

SMOS-IC: an alternative SMOS soil moisture and 3 vegetation optical depth product

Roberto Fernández-Morán, Amen Al-Yaari, Arnaud Mialon, Ali Mahmoodi, Al Bitar Ahmad, Gabrielle de Lannoy, Ernesto Lopez-Baeza, Yann H. Kerr, Jean-Pierre Wigneron

To cite this version:

Roberto Fernández-Morán, Amen Al-Yaari, Arnaud Mialon, Ali Mahmoodi, Al Bitar Ahmad, et al.. SMOS-IC: an alternative SMOS soil moisture and 3 vegetation optical depth product. 2017. hal-02787798ff

HAL Id: hal-02787798 <https://hal.inrae.fr/hal-02787798v1>

Preprint submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/)

Article

SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product

4 Roberto Fernandez-Moran ^{1, 2}, Amen Al-Yaari ¹, Arnaud Mialon ³, Ali Mahmoodi ³, Ahmad Al **Bitar 3, Gabrielle De Lannoy 4, Ernesto Lopez-Baeza 2, Yann Kerr 3, Jean-Pierre Wigneron ¹**

- ¹ INRA, UR1391 ISPA, F-33140, Villenave d'Ornon, Centre INRA Bordeaux Aquitaine, France; amen.al-yaari@inra.fr (A. A); jean-pierre.wigneron@inra.fr (J. -P. W)
- ² University of Valencia. Faculty of Physics. Dept. of Earth Physics & Thermodynamics. Climatology from

9 Satellites Group. 46100 Valencia: Ernesto.Lopez@uv.es (E. L.) Satellites Group. 46100 Valencia; Ernesto.Lopez@uv.es (E. L.)
- ³ CESBIO, CNES/CNRS/IRD/UPS, UMR 5126, Toulouse, France; arnaud.mialon@cesbio.cnes.fr (A. M.); 11 mahmoodi.ca@gmail.com (A. M.); ahmad.albitar@cesbio.cnes.fr (A. A.); yann.kerr@cesbio.cnes.fr (Y. K.)
- ⁴ KU Leuven, Department of Earth and Environmental Sciences, Heverlee, B-3001, Belgium; (gabrielle.delannoy@kuleuven.be (G. D. L.)
- ***** Correspondence: roberto.fernandez-moran@inra.fr; tel.: +33 7 52 04 30 85

Abstract: The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product which was developed by INRA (Institut 21 National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère). This SMOS-INRA-CESBIO (SMOS-IC) product provides daily SM and τ at the global scale and differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections associated to the antenna pattern and the complex SMOS viewing angle geometry. It considers pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary data sets which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also differs from the current SMOSL3 product (Version 300, V300) in the values of the effective 29 vegetation scattering albedo (ω) and soil roughness parameters. An inter-comparison is presented in this study based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging Spectroradiometer). A 6 year (2010-2015) inter-comparison of the SMOS products SMOS-IC and SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased root mean square difference) for SMOS-IC over most of the pixels. In terms of τ , SMOS-IC τ was found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the Amazonian basin and of the northern mid-latitudes.

Keywords: SMOS; L-band; Level 3; ECMWF; SMOS-IC; soil moisture; vegetation optical depth; MODIS; NDVI

1. Introduction

The estimation of surface soil moisture (SM) at global scale is a key objective for the recent L-band (1.4 GHz) microwave missions SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2012 [1])

and SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010 [2]). Measurements of soil moisture

are needed for applications related to the study of climate change or agriculture (droughts, floods,

etc.) and hydrological processes (Brocca et al., 2010 [3]) such as precipitation, infiltration, runoff and

2 of 26

evaporation. Moreover, SM is considered as an Essential Climate Variable and it is included in the Climate Change Initiative (CCI) project (Hollmann et al., 2013 [4]).

The soil moisture of the first 2-3 cm soil layer is highly related to the soil emissivity at L-band through the soil dielectric constant. SMOS uses an interferometric radiometer which delivers multi-angular brightness temperature measurements at L-band (1.4 GHz). Currently, various products are derived from the SMOS data at Level 2 (Kerr et al., 2012 [1]) and at Level 3 (Al Bitar et al., 2017 [5]), such as the SMOSL3 Brightness Temperature (SMOSL3 TB) and the SMOSL3 SM and τ products, 53 with a 625 km² sampling. The SMOS SM retrieval algorithm, which is common to both SMOS Level 2 (L2) and Level 3 (L3) products, has been continuously improved since the launch of the satellite in 2009 (Kerr et al., 2001 [6]; Mialon et al., 2015 [7]; Al Bitar et al., 2017 [5]). It has been validated against several datasets from various space-borne sensors (Al-Yaari et al., 2014 [8]; Al-Yaari et al., 2015 [9], Kerr et al., 2016 [10]). All the different versions of the L2 and L3 products, are based on the inversion of the L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model (Wigneron et al., 2007 [11]), thus retrieving two main parameters, namely soil moisture and vegetation optical depth at nadir (τ).

61 The SMOS τ is a measure of the attenuation of microwave radiation by the vegetation canopy at L-band. Vegetation is commonly studied at optical or infrared frequencies. However, the longer 63 wavelength of L-band sensors allows penetration of the radiation within the canopy. Thus, τ can be related to different vegetation features such as forest height (Rahmoune et al., 2013 [12], 2014 [13]), vegetation structure (Schwank et al., 2005 [14], 2012 [15]), water content (Jackson and Schmugge, 1991 [16], Mo et al., 1982 [17], Wigneron et al., 1995 [18]; Grant et al., 2012 [19]), sapflow (Schneebeli et al., 2011 [20]) and leaf fall (Guglielmetti et al., 2008 [21]; Patton et al., 2012 [22]). Furthermore, some 68 vegetation indices can also be related to τ such as the Leaf Area Index (LAI) (Wigneron et al., 2007 [11]) and the normalized difference vegetation index (NDVI) (Grant et al., 2016 [23]). Note that some studies have also demonstrated the notable influence of soil roughness on the retrieved values of the τ parameter at both local and regional scales (Patton et al., 2012 [22]; Fernandez-Moran et al., 2015 [24]; Parrens et al., 2017 [25]).

The L-MEB model has been progressively refined and improved (Wigneron et al., 2011 [26], in press [27]). The SMOS L2 and L3 algorithms are based on a bottom-up approach where the TB 75 contributions of 4×4 km land cover surfaces are convoluted using the antenna pattern to upscale the TB simulations to the sensor resolution. The use of such a bottom-up approach to retrieve SM and τ presents two main drawbacks. First this approach is impacted by the uncertainties associated with the higher resolution auxiliary files, like the land cover maps, which are used to characterize the pixel heterogeneity. Second, the approach is more time consuming as the exact antenna patterns have to be applied for each view angle.

