: 5700 ± 231 cM vs 1759 ± 58 cM;) 97 

(Figures 2 and 3). This shows that RECQ4 is a major meiotic anti-crossover factor in 98 

hybrid rice. In Osfancm -/-, recombination was increased by 2.3-fold (cumulated 99 

genetic map size of the five chromosomes analyzed:  1649 ± 122 cM vs 724 ± 69 cM 100 

in wild type). This is remarkable, as no increase in recombination was observed in 101 

Arabidopsis fancm hybrids2,10 (Figures 2 and 3). Crossover distribution along the 102 

chromosomes (Figure 4) showed that in both Osfancm and Osrecq4, enhancement 103 

of recombination occurs along chromosome arms but not in the peri-centromeric 104 

regions, suggesting that other factors limit crossovers in these regions, as previously 105 

proposed for Arabidopsis. In addition to peri-centromeres, another region on the right 106 

arm of chromosome 11 was relatively supressed for crossovers in wild type and 107 

Osrecq4 (Figure 4). Interestingly, this region is associated with a cluster of resistance 108 

genes20 and diverges significantly between the parental genomes. The same 109 

observation was made in Arabidopsis 2,10. This suggests that regions with high levels 110 

of polymorphism are less prone to the extra crossovers that arise in recq4 mutants. 111 

Next, we extended our analysis to the pea Pisum sativum by screening an EMS-112 

induced mutant population21 (cultivar Cameor). We identified a STOP-codon mutation 113 

in PsFANCM, PsRECQ4 and a splicing site alteration in PsFIGL1 (fancm-Q503*, 114 

recq4-W673*, figl1-L131ss; Figure 1A). To measure the effect of these mutations 115 

alone or in combination, we produced two independent populations. The first 116 
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population segregated the Psrecq4 and Psfancm mutations and genetic 117 

polymorphisms from a different cultivar (Kayanne) (M&M and Figure S7). The second 118 

population was purely Cameor and segregated the three mutations (Figure S8). 119 

Fertility was quite variable from plant to plant, presumably because of the 120 

segregation of additional EMS mutations. In both populations, the fertility of F2 121 

Psfancm mutants was indistinguishable from that of wild type. However, all the F2 122 

plants that were homozygous for the Psfigl1 mutation were sterile (Figure 1B) and 123 

Psrecq4 mutants produced four times less seed than wild type. This  suggests that 124 

PsFIGL1 is essential for meiosis and fertility in pea, as previously shown in rice15, 125 

and that PsRECQ4 may also be required for full fertility (Figure 1B). However, we 126 

cannot rule out the possibility that this reduced fertility in Psrecq4 and Psfigl1 was 127 

caused by additional linked EMS mutations. Seeds could be obtained in sufficient 128 

numbers for Psrecq4, Psfancm, Psrecq4 Psfancm and wild type siblings (Figure S7). 129 

For each of these genotypes, ~50 F3 plants were genotyped for 5097 SNPs between 130 

the cultivars Cameor and Kayanne (Dataset S4) to measure genome wide 131 

recombination. Note that because certain regions were fixed in the F2s, only ~80% of 132 

the genome was segregating for polymorphic markers in the four genotypes and was 133 

thus analyzed to compare recombination levels (810 cM of the 1018 cM of the total 134 

wild type map). For Psfancm, we observed a global twofold increase in recombination 135 

(1639 ± 204 cM vs 810 ± 78 cM), similar to that observed in rice, but in contrast with 136 

the absence of effect in Arabidopsis hybrids. In Psrecq4, recombination increased 137 

even further with 4.7 times more crossovers observed compared to wild type (3798 ± 138 

296 cM vs 810 ± 78 cM) (Figures 2 and 3). Thus RECQ4 is a major anti-crossover 139 

factor in Pea. Psrecq4 and Psfancm double mutants did not show a further increase 140 

in recombination compared to Psrecq4 alone (3767 ± 288 cM vs 3798 ± 296 cM). 141 
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This suggests that in Pea either PsRECQ4 and PsFANCM act in the same anti-142 

crossover pathway, which would be intriguing as these two helicases appear to act in 143 

parallel in Arabidopsis, or that some upper limit has been reached (e.g. the use of all 144 

eligible crossover precursors).  145 

Finally, we looked for mutations in FANCM and RECQ4 in a tomato EMS-induced 146 

mutant population (Cultivar Micro-Tom) (Figure 1A). We identified a STOP codon in 147 