In this study an alternative SMOS product is presented, hereinafter referred to as SMOS-IC. This product is based on a simplified approach developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère) and differs from the operational SMOS Level 2 and Level 3 products in three main ways:

- 85 I. The SMOS-IC algorithm does not take into consideration pixel land use and assumes the 86 pixel to be homogeneous as suggested by Wigneron et al. 2012 [28]. The SM and τ retrieval 87 is performed over the whole pixel rather than over the fraction designated as either low 88 vegetation or forest. Note that this approach is similar to the one considered in the 89 development of the AMSR-E and SMAP SM algorithms (O'Neill et al., 2012 [25]). By 90 simplifying the retrieval approach, the SMOS-IC product becomes independent of the 91 ECMWF soil moisture information currently used as auxiliary information to estimate TB in 92 the subordinate pixel fractions of heterogeneous pixels in the operational SMOS L2 and L3 93 algorithms (Kerr et al., 2012 [1]).
- 94 II. SMOS-IC uses as input SMOS Level 3 fixed angle bins Brightness Temperature (TB) data 95 at the top of the atmosphere and contains different flags allowing to filter SM retrievals

3 of 26

- 96 accounting for the quality of the input TB data and for the TB angular range in the LMEB 97 inversion. SMOS-IC does not make use of the computationally expensive corrections based 98 on angular antenna patterns to account for pixel heterogeneity as in the L2 and L3 retrieval 99 algorithms.
- 100 III. New values of the effective vegetation scattering albedo (ω) and soil roughness parameters 101 (H_R , N_{RV} , and N_{RH}) are considered in the SMOS-IC product. This change is based on the 102 results of Fernandez-Moran et al. (2016) [29] who calibrated the L-MEB vegetation and soil 103 parameters for different land cover types based on the International Geosphere-Biosphere 104 Programme (IGBP) classes, as well as the findings of Parrens et al. (2016) [30] who 105 computed a global map of the soil roughness H_R values . The calibration of Fernandez-Moran 106 et al. (2016) [31] was obtained by selecting the values of the parameters (H_R , N_{RV} , N_{RH} , and 107 ω) which optimized the SMOS SM retrievals, with respect to the in situ SM values measured 108 over numerous sites obtained from ISMN. The parameter values resulting from this new 109 calibration differ from those used in the current SMOS L2 and L3 products. Values currently 110 used in the SMOS L2 and L3 algorithms (Kerr et al., 2012 [1]) were those decided before 111 launch from literature. Over forested areas, values were updated but not over low vegetation. 112 Consequently, in Version 620 of the L2 (and Version 300 for L3) algorithm, ω is still assumed 113 to be zero over low vegetation canopies and $\omega \sim 0.06 - 0.08$ over forests. Similarly, H_R is 114 equal to 0.3 for forests and $H_R = 0.1$ for the rest of the cover types, while Q_R is set to zero 115 whereas N_{RH} and N_{RV} are respectively set to 2 and 0 at global scale.
- 116 IV. In some cases, the Level 2 and Level 3 algorithms use values of LAI derived from MODIS 117 [32], to initialize the value of optical depth in the inversion algorithm (Kerr et al., 2012 [1]). 118 In SMOS-IC, this is not implemented, and the initialization of optical depth in the inversion 119 algorithm is based on a very simple approach (given in the following) and is completely 120 independent of the MODIS data.

An evaluation and calibration of SMOS-IC at local scale was performed in Fernandez-Moran et al. (2016) [29]. The present study aims at presenting SMOS-IC and illustrating the main features of the SMOS-IC SM and τ products at global scale, in comparison to the current SMOSL3 product. To achieve this, the SMOS-IC and SMOSL3 SM products were compared against the ECMWF SM product for ease of comparison. Furthermore, NDVI (Rouse et al., 1974 [33]) from the Moderate-Resolution Imaging Spectroradiometer (MODIS) was used as a vegetation index to analyze the 127 seasonal changes in the τ products from both SMOS-IC and SMOSL3. The NDVI index which is 128 derived from optical observations cannot be directly compared to the τ product, which is derived from microwave observations. However, the NDVI index is a good indicator of the vegetation density 130 and it can be used to interpret the seasonal changes in the SMOS τ product at large scale as found by Grant et al. (2016) [23], but with some caveats: saturation effects at high levels of vegetation density, sensitivity to the effects of snow and soil reflectivity (Qi et al., 1994 [34]), etc. It may be noted that 133 NDVI is the proxy used for estimating τ in the current operational algorithm of the SMAP mission (O'Neill et al., 2012 [35]).

In section 2, we present a description of both SMOS algorithms (SMOSL3 and SMOS-IC) and of the MODIS NDVI and ECMWF SM data sets. The inter-comparison of the SMOS products in terms of soil moisture and vegetation optical depth is given in section 3. The inter-comparison covers almost 6 years of data, from 2010 to 2015, excluding the commissioning phase (the first six months of 2010;

139 Corbella et al., 2011 [36]). Discussion and conclusions are presented in section 4.

140 **2. Materials and method**

4 of 26

2.1 SMOSL3 brightness temperature, soil moisture and vegetation optical depth

At Level 3, there are different SMOS products (Al Bitar et al., 2017 [5]). In this study we used the SMOS L3 products which include TB, τ and SM (version 300) data produced by the CATDS (Centre Aval de Traitement des Données SMOS) (Al Bitar et al., 2017 [5]). These products are available in the NetCDF format and on the Equal-Area Scalable Earth (EASE) 2.0 grid (Armstrong et. al, 1997 [37]) 146 with a 625 km² sampling (Brodzik and Knowles, 2002 [38]). The SMOSL3 TB is measured at the top of the atmosphere and provided in the surface reference frame (i.e., H and V polarizations) at angles 148 ranging from 2.5° ± 2.5° to 62.5° ± 2.5° . Ascending (~ 06:00 LST at the equator) and descending (~ 18:00 LST) orbits are processed separately. The Level 3 processor uses the same physically based forward model (L-MEB) as the ESA SMOS Level 2 processor (Kerr et al., 2012 [1], Kerr et al., 2013 [39]) for the 151 retrieval of both SM and τ from dual polarization (H, V) and multi-angular SMOS measurements. The retrieval algorithm consists of the minimization of the differences between observed and modeled Level 1 TB (through the L-MEB forward model) in a Bayesian cost function which accounts for the observation uncertainty, and also contains a prior parameter constraint. One of the characteristics of the TB modeling is the consideration of surface heterogeneity. The total modeled TB is simulated as the sum of TB contributions from several fractions (nominal or low vegetation, forest, and others as urban, water, etc.). In most of the cases, the SM retrieval is estimated from the TB contribution which corresponds to areas with low vegetation (nominal fraction), while the TB forest contribution is computed using ancillary data such as ECMWF SM. In other cases, the retrieval is performed entirely over the forest fraction. Dynamic changes as freezing or rainfall events are considered through ancillary weather data from ECMWF.

The SMOSL3 τ and SM retrievals are provided at different temporal resolutions: daily, 3-days, 10-days, and monthly averaged (Kerr et al., 2013 [39]; Jacquette et al., 2010 [40]). The quality of the SMOSL3 product containing SM and τ data is improved by the use of multi-orbit retrievals (Al Bitar et al., 2017 [5]). The SMOS ascending (6 am LST) and descending (6 pm LST) orbits are processed separately in this product in order to better account for the diurnal effects (surface, Total Electron Content which drives Faraday rotation and sun corrections) and, in some areas, Radio Frequency Interferences (RFI) effects (Oliva et al., 2012 [41]) and sun glint impacts at L-band (Khazâal et al., 2016 [42]).

170 In SMOS-IC, we used the SMOS L3 TB product as input to the inversion algorithm. This product, which includes many corrections, is very easy and convenient to use (conversely, the L2 and L3 172 algorithms are based on L1 C TB data).

- *2.2 SMOS-IC soil moisture and vegetation optical depth dataset*
- 2.2.1 Model description

As for the L2 and L3 algorithms, in SMOS-IC, the retrieval of the soil moisture and vegetation optical depth at nadir is based on the L-MEB model inversion (Wigneron et al., 2007 [11]). The retrieval is performed over pixels which are considered as entirely homogeneous; in other words, a single representative value of each input model parameter is used for the whole pixel.

179 In L-MEB, the simulation of the land surface emission is based on the τ - ω radiative transfer model (Mo et al., 1982 [17]) using simplified (zero-order) radiative transfer equations. The model represents the soil as a rough surface with a vegetation layer. The modeled TB from the soil vegetation medium is calculated as the sum of the direct vegetation emission, the soil emission attenuated by the canopy and the vegetation emission reflected by the soil and attenuated by the canopy following equation (1). The atmospheric contribution is neglected.

185
$$
TB_{P}(\theta) = (1 - \omega)[1 - \gamma_{P}(\theta)][1 + \gamma_{P}(\theta)r_{GP}(\theta)]T_{C} + [1 - r_{GP}(\theta)]\gamma_{P}(\theta)T_{G}
$$

186 (1)

5 of 26

187 where θ is the incidence angle, rgp is the soil reflectivity, Tq and Tq are the soil and canopy 188 effective temperatures, $γ_p$ is the vegetation transmissivity (or vegetation attenuation factor) and ω is 189 the effective scattering albedo (polarization effects are not taken into account for this parameter).

190 Roughness effects are parameterized through a semi-empirical approach initially developed by 191 Wang and Choudhury (1981) [43] and refined in more recent studies (Escorihuela et al., 2007 [44]; 192 Lawrence et al., 2013 [45]; Parrens et al., 2016 [25]). The roughness modelling is based on four 193 parameters (QR, HR, NRH and NRV). The values of QR and NRP (P = H, V) have been calibrated in 194 Fernandez-Moran et al. (2015, 2016) [46][29] where optimized values of $Q_R = 0$ and $N_{RP} = -1$ (p = H, V) 195 were obtained globally. Thus, the calculation of the soil reflectivity r_{GP} is given by:

$$
196 \t r_{GP}(\theta) = r_{GP}^*(\theta) \exp[-H_R/\cos(\theta)] \t(2)
$$

197 where r_{GP}^* (P = H, V) is the reflectivity of a plane (specular) surface, which is computed from 198 the Fresnel equations (Ulaby, 1982 [47]) as a function of θ and of the soil dielectric constant (ε), 199 expressed as a function of SM, soil clay fraction and soil effective temperature (TG) using the model 200 developed by Mironov et al. (2012) [48]. HR accounts for the decrease of r_{GP} due to soil roughness 201 effects.

202 Under the assumption of isotropic conditions and no dependence of the vegetation optical depth 203 on polarization, the vegetation attenuation factor γ_P can be computed using the Beer's law as:

$$
204 \qquad \qquad \gamma_p = \exp[-\tau/\cos(\theta)] \tag{3}
$$

205 The retrieval of SM and τ involves the minimization of the following cost function x:

206
$$
x = \frac{\sum_{i=1}^{N} (TB_p(\theta)_{\text{mes}} - TB_p(\theta))^2}{\sigma(TB)^2} + \sum_{i=1}^{2} \frac{(P_i^{\text{ini}} - P_i)^2}{\sigma(P_i)^2}
$$
(4)

207 where N is the number of observations for different viewing angles (θ) and both polarizations 208 (H & V), $TB_{P}(\theta)_{\text{mes}}$ is the measured value over the SMOS pixels from the SMOSL3 TB product 209 (presented in section 2.2.2), σ(TB) is the standard deviation associated with the brightness 210 temperature measurements (this parameter was set to the constant value of 4 K in this study), $TB_{p}(\theta)$ 211 is the brightness temperature calculated using equation (1), P_i (i = 1, 2) is the value of the retrieved 212 parameter (SM, τ); Pⁱⁿⁱ (i= 1, 2) is an *a priori* estimate of the parameter P_i; and σ(P_i) is the standard 213 deviation associated with this estimate. A constant initial value of $0.2 \text{ m}^3/\text{m}^3$ was considered for SM 214 and $\sigma(SM)$ and a value of 0.5 was considered for τ_{NAD} and 1 for $\sigma(\tau_{NAD})$.

215 2.2.2 Effective vegetation scattering albedo, soil roughness and soil texture parameters

One of the most important features of the SMOS-IC product is the ability to test new calibrated values of ω (Fernandez-Moran et al, 2016 [29]) and HR (Parrens et al. 2016 [30]. Table 1 presents these values for SMOS-IC and SMOSL3 V300 as a function of the IGBP land category classes. It must be noted that SMOSL3 V300 uses the ECOCLIMAP classification (Masson et al., 2003 [49]) and that in new versions of SMOSL3, IGBP land use maps could be used.

221 **T**able 1: Calibrated values of ω and HR as function of the IGBP land category classes for SMOS-IC and 222 SMOSL3.

223 $\bullet \text{ } \omega = 0.08$ over boreal forests, $\omega = 0.06$ over other forest types

224 In SMOS-IC, the retrieval of SM and τ is performed over the totality of each pixel and the input 225 parameters HR and ω are consequently constant values for the whole pixel. However, due to the 226 heterogeneity present in all pixels, the input HR and ω parameters used in the retrieval are calculated 227 by linear weighting the H_R and ω contribution according to the percentage of each IGBP class within 228 the pixel based on the values provided in Table 1. For instance, if a pixel is covered by 60% of 229 grasslands and 40% of croplands, the effective vegetation scattering albedo considered for that pixel 230 is calculated as follows: $\omega = 0.60 \cdot 0.10 + 0.40 \cdot 0.12 = 0.108$. The assumption of linearity, which is 231 questionable, was made here as it leads to a very simple correction, and as no other more physical 232 and general formulation was available.