SlRECQ4 (recq4-Q511*) and crossed the corresponding line to wild type cultivar M82 148 

(M&M and Figure S9). Wild type and Slrecq4 F2 plants had similar fertility (Figure 149 

1B). We focused our analysis on chromosome 4 and 7 and observed a 2.7-fold 150 

increase in recombination in the mutant compared to the wild type (cumulative map 151 

173 ± 22 cM vs 464 ± 52 cM) (Figures 2 and 3). This shows that RECQ4 is also a 152 

major factor limiting meiotic recombination in tomato. We also identified missense 153 

mutations in tomato FANCM in a conserved amino acid (L137F). Following a similar 154 

approach as described above for recq4, we did not detect an increase in meiotic 155 

recombination in hybrids homozygous for this mutation (data not shown). However, 156 

further work is needed to understand whether disruption of FANCM has no effect in 157 

this context, as observed for Arabidopsis hybrids, or if the L137F mutation does not 158 

fully disrupt FANCM activity. 159 

Discussion 160 

Here we explored the potential for fancm and recq4 mutation to increase 161 

recombination in crops. In Arabidopsis, the fancm mutation leads to a threefold 162 

increase in recombination in a pure line but has almost no effect in hybrids 163 

(Col/Ler)5,13,22. However, we showed here that mutating FANCM results in a ~twofold 164 

increase in recombination in hybrid rice (Dongjin/Nipponbare) and hybrid pea 165 
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(Cameor/Kayanne). This difference could be due to variation in the recombination 166 

machinery in these species or be associated with the level of polymorphisms in these 167 

hybrids. Indeed, the SNP density is ~1/200pb in the Col-Ler Arabidopsis hybrid23, but 168 

is much lower in the rice Dongjin/Nipponbare (1/11kb) and Cameor/Kayanne pea 169 

hybrids (~1/10kb and ~1/5kb, respectively) and, by definition, virtually null in the 170 

Arabidopsis pure line. This would mean that the fancm mutation only increases 171 

recombination if the polymorphism rate is below a certain threshold, somewhere 172 

between 1/200 and 1/5000 SNPs per kb. It would be interesting to explore the fancm 173 

effect in more distant hybrids (e.g. Japonica-Indica rice) or in different species, to test 174 

this hypothesis.  175 

We showed that the recq4 mutation alone can massively increase recombination in 176 

rice, pea and tomato hybrids, a result similar to that observed in Arabidopsis2. This 177 

suggests that mutation in RECQ4 orthologs may be a universal approach for 178 

enhancing recombination rates in crop species. These increases in crossover 179 

frequency are much higher than any previously observed natural or environmentally-180 

induced variation in recombination (e.g. temperature which typically modifies 181 

recombination by 10-30% 24–27). Increased recombination is predicted to improve the 182 

response to selection in the short, medium, and long term28. Thus higher 183 

recombination rates could be used to enhance genetic gain in breeding schemes. 184 

Further, increased recombination would also enhance the power of pre-breeding 185 

activities such as genetic map construction, QTL detection, and positional cloning. 186 

However, the recq4 mutation does not homogeneously increase recombination along 187 

the genome (Figure 3 and 2). First, the peri-centromeric regions, that are reluctant to 188 

crossover in wild type, still fail to recombine in the mutants, suggesting that additional 189 

unknown mechanisms prevent crossovers close to centromeres 29. Future studies 190 
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should prioritize the identification of  these mechanisms and methods to increase 191 

crossover in proximal regions  as these regions represent a large part of the genome 192 

in important crops such as wheat30. Second, the increase in recombination tends to 193 

be lower in more divergent regions of the genome. Strikingly, the regions of highest 194 

sequence divergence showed a limited increase in recombination compared to the 195 

rest of the genome (Figure 4 and 2). This suggests that the extra crossovers arising in 196 

the recq4 or fancm mutants tend to be prevented by sequence divergence. This 197 

predicts that mutating recq4 could be ineffective for promoting recombination 198 

between distant genomes, such as in interspecific crosses, but this remains to be 199 

tested. The same appears to be true for all anti-crossover genes identified to date7,10. 200 

Further studies are required to understand how sequence divergence drives genetic 201 

recombination.  202 

In all species examined so far, mutation in RECQ4 resulted in the most significant 203 

increases in crossover numbers. However in Arabidopsis, further increases were 204 

obtained by combining the recq4 mutation with either a mutation in the FIGL1 gene, 205 

or with overexpression of HEI10 2,10. While figl1 only mildly affects fertility in 206 

Arabidopsis, it leads to sterility in rice 15 and pea, precluding the use of figl1 to 207 

manipulate recombination in those species. Both figl1 mutation and HEI10 208 

overexpression remain to be tested in other species.  209 

Here we used classic mutagenesis to disrupt FANCM and RECQ4 and crosses to 210 

introduce this mutation into the hybrid context. However, the development of very 211 

effective targeted mutagenesis techniques based on CRISPR-cas9 now offers the 212 

possibility to disrupt these genes directly in the F1 hybrids 31 and thus rapidly obtain 213 

hyper-recombined populations and enhance the efficiency of crop breeding. 214 
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Materials and methods 215 

Phylogeny 216 

Sequences from RECQ4, FANCM and FIGL1 proteins were retrieved from the 217 

PLAZA V4 dicots and monocots databases32 218 

https://bioinformatics.psb.ugent.be/plaza/ using  BLASTP (RECQ4: 219 

ORTH004M000654 and ORTH004D00423; FANCM ORTHO04D004865 and 220 

ORTHO04M004526) and species by species using BLASTP on the nr database at 221 

NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins), Phytosome12 222 

(https://phytozome.jgi.doe.gov/pz/portal.html), the Pea RNA-Seq gene atlas 223 

(http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi)21, the Sol Genomics Network 224 

https://solgenomics.net/ 33 and the IWGSC RefSeq Annotations. For each candidate 225 

gene, if several protein isoforms/predictions were present in the databases, the 226 

isoform/prediction with the higher similarity to the corresponding protein in other 227 

species was retained for further analysis (Dataset S1). The phylogenetic analysis 228 

was performed on the Phylogeny.fr platform34 and included the following steps:  1) 229 

Sequences were aligned with MUSCLE (v3.8.31) configured for highest accuracy; 2) 230 

Positions with gaps were removed from the alignment; 3) The phylogenetic tree was 231 

reconstructed using the maximum likelihood method implemented in the PhyML 232 

program (v3.1/3.0 aLRT). The default substitution model was selected assuming an 233 

estimated proportion of invariant sites (of 0.118) and four gamma-distributed rate 234 

categories to account for rate heterogeneity across sites. The gamma shape 235 

parameter was estimated directly from the data (gamma=0.929). Reliability of internal 236 

branches was assessed using the aLRT test (SH-Like). Graphical representation and 237 
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editing of the phylogenetic tree were performed with TreeDyn (v198.3) and adobe 238 

illustrator. 239 

Rice 240 

Illumina Paired-end reads from Dongjin were aligned to the Nipponbare reference 241 

genome (MSU7) using the software BWA (release 0.7.10). PCR artifacts were 242 

removed by Picard tools MarkDuplicates (https://broadinstitute.github.io/picard/). SNP 243 

and INDEL identification were performed with GATK HaplotypeCaller (release 3.4-0-244 

g7e26428) with default parameter. Raw variants were filtered according to GATK 245 

recommendations (https://software.broadinstitute.org/gatk/best-practices/). In 246 

resulting VCF file (Variant Call Format) we retained only variants that have passed all 247 

filters (PASS quality) and we selected homozygous SNPs (both alleles are different 248 

from those of Nipponbare reference). 33540 SNPs were retained for a total genome 249 

size of 373 Mb, corresponding to 1 SNP per 11 Kb between Dongjin and Nipponbare 250 

cultivars. 251 

The following mutations were used in this study: Osfancm-1 (AQSG07), Osfancm-2 252 

(A46543), Osrecq4l-1 (3A-03503) and Osrecq4l-3 (AUFG12) (Figure 1A and Figure 253 

S4). Osfancm-1 and Osrecq4l-3 are in the Nipponbare cultivar from the Oryza Tag 254 

Line insertion line library 18,35 . Osfancm-2 and Osrecq4l-1 are in the Dongjin cultivar 255 

from the POSTECH Rice Insertion Database 36. For each allele, the position of the T-256 

DNA in the rice genome was confirmed with Sanger sequencing (Figure S4). Plants 257 

were grown under containment greenhouse conditions (28°C / 24°C day/night cycle, 258 

60% humidity) with natural light boosted by artificial sodium lights (light intensity of 259 