233 The soil texture in terms of clay content is obtained in the SMOS-IC product from the Food and 234 Agriculture Organization map (FAO, 1998) [50]. This map is re-gridded in the same EASE 2.0 grid 235 used by SMOSL3.

236 2.2.3 Quality flags

The data filtering of the SMOS-IC product was done through different scene and quality flags which are summarized in Tables 2 and 3. The scene flags indicate the presence of moderate and strong topography, frozen soil or polluted scene. TB data for pixels where the sum of the water, urban and ice fractions were higher than 10% were filtered out (considered as polluted scene). For ECMWF soil temperatures below 273.15 K, the soil was considered as frozen. The quality flags helped to filter out all cases suspected to give dubious results. Consequently, only TB values not affected by noise (RFI, Sun glint effects, etc) were selected. For this, only TB values whose standard deviations were within radiometric accuracy were kept (TB with a standard deviation exceeding 5 K plus the TB radiometric accuracy were filtered out). Moreover, only retrievals (i) made in the range of incidence angles of 20 246 to 55 $^{\circ}$ and (ii) with a range of angular values exceeding 10 $^{\circ}$ (to ensure a sufficient sampling of the angular distribution) were considered. The quality flags helped also to filter out those retrievals

7 of 26

248 where the RMSE values between the measured (L3 TB) and the L-MEB modeled TB data were larger

- 249 than 12 K as suggested in Wigneron et al. (2012) [28].
-

250 **T**able 2: Description of the SMOS-IC scene flags

251

252 **T**able 3: Description of the SMOS-IC quality flags

253

254 *2.3 ECMWF and MODIS data*

The ECMWF dataset used in this study for the SM product inter-comparison was obtained from 256 the SMOSL3 SM pre-processor. This ECMWF product has a spatial resolution of 625 km² and 1-day temporal resolution, using the same EASE 2.0 grid and interpolated in time and space to fit the SMOSL3 sampling resolutions. It is based on the ERA-Interim dataset. ERA-Interim uses a numerical weather prediction (NWP) system (IFS – Cy31r2) to produce reanalyzed data (Berrisford et al., 2011) 260 [51].

261 The ECMWF soil surface (Level 1, top 0-7 cm soil layer) and soil deep temperature (Level 3, 28- 262 100 cm) are used in the computation of the effective soil temperature for the SMOS-IC and SMOSL3 263 SM products following the parameterization of Wigneron et al. (2001) [52]. It is worth noting that unlike 264 the SMOSL3 SM product, the SMOS-IC processor does not use the ECMWF SM product to compute 265 contributions from the fixed fractions (i.e. fraction of the scene over which the SM retrieval is not performed), 266 and is only considered for evaluation purpose in this study.

267 The ECMWF SM product represents the top 0-7 cm surface layer and it has been frequently 268 compared to retrieved SM at global scale (Al-Yaari et al., 2014 [53]; Albergel et al., 2013 [54]; Leroux 269 et al., 2014) [55]. ECMWF SM was found by Albergel et al. (2012) [56] to represent very well the SM

8 of 26

270 variability at large scales. It is also known to give erroneous values in some areas (Louvet et al., 2015 271 [57]; Kerr et al., 2016 [10]).

The NDVI product used in this study was obtained from the 16 day NDVI MODIS Aqua and Terra data, with a 1 km resolution. This product was re-gridded in the EASE 2.0 grid in order to make 274 it comparable with SMOS-IC and SMOSL3 SM. Different studies have shown that τ at microwave frequencies has high spatial correspondences with MODIS NDVI (De Jeu and Owe, 2003 [58]; Andela et al., 2013 [59]) even though both products have shown sensitivity to different aspects of the

- 277 vegetation dynamics (Grant et al., 2016 [23]).
- 278 *2.4 Inter-comparison*

The inter-comparison was made for both SMOS-IC and SMOSL3 products by direct comparison 280 between SM (m³/m³) and τ, against, respectively, the ECMWF SM and MODIS NDVI products. This section explains the filtering which was applied to the latter datasets and the metrics used in the evaluation process.

283 *2.4.1 Data filtering*

284 In the evaluation step, only ascending SMOS SM retrievals were selected (Al-Yaari et al., 2014 285 [8][53]). Flags associated with SMOSL3 were used to filter both SMOSL3 and SMOS-IC.

286 For the SMOSL3 SM product, a quality index (DQX) estimates the retrieval quality. In this study, data 287 with DQX > 0.06 m³/m³ were excluded. In parallel, the Level 3 RFI probability flag was used to filter 288 out SM data contaminated by RFI. SM retrievals with an associated RFI probability higher than 20% 289 and frozen areas were removed (surface temperature < 273.15 K). The SMOS-IC and SMOSL3 filtered 290 retrievals of SM and τ used in the study were inter-compared for the same dates. For both SMOS 291 products (SMOSL3 and SMOS-IC), SM values out of the range 0 - 0.6 m³/m³ (Dorigo et al., 2013 [60]) 292 and τ values out of the range 0 - 2 were filtered out. We only considered pixels with temporal series of at

293 least 15 values for the product inter-comparison.

294 In order to compare τ with MODIS NDVI, the daily τ values were re-gridded to 16-day mean 295 values produced every 8 days following the same methodology as described in Grant et al. (2016) 296 [23].

297 2.4.2 Metrics

298 For evaluation purposes, the following metrics were used: Pearson correlation coefficient (R), 299 bias, root mean square difference (RMSD) and unbiased RMSD (ubRMSD). Equations for the 300 calculation of the SM metrics are the following:

301
$$
R = \frac{\sum_{i=1}^{n} (SM_{EC(i)} - \overline{SM_{EC}}) (SM_{SMOS(i)} - \overline{SM}_{SMOS})}{\sqrt{\sum_{i=1}^{n} (SM_{EC(i)} - \overline{SM}_{EC})^{2} \sum_{i=1}^{n} (SM_{SMOS(i)} - \overline{SM}_{SMOS})^{2}}}
$$

$$
bias = \overline{(SM_{SMOS} - SM_{EC})}
$$

$$
RMSD = \sqrt{(SM_{SMOS} - SM_{EC})^2}
$$

$$
304 \t\t \t\t \tubRMSD = \sqrt{RMSD^2 - bias^2}
$$

305 where n is the number of SM data pairs, SM_{SMOS} is the SMOS SM product (SMOSL3 SM or SMOS-306 IC) and SMEC is the ECMWF SM. It should be noted the use of RMSD instead of root mean square 307 error (RMSE) as ECMWF SM contain errors and cannot be considered as the "true" ground SM value

9 of 26

308 (Al-Yaari et al., 2014 [53]). In this study, only significant correlations were considered by means of a p-value 309 filtering for SM retrievals, i.e. pixels where the p-value was above 0.05 were filtered out.

310 In order to evaluate τ , R was calculated as follows:

311
$$
R = \frac{\sum_{i=1}^{n} (NDVI_i - \overline{NDVI}) (\tau_{SMOS(i)} - \overline{\tau_{SMOS}})}{\sqrt{\sum_{i=1}^{n} (NDVI_i - \overline{NDVI})^2 \sum_{i=1}^{n} (\tau_{SMOS(i)} - \overline{\tau_{SMOS}})^2}}
$$

312 where τ_{SMOS} is the vegetation optical depth at nadir (τ) retrieved from the SMOSL3 or SMOS-IC 313 product.

314 **3. Results and discussion**

315 *3.1 Soil moisture*

Figure 1 shows the values of the temporal mean SM over the globe and over the period 2010- 2015 for the three SM datasets considered in this study: (a) SMOS-IC, (b) SMOSL3 SM, and (c) ECMWF. It should be kept in mind that ECMWF SM is representative of the first 0-7 cm of the soil surface (Albergel et al., 2012 [61]) and the inherent nature of the simulated soil moisture (Koster et al., 2009 [62]) is different to that measured by the SMOS satellite observations, which are sensitive to the first ~ 0-3 cm of the soil surface (Escorihuela et al., 2010 [63]; Njoku and Kong et al., 1977 [64]). In Figure 1, ECMWF SM must be analyzed in terms of spatial patterns rather than absolute values. Although Figure 1 (a) and (b) have many similarities, some spatial patterns showed by the ECMWF SM product are in better agreement with SMOS-IC than with SMOS L3 SM. For instance, over the Appalachian region in the Eastern US, SMOSL3 SM shows a dry area whereas SMOS-IC SM is closer to ECMWF, as these regions are known to be relatively wetter than the regions of west and midwest (Sheffied et al., 2004 [65]; Fan et al., 2004 [66]). This was partly explained by differences between ECOCLIMAP and IGBP and the use of ECMWF SM data in Mahmoodi et al., 2015 [67]. On the other hand, drier retrievals were found for SMOS-IC in the intertropical regions of Africa, for instance over the savannas and grasslands of Sahel. Over these regions SMOS-L3 SM is closer to ECMWF SM than

331 SMOS-IC SM.

10 of 26

(c) ECMWF

332

Figure 1: Temporal mean of soil moisture (m³/m³) during 2010-2015: (a) SMOS-IC, (b) SMOSL3 SM, 334 and (c) ECMWF data. White values mean "no valid SMOS data".

335 Figure 2 displays different time series metrics derived from the direct comparison between 336 SMOSL3 SM (a) and SMOS-IC SM (b) with ECMWF SM for 2010-2015. According to correlation (R)

337 results, lowest R values were found in forests for both products. A lower number of negative R values

11 of 26

were found between the SMOS-IC and ECMWF SM products. Conversely, SMOSL3 SM yielded negative correlations with ECMWF SM over several forest regions, namely the boreal forests of Alaska, Canada and Russia, and the tropical forests of Amazon and Congo basins. Over the non-forested biomes, R values were also found to be generally higher for SMOS-IC, when compared to SMOSL3 SM. Substantial differences were found in terms of RMSD and ubRMSD: in general, lower values were obtained for the SMOS-IC product, especially over the intertropical regions of America and Africa (in terms of ubRMSD) and the boreal forests of Eurasia (in terms of RMSD). On the other hand, results do not show important differences in terms of bias between the two SMOS products: both SMOS-IC and SMOSL3 SM products are generally much drier than ECMWF SM, except over some arid and semi-arid areas (deserts in central Asia and Australia, Sahara in Northern Africa). The general negative values of the bias can be partly explained by the differences in sampling depths between the SMOS observations (~ 0-3 cm top soil layer) and the modeled ECMWF SM (0-7 cm top soil layer). Considering this difference in sampling depths, the observed difference in SM bias patterns in Figure 2, should be interpreted with care.

12 of 26

Figure 2: Pixel-based statistics during 2010-2015 computed between ECMWF SM simulations and SMOSL3 SM (left) and SMOS-IC (right) SM retrievals: (a)(b) correlation coefficient, (c)(d) RMSD, (e)(f) bias, and (g)(h) ubRMSD.

13 of 26

Figure 3 is focused on the results in terms of correlation and ubRMSD, considered as first order criteria. It displays a world map which shows where the best correlation coefficient (R) and ubRMSD are obtained by comparing ECMWF SM with SMOS-IC SM (red) or SMOSL3 SM (blue) in the period 2010-2015. Areas where the result differs by less than 0.02 in terms of R values between SMOSL3 SM and SMOS-IC are represented in green color. This threshold is different for the ubRMSD metric and it was set to 0.005 m³/m³. It can be seen that the red color is dominant, meaning that SMOS-IC SM is generally closer to ECMWF in terms of temporal dynamics. There are some exceptions. For instance, regions colored in blue (SMOSL3 is closer to ECMWF than SMOS-IC) can be found especially for the ubRMSD metric, in central Europe, central and Northern Asia. It should be noted here that only pixels with significant correlations i.e. p-value < 0.05 and a number of data (>15) are presented.

Figure 3: ComparFison of the SMOS SM products with respect to ECMWF showing: (a) where SMOS-IC SM (red) or SMOSL3 SM (blue) leads to the best correlation coefficient, or where the difference in R < 0.02 (green) among both SMOS products; (b) where SMOS-IC SM (red) or SMOSL3 SM (blue) lead to the lowest ubRMSE or where the difference in ubRMSD < 0.005 (green).

14 of 26

In order to better assess the range of R and ubRMSD values, the dispersion diagrams displayed in Figure 4 show the scatter plot of both metrics for all pixels and for both SMOS products (SMOS-IC and SMOSL3 SM). In terms of correlation, the R values are generally larger for SMOS-IC. There are also a number of pixels where SMOSL3 SM yields negative correlations whereas R is positive for SMOS-IC. In terms of ubRMSD, the largest number of pixels with lower ubRMSD corresponds to the SMOS-IC SM product.

Figure 4: Scatter plot of correlation (a) and ubRMSD values (b) obtained by comparing both SMOS-IC and SMOSL3 SM to ECMWF SM.