700 µmoles/m2/s). The crossing scheme is summarized in figure S5. Heterozygous 260 

plants for the mutations were identified using PCR. Primers were designed using the 261 
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“Genotyping Primer Designer” tool of OryGenesDB 262 

(http://www.orygenesdb.cirad.fr)35,37. Genotyping primers and expected PCR product 263 

sizes are listed in Table S1. We crossed the heterozygous lines Osfancm-2+/- with 264 

Osfancm-1+/- and Osrecq4-1+/- with Osrecq4-3+/-. Dongjin lines were used as 265 

female and Nipponbare lines as male (Figure S5). Crosses were carried out through 266 

manual castration of florets and pollination, followed by bagging to avoid pollen 267 

contamination. F1 hybrid plants were genotyped twice to select Osfancm-/-, Osrecq4-268 

/- and their respective wild type siblings (Figure S5). F1 sibling plants of the desired 269 

genotypes were used for fertility measurements, cytological analyses and selfed to 270 

produce the F2 populations. Male meiotic chromosome spreads were performed as 271 

previously described38. For SNPs genotyping of the F2s, DNA was extracted from 272 

500mg of fresh leaves and adjusted to 10ng/µL. Single nucleotide polymorphism 273 

genotyping was performed using Kompetitive Allele Specific PCR (KASP) following 274 

the LGC group recommendations for the use of KASP technology on Biomark 275 

Fluidigm with a set of 241 robust KASP markers spread over the physical map 276 

(∼every 1.5 Mb). Genotyping data were analyzed with Fluidigm software  (Fluidigm 277 

SNP Genotyping Analysis 4.3.2) with manual error corrections. The raw genotyping 278 

dataset is shown in Dataset S2. Recombination analysis was performed with 279 

MapDisto 2.0 b105 39. Linkage groups were determined for the wild type F2 280 

population (LOD1, RFmax: 0,5), and fit perfectly with the physical marker order. 281 

Genotyping errors were filtered using the iterative error removal function (iterations = 282 

5, start threshold = 0.001, increase = 0.001). Recombination (cM ± SEM) was 283 

calculated using classical fraction estimation and the Haldane mapping function. The 284 

obtained recombination frequencies per interval and corresponding genomic data are 285 

shown in Dataset S3. Graphical representations were generated with R 3.3.2 (Figure 286 
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4).  287 

Pea 288 

Mutations in PsRECQ4, PsFANCM and PsFIGL1 were identified using TILLING 289 

(Targeting Induced Local Lesions IN Genome) in the cultivar Cameor, and combined 290 

by crosses. In the Psfancm mutant there is a C to T transition at position 1507 from 291 

the A of the start codon of the coding sequence, leading to a nonsense mutation 292 

(Q503*). In Psrecq4 there is a G to A transition at the position 2019 from the A of the 293 

start codon of the coding sequence, leading to a nonsense mutation (W673*). 294 

The PsFigl1 mutation is a G to A transition at position 3740 from the ATG on the 295 

genomic sequence, modifying the splice junction before the 3rd exon. Two 296 

independent populations were produced (Figures S7 and S8). 297 

In the first population, one plant PsRECQ4+/- PsFANCM+/- was crossed to the wild 298 

type cultivar Kayanne (Figure S7). One F1 plant was selfed to produce 180 F2 plants, 299 

among which single mutants, double mutants and wild type were identified by 300 

genotyping. Five Psfancm, five Psrecq4, three Psfancm Psrecq4 and five wild type 301 

F2 plants were selfed to produce the F3 populations (~50 plants per genotype).  302 

In the second population, two Cameor PsRECQ4+/- PsFANCM+/- PsFIGL1+/- were 303 

selfed to produce 160 F2 plants (Figure S8). Twenty-one Psfancm mutants, 24 304 

Psrecq4, 24 Psfigl1, 2 Psfigl1Psrecq double mutants and 7 Psfigl1Psfancm double 305 

mutants were identified by genotyping. Fertility was analyzed for the two F2 306 

populations (Figure 1 B).  307 

F2 and F3 plants of the Cameor/Kayanne hybrid population were genotyped for 5097 308 

markers polymorphic between Kayanne and Cameor using the GenoPea 13.2K SNP 309 

Array40 (Dataset S4). Markers that were homozygous in F2 plants were scored as 310 
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missing data in its F3 progeny. Very rare dubious singletons were manually edited 311 

into missing data. Recombination analysis was carried out with MapDisto 2.0 b104 39, 312 

using the linkage groups defined in 40 with some manual corrections that minimized 313 

the number of crossovers. The F2 and F3 wild type maps were not significantly 314 

different from each other and were combined to gain detection power. Recombination 315 