3.2 Vegetation optical depth

The evaluation of the accuracy of the τ values retrieved from SMOS at global scale is not a simple issue due to the absence of a consensus on the reference values to be considered at large scale coming from models or in situ measurements. Some studies have been done at local scale. For instance, over croplands and grasslands, τ values at L-band vary generally between 0 and 0.6 (Saleh et al., 2006 [68], Wigneron et al., 2007 [11]). Over forests and from L-band radiometer measurements, Ferrazzoli et al. 392 (2002) [69] found maximum values of $\tau \sim 0.9$, and Grant et al. (2008) [70] found values of $\tau \sim 0.6$ -0.7 for a mature pine forest stand in *les Landes* forest, and τ ~ 1 for a mature deciduous (beech) canopy in Switzerland. Figure 5 shows a global map of the temporal mean of the retrieved τ values for both SMOS-IC and SMOSL3 products. Both products show τ values which are sensitive to vegetation, as the highest

397 τ values were found for the main boreal and tropical forests. It must be noted that the τ values coming

from the SMOSL3 product were larger than those obtained by the SMOS-IC product.

15 of 26

Figure 5: Temporal mean of τ during 2010-2015: (a) SMOS-IC and (b) SMOSL3.

In order to identify possible patterns, Figure 6 shows a global map which illustrates the differences of τ between both SMOS datasets (SMOSL3 minus SMOS-IC). This result shows that the 403 greatest differences between both τ datasets were found over forest areas, particularly tropical regions; namely Amazon and Congo River basins and Borneo and New Guinea tropical forests, regions; namely Amazon and Congo River basins and Borneo and New Guinea tropical forests, where significantly larger τ values were obtained with SMOSL3.

16 of 26

Figure 6: mean bias: SMOSL3 τ minus SMOS-IC τ for 2010-2015.

Figure 7 shows the correlations obtained by comparing the SMOSC-IC and SMOSL3 τ datasets to MODIS NDVI. All correlations values are presented here including those not significant as done by Grant et al. (2016) [23]. It can be noted that slightly higher correlation values are generally obtained with SMOS-IC especially in the west of Mexico, the Northeastern regions of Brazil and some parts of the Sahel. Conversely higher R values were obtained in western and central Europe with SMOSL3. The lowest correlations were found generally over forests for both SMOS products; a result which can be partly related to the tendency of NDVI to saturate for high biomass and LAI values. However, higher R values were obtained with SMOS-IC for some areas of the boreal forests and the tropical

Figure 7: Correlation (R) values obtained between SMOS-IC τ and MODIS NDVI (a) and between 419 SMOSL3 τ and MODIS NDVI (b).

A global map that shows for each pixel which τ dataset (SMOSL3 or SMOS-IC) leads to the largest correlation (R) values with MODIS NDVI is presented in Figure 8. Over northern mid-latitudes, larger correlations were generally obtained with SMOSL3. However, except for these regions, the highest R values were generally obtained with SMOS-IC while no clear patterns were found in terms of longitude. Figure 9 shows a dispersion diagram in order to assess the range of correlation values 425 found for both SMOS τ datasets against MODIS τ. The diagram generally yields positive correlations, although a non-negligible number of negative correlations can be noted for both SMOS products.

17 of 26

- **F**igure 9: Scatter plot showing correlation values obtained between SMOS-IC τ and MODIS NDVI against correlation values obtained between the τ from SMOSL3 and MODIS NDVI.
-

4. Summary and conclusions

This study presents an alternative SMOS SM and τ product, referred to as SMOS-IC. In terms of soil moisture, the presentation is based on an inter-comparison between SMOS-IC, the official Level

18 of 26

3 SMOS SM product (SMOSL3, V300), and a modeled SM product (ECMWF SM). The SMOS-IC 440 product is based on the retrieval of SM and τ over pixels treated as homogeneous by means of the L-MEB model inversion. SMOS-IC uses the multi-angular and dual-polarization SMOSL3 TB product as the main input for the L-MEB model inversion. The L-MEB model input parameters (effective 443 vegetation scattering albedo ω and the roughness parameter HR) are estimated as a function of IGBP land category classes which compose the pixel. These parameter values are derived from previous 445 analyses made by Fernandez-Moran et al. (2016) [31] and global maps of the roughness HR parameter estimated by Parrens et al. (2016) [30]. Conversely, the SMOSL3 product considers different fractions 447 over the pixel and performs SM and τ retrievals over the main fraction of the pixel (usually low vegetation) or over forests in some cases. In the SMOSL3 retrieval algorithm, the TB value of the pixel fraction which is not considered in the retrieval (the forest fraction in general) is estimated based on auxiliary ECMWF SM data. This specific approach may lead to dry SM bias in forested regions, as noted by Wigneron et al. (2012) [28]. Currently, in the SMOSL3 V300 retrieval algorithm, the values of the vegetation and soil roughness parameters differ mainly between forest and low vegetation categories.

The SMOSL3 and SMOS-IC soil moisture retrievals were compared globally against ECMWF SM data for the period 2010-2015. This evaluation extends the work of Fernandez-Moran et al. (2016) [31] who evaluated a preliminary version of the SMOS-IC product at local scale using numerous in situ SM stations from ISMN and found higher R and lower ubRMSE with SMOS-IC than with the SMOSL3 V300 product. At global scale, both the SMOS-IC and SMOSL3 SM products were generally found to be drier than the ECMWF SM product. However, the larger soil sampling depth of the ECMWF SM (0-7 cm) with respect to SMOS SM (~ 0 - 3 cm), as well as the inherently different nature of simulated soil moisture (Koster et al., 2009 [62]), makes it difficult to truly assess the performance of the SMOS products in terms of bias at global scale. In terms of temporal variations, higher correlation values and lower ubRMSD values were generally found between SMOS-IC SM and ECMWF SM, than between SMOSL3 SM and ECMWF SM.

The ECMWF SM data set used in this study is not "truth", and a larger inter-comparison of SMOS-IC and SMOSL3 against other modeled SM products should be made in the future to confirm 467 the very preliminary results found in this study. In terms of τ values, the SMOS-IC and SMOSL3 τ products were compared to MODIS NDVI values over 2010-2015 in terms of correlation values. The SMOS-IC τ product presents a lower range of values (~ 0-0.6) than the one obtained with the SMOSL3 τ product (~ 0-1.2). The latter range of τ values (obtained for SMOSL3) is in better agreement than 471 SMOS-IC τ , with the ranges of retrieved τ values based on in situ L-band radiometric measurements (τ ~0.6 -1.0) performed over mature coniferous and deciduous forests in Europe. Conversely, slightly 473 higher correlation values were obtained between SMOS-IC τ and MODIS NDVI, than between 474 SMOSL3 τ and MODIS NDVI, except in the Amazon basin and in regions of the northern mid-latitudes.

 The τ results should also be interpreted with care: the NDVI index is derived from optical 477 sensors while the τ index is derived from L-band microwave measurements and therefore can sense deeper through the vegetation canopy. Moreover, the NDVI index is used to monitor the green 479 vegetation, while the τ index is related to the whole vegetation water content (including stems, trunks, branches and senescent vegetation elements). So at L-band, the NDVI index (as the LAI index) 481 is only a proxy which is used to provide an estimate of τ over rather low vegetation covers during the vegetation growth (O'Neill et al, 2012 [35]; Wigneron et al., 2007 [11]; Lawrence et al., 2014 [71]; Grant et al., 2016 [23]). A larger inter-comparison of the SMOS-IC and SMOSL3 τ products against different 484 vegetation data sets (remotely sensed products, LAI, forest biomass) should be made in the future to confirm 485 the results found in this study.

As for the Level 2 and 3 algorithms, based on rather complex and detailed concepts and auxiliary data sets, the simple SMOS-IC algorithm will be improved regularly and will be used to improve L2 and L3 SMOS retrieval algorithms. These different approaches are complementary and a regular inter-comparison analysis between them should be of great benefit to improve the L-MEB inversion, and ultimately the SM and τ products retrieved from the SMOS observations.

Acknowledgements

The authors would like to thank the TOSCA (Terre Océan Surfaces Continentales et Atmosphère) CNES program and the European Space Agency (ESA) for funding this study. The 494 authors acknowledge CATDS for the SMOSL3 dataset (http://catds.ifremer.fr) and the cooperation of the different soil moisture in situ networks of the International Soil Moisture Network (ISMN) project.

Author contributions

Jean-Pierre Wigneron and Roberto Fernandez-Moran designed the SMOS-IC product with the helpful contribution of CESBIO. Arnaud Mialon and Ali Mahmoodi optimized the code, improved the data format and processed the data set at CESBIO. Amen Al-Yaari made the analysis of the IC data and produced all the figures; Yann Kerr, Gabrielle de Lannoy, Ahmad Al Bitar and Ernesto Lopez-Baeza provided scientific expertise; Roberto Fernandez-Moran and Jean-Pierre Wigneron wrote the paper.

Conflicts of interest

The authors declare no conflicts of interest.

20 of 26

505 **References**

- 506 1. Kerr, Y. H.; Waldteufel, P.; Richaume, P.; Wigneron, J. P.; Ferrazzoli, P.; Mahmoodi, A.; 507 Bitar, A. Al; Cabot, F.; Gruhier, C.; Juglea, S. E.; Leroux, D.; Mialon, A.; Delwart, S. The SMOS 508 Soil Moisture Retrieval Algorithm. *Geosci. Remote Sens.* **2012**, *50*, 1384–1403.
- 509 2. Entekhabi, D.; Njoku, E. G.; O'Neill, P. E.; Kellogg, K. H.; Crow, W. T.; Edelstein, W. 510 N.; Entin, J. K.; Goodman, S. D.; Jackson, T. J.; Johnson, J.; Kimball, J.; Piepmeier, J. R.; Koster, R.

511 D.; Martin, N.; McDonald, K. C.; Moghaddam, M.; Moran, S.; Reichle, R.; Shi, J. C.; Spencer, M.

- 512 W.; Thurman, S. W.; Tsang, L.; Van Zyl, J. The soil moisture active passive (SMAP) mission. *Proc.* 513 *IEEE* **2010**, *98*, 704–716.
- 514 3. Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, 515 S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. *Hydrol.* 516 *Earth Syst. Sci.* **2010**, *14*, 1881–1893.
- 517 4. Hollmann, R.; Merchant, C. J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; 518 Chuvieco, E.; Defourny, P.; De Leeuw, G.; Forsberg, R.; Holzer-Popp, T.; Paul, F.; Sandven, S.; 519 Sathyendranath, S.; Van Roozendael, M.; Wagner, W. The ESA climate change initiative: Satellite 520 data records for essential climate variables. *Bull. Am. Meteorol. Soc.* **2013**, *94*, 1541–1552.
- 521 5. Al Bitar, A.; Mialon, A.; Kerr, Y.; Cabot, F.; Richaume, P.; Jacquette, E.; Quesney, A.; 522 Mahmoodi, A.; Tarot, S.; Parrens, M.; Al-yaari, A.; Pellarin, T.; Rodriguez-Fernandez, N.; Wigneron, 523 J.-P. The Global SMOS Level 3 daily soil moisture and brightness temperature maps. *Earth Syst. Sci.* 524 *Data Discuss.* **2017**, 1–41.
- 525 6. Kerr, Y. H.; Waldteufel, P.; Wigneron, J. P.; Martinuzzi, J. M.; Font, J.; Berger, M. Soil 526 moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. *IEEE Trans.* 527 *Geosci. Remote Sens.* **2001**, *39*, 1729–1735.
- 528 7. Mialon, A.; Richaume, P.; Leroux, D.; Bircher, S.; Bitar, A. Al; Pellarin, T.; Wigneron, J. 529 P.; Kerr, Y. H. Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture 530 retrieval algorithm. *IEEE Trans. Geosci. Remote Sens.* **2015**, *53*, 3084–3094.
- 531 8. Al-Yaari, A.; Wigneron, J. P.; Ducharne, A.; Kerr, Y. H.; Wagner, W.; De Lannoy, G.; 532 Reichle, R.; Al Bitar, A.; Dorigo, W.; Richaume, P.; Mialon, A. Global-scale comparison of passive 533 (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture 534 simulations (MERRA-Land). *Remote Sens. Environ.* **2014**, *152*, 614–626.
- 535 9. Al-Yaari, A.; Wigneorn, J. P.; Ducharne, A.; Kerr, Y.; Fernandez-Moran, R.; Parrens, M.; 536 Bi-tar, A. Al; Mialon, A.; Richaume, P. Evaluation of the most recent reprocessed SMOS soil 537 moisture products: Comparison between SMOS level 3 V246 and V272. In *IEEE International* 538 *Geoscience and Remote Sensing Symposium (IGARSS)*; IEEE: Milan (Italy), 2015; pp. 2493–2496.