(cM ± SEM) was calculated using classical fraction estimation and the Haldane 316 

mapping function. The obtained recombination frequencies per interval and 317 

corresponding genomic data are shown in Dataset S5. Complete maps are shown in 318 

figure 2. Only the genetic space for which data were obtained in the four genotypes 319 

(~80% of the total map) is shown in figure 3 (common map in Dataset S5). 320 

 321 

Tomato 322 

Q511>STOP RECQ4 and L137F FANCM mutations were isolated using TILLING in a 323 

tomato EMS mutant collection in the cultivar Micro-Tom 41,42. Genetic mapping was 324 

carried out in F3 populations from a cross between a reccq4-Q511* homozygous 325 

mutant and the processing variety M82 (Figure S9). A 96 F2 population from a F1 326 

hybrid was genotyped for the recq4 mutation using a set of 30 markers on 327 

chromosomes 4 and 7 that are polymorphic between Micro-Tom and M8243,44 328 

(Dataset S6). A total of 16 F2 plants were selected for their maximal heterozygosity 329 

for chromosome 4 or chromosome 7 and for being either RECQ4+/+ or recq4-/- 330 

(Figure S9). Forty F3 progenies were generated by selfing from each of these F2 331 

plants. The 640 F2 plants were genotyped for SNP markers on chromosome 4 or 7. 332 

The plants were grown and DNA extracted as described in 43,45 . Genotyping was 333 

performed by KASPTM Assay46. Markers that were homozygous in F2 plants were 334 
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scored as missing data in its F3 progeny. Recombination analyses were performed 335 

with MapDisto 2.0 b10447. Genotyping errors were filtered using the iterative error 336 

removal function (iterations = 1, start threshold = 0.001). Recombination (cM ± SEM) 337 

was calculated using classical fraction estimation and the Haldane mapping function. 338 

The obtained recombination frequencies per interval are shown in Dataset S7. 339 

  340 
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Figure 1A. Graphical representation of the RECQ4, FANCM and FIGL1  proteins and 
positions of the mutations described in this study for rice (Os for Oryza sativa), tomato (Sl for 
Solanum lycopersicum) and pea (Ps for Pisum sativum).T-DNA insertions are indicated with a 
triangle and EMS point mutations with a black vertical line. Conserved Protein domains are 
represented by rectangles. AAA-ATPase : ATPase Associated with diverse cellular Activities; 
DEXDc : DEAD-like helicase domain; FANCM : Fanconi anemia complementation group M; 
FRBD : FIDGETIN-RAD51-Binding-Domain; HELICc : Helicase superfamily C-terminal 
domain; HRDC : Homologous region RNase D C-terminal; RQC : RecQ C-terminal; VPS4 : 
Vacuolar Protein Sorting 4.
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Figure 1B. Fertility Analysis of the recq4, fancm and figl1 mutants in rice, pea and tomato
For rice, each dot represents the fertility of an individual plant measured as the proportion of
flowers giving rise to a seed (n>150 flowers/plant). For pea each dot represents the fertility of an
individual plant measured as the total number of seeds per plant. For tomato each dot
represents the fertility of an individual plant measured as the number of seeds per fruit (n=3
fruits per plant). The bar under the graph indicates that the plants are siblings. The purple bars
represents the mean. Anova with Sidaks’s multiple comparison correction: *** p<0.001; **
p<0.01; not significant (ns) p>0,05.
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Figure 2. Genetic maps in fancm and recq4 mutants compared with wild type for Arabidopsis,
rice, pea and tomato.
C=chromosome. LG=Linkage group. Each black line represents an informative genetic marker.