- 544 11. Wigneron, J. P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M. J.; Richaume, P.; 545 Ferrazzoli, P.; de Rosnay, P.; Gurney, R.; Calvet, J. C.; Grant, J. P.; Guglielmetti, M.; Hornbuckle, 546 B.; Mätzler, C.; Pellarin, T.; Schwank, M. L-band Microwave Emission of the Biosphere (L-MEB) 547 Model: Description and calibration against experimental data sets over crop fields. *Remote Sens.* 548 *Environ.* **2007**, *107*, 639–655.
- 549 12. Rahmoune, R.; Ferrazzoli, P.; Kerr, Y. H.; Richaume, P. SMOS level 2 retrieval algorithm 550 over forests: Description and generation of global maps. *IEEE J. Sel. Top. Appl. Earth Obs. Remote* 551 *Sens.* **2013**, *6*, 1430–1439.
- 552 13. Rahmoune, R.; Ferrazzoli, P.; Singh, Y. K.; Kerr, Y. H.; Richaume, P.; Al Bitar, A. SMOS 553 retrieval results over forests: Comparisons with independent measurements. *IEEE J. Sel. Top. Appl.* 554 *Earth Obs. Remote Sens.* **2014**, *7*, 3858–3866.
- 555 14. Schwank, M.; Mätzler, C.; Guglielmetti, M.; Flühler, H. L-band radiometer 556 measurements of soil water under growing clover grass. *IEEE Trans. Geosci. Remote Sens.* **2005**, *43*, 557 2225–2236.
- 558 15. Schwank, M.; Wigneron, J. P.; López-Baeza, E.; Völksch, I.; Mätzler, C.; Kerr, Y. H. L-559 band radiative properties of vine vegetation at the MELBEX III SMOS cal/val site. *IEEE Trans.* 560 *Geosci. Remote Sens.* **2012**, *50*, 1587–1601.
- 561 16. Jackson, T. J.; Schmugge, T. J. Vegetation effects on the microwave emission of soils. 562 *Remote Sens. Environ.* **1991**, *36*, 203–212.
- 563 17. Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J. A model for 564 microwave emission from vegetation-covered fields. *J. Geophys. Res.* **1982**, *87*, 11229.
- 565 18. Wigneron, J. P.; Chanzy, A.; Calvet, J. C.; Bruguier, N. A simple algorithm to retrieve 566 soil moisture and vegetation biomass using passive microwave measurements over crop fields. 567 *Remote Sens. Environ.* **1995**, *51*, 331–341.
- 568 19. Grant, J. P.; Wigneron, J. P.; Drusch, M.; Williams, M.; Law, B. E.; Novello, N.; Kerr, 569 Y. Investigating temporal variations in vegetation water content derived from SMOS optical depth. 570 In *International Geoscience and Remote Sensing Symposium (IGARSS)*; 2012; pp. 3331–3334.
- 571 20. Schneebeli, M.; Wolf, S.; Kunert, N.; Eugster, W.; Mätzler, C. Relating the X-band 572 opacity of a tropical tree canopy to sapflow, rain interception and dew formation. *Remote Sens.*

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2017 [doi:10.20944/preprints201703.0145.v1](http://dx.doi.org/10.20944/preprints201703.0145.v1)

25 of 26

674 to Land Data Assimilation System estimates. *Remote Sens. Environ.* **2014**, *149*, 181–195.

675 54. Albergel, C.; Dorigo, W.; Balsamo, G.; Muñoz-Sabater, J.; de Rosnay, P.; Isaksen, L.; 676 Brocca, L.; de Jeu, R.; Wagner, W. Monitoring multi-decadal satellite earth observation of soil 677 moisture products through land surface reanalyses. *Remote Sens. Environ.* **2013**, *138*, 77–89.

- 678 55. Leroux, D. J.; Kerr, Y. H.; Bitar, A. Al; Bindlish, R.; Member, S.; Jackson, T. J.; Berthelot, 679 B.; Portet, G. Comparison Between SMOS , VUA , ASCAT, and ECMWF soil moisture products 680 over four watersheds in US. **2014**, *52*, 1562–1571.
- 681 56. Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; 682 Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global 683 ground-based in situ observations. *Remote Sens. Environ.* **2012**, *118*, 215–226.
- 684 57. Louvet, S.; Pellarin, T.; al Bitar, A.; Cappelaere, B.; Galle, S.; Grippa, M.; Gruhier, C.; 685 Kerr, Y.; Lebel, T.; Mialon, A.; Mougin, E.; Quantin, G.; Richaume, P.; de Rosnay, P. SMOS soil 686 moisture product evaluation over West-Africa from local to regional scale. *Remote Sens. Environ.* 687 **2015**, *156*, 383–394.
- 688 58. De Jeu, R. a. M.; Owe, M. Further validation of a new methodology for surface moisture 689 and vegetation optical depth retrieval. *Int. J. Remote Sens.* **2003**, *24*, 4559–4578.
- 690 59. Andela, N.; Liu, Y. Y.; M. Van Dijk, A. I. J.; De Jeu, R. A. M.; McVicar, T. R. Global 691 changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: Comparing 692 a new passive microwave vegetation density record with reflective greenness data. *Biogeosciences* 693 2013, *10*, 6657–6676.
- 694 60. Dorigo, W. a.; Xaver, a.; Vreugdenhil, M.; Gruber, a.; Hegyiová, a.; Sanchis-Dufau, 695 a. D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global Automated Quality Control of In 696 Situ Soil Moisture Data from the International Soil Moisture Network. *Vadose Zo. J.* **2013**, *12*, 697 vzj2012.0097.
- 698 61. Albergel, C.; de Rosnay, P.; Balsamo, G.; Isaksen, L.; Muñoz-Sabater, J. Soil Moisture 699 Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. *J.* 700 *Hydrometeorol.* **2012**, *13*, 1442–1460.
- 701 62. Koster, R. D.; Guo, Z. C.; Yang, R. Q.; Dirmeyer, P. A.; Mitchell, K.; Puma, M. J. On 702 the Nature of Soil Moisture in Land Surface Models. *J. Clim.* **2009**, *22*, 4322–4335.
- 703 63. Escorihuela, M. J.; Chanzy, A.; Wigneron, J. P.; Kerr, Y. H. Effective soil moisture 704 sampling depth of L-band radiometry: A case study. *Remote Sens. Environ.* **2010**, *114*, 995–1001.
- 705 64. Njoku, E. G.; Kong, J.-A. Theory for passive microwave remote sensing of near-surface 706 soil moisture. *J. Geophys. Res.* **1977**, *82*, 3108.

26 of 26

714 68. Saleh, K.; Wigneron, J. P.; De Rosnay, P.; Calvet, J. C.; Kerr, Y. Semi-empirical 715 regressions at L-band applied to surface soil moisture retrievals over grass. *Remote Sens. Environ.* 716 **2006**, *101*, 415–426.

717 69. Ferrazzoli, P.; Guerriero, L.; Wigneron, J. P. Simulating L-band emission of forests in 718 view of future satellite applications. *IEEE Trans. Geosci. Remote Sens.* **2002**, *40*, 2700–2708.

719 70. Grant, J. P.; Saleh-Contell, K.; Wigneron, J.-P.; Guglielmetti, M.; Kerr, Y. H.; Schwank, 720 M.; Skou, N.; Van de Griend, A. a Calibration of the L-MEB model over a conniferous and a 721 deciduous forest. *IEEE Trans. Geosci. Remote Sens.* **2008**, *46*, 808–818.

722 71. Lawrence, H.; Wigneron, J. P.; Richaume, P.; Novello, N.; Grant, J.; Mialon, A.; Al Bitar, 723 A.; Merlin, O.; Guyon, D.; Leroux, D.; Bircher, S.; Kerr, Y. Comparison between SMOS Vegetation 724 Optical Depth products and MODIS vegetation indices over crop zones of the USA. *Remote Sens.* 725 *Environ.* **2014**, *140*, 396–406.

726 © 2017 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).