Data can be found in Tables S3, S5 and S7. Data for Arabidopsis are from Fernandes et al 2
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Figure 3.  Average chromosome size in wild type, fancm and recq4 mutant plants for 
Arabidopsis, rice, pea and tomato.
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Figure 4. Distribution of COs along the 12 rice chromosomes in Osrecq4l (blue), 
Osfancm (green) and wild type (grey) plants. 
The recombination frequency (cM/Mb) in each interval was plotted along the 12 rice 
chromosomes. The density of SNP polymorphisms between Dongjin and Nipponbare
strains is shown in grey. Red crosses represent the centromere positions ; the 
arrows represent the telomere positions.
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Figure S1. Phylogenetic tree of plant RECQ4 proteins. Genes present in several copies in a 
given species have been colored. Proteins sequences and accession numbers can be found 
in dataset S1
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Figure S2. Phylogenetic tree of plant FANCM proteins. Genes present in several copies in a 
given species have been colored. Proteins sequences and accession numbers can be found 
in dataset S1
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Figure S3. Phylogenetic tree of FIGL1. Genes present in several copies in a given species 
have been colored. Proteins sequences and accession numbers can be found in dataset S1
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Figure S4 : Positions of T-DNA insertions in OsFANCM and OsRECQ4.
T-DNA insertions are indicated with a triangle. Mutants are from two different cultivars, 
Nipponbare (NB) or Dongjin (DJ). The exact position of the T-DNA insertion site  was 
confirmed by Sanger sequencing. 
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selfing

or

n=108 F2 plants fancm -/-
Or n=149 F2 plants recq4 -/-

selfing

n=112 F2 plants FANCM +/+
Or n=150 F2 plants RECQ4 +/+

Rice

NipponbareDongjin

Figure  S5. Experimental scheme for rice fancm or recq4 Dongjin/Nipponbare hybrid populations.
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Osrecq4l +/+ Osrecq4l ‐/‐

Figure S6. Male meiosis in Osrecql4 -/-
(A-B) Diplotene, the 12 pairs of chromosome are connected by chiasma. (C-D) 

Metaphase I with 12 aligned bivalents. (E-F) Metaphase II with 12 pairs of chromatids. 
(G-H) Telophase II. Male meiotic chromosome spreads were performed as previously 
described in [17].  Scale bar = 5 μm.
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x

F3 plants genotyped for 5097 SNP markers

selfing

Pea

Figure  S7. Experimental scheme for Pea recq4 fancm Cameor/Kayanne hybrid population 

Cameor Kayanne

Genotyping with 13.2K SNP markers and selection of wild type, fancm, recq4 and fancmrecq4
double mutants plants with maximum heterozygosity for Cameor/Kayanne polymorphims

fancm recq4
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Pea

Figure  S8. Crossing scheme for the Pea recq4 fancm figl1 Cameor population. 
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x

M82

or

n=160 F3 plants.  Genotyping for 
16 markers on chromosome 4.

recq4

Micro-Tom Line P79C8

selfing

Genotyping and selection of wild type or recq4 plants 
with maximum heterozygosity for chromosomes 4 or 7

n=4 F2 plants
or or

n=4 F2 plants
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selfing selfing selfing selfing
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13 markers on chromosome 7.
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Figure  S9. Experimental scheme for Tomato recq4 Micro- Tome/M82 hybrid population
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Table S1 : Primer sequences used for genotyping rice mutants and SNP position in the 
rice genome (MSU v7.0).
Wild type PCR  was done with LP (Left primer) and RP (Right primer)
primers; Mutant PCR with BP (Backbone primer) and RP primers.

Target Primer name Sequence (5' to 3') PCR amplicon size 
(bp)

Osfancm-1 AQS-BP GTCTGGACCGATGGCTGTGTAGAAG Mutant PCR = 798
AQS-LP AGGTATCCTTGGGGAGTTGG Wild type PCR = 593
AQS-RP TGTAACATCCGATCAGTGTGC 

Osfancm-2 A4-BP TCGTTAAAACTGCCTGGCACAGC Mutant PCR = 758
A4-LP CAACGTATGGGAAGGACTGG Wild type PCR = 1094
A4-RP GGTGGAAGAAGAACCAACCA 

Osrecq4-3 AUF-BP TCGTTAAAACTGCCTGGCACAGC Mutant PCR = 690
AUF-LP TCGATGAATCGTCAGTTCCA Wild type PCR = 1013
AUF-RP ACATGCGCTACGGGAACTAT

Osrecq4-1  3503-BP ACGTCCGCAATGTGTTATTAA Mutant PCR = 529
3503-LP GCTACATTTTGGAACGGAGGT Wild type PCR = 1087
3503-RP TGGAGTGGTCAGAACAGCAG

OsFANCM 
genotyping 

primers

OsRECQ4 
genotyping 

primers
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