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Abstract: The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces 15 
is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on 16 
multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 17 
2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation 18 
opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In 19 
this study, we present an alternative SMOS product which was developed by INRA (Institut 20 
National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère). 21 
This SMOS-INRA-CESBIO (SMOS-IC) product provides daily SM and τ at the global scale and 22 
differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over 23 
heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections 24 
associated to the antenna pattern and the complex SMOS viewing angle geometry. It considers 25 
pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary data sets 26 
which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also 27 
differs from the current SMOSL3 product (Version 300, V300) in the values of the effective 28 
vegetation scattering albedo (ω) and soil roughness parameters. An inter-comparison is presented 29 
in this study based on the use of ECMWF (European Center for Medium range Weather Forecasting) 30 
SM outputs and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-31 
Resolution Imaging Spectroradiometer). A 6 year (2010-2015) inter-comparison of the SMOS 32 
products SMOS-IC and SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower 33 
ubRMSD (unbiased root mean square difference) for SMOS-IC over most of the pixels. In terms of 34 
τ, SMOS-IC τ was found to be better correlated to MODIS NDVI in most regions of the globe, with 35 
the exception of the Amazonian basin and of the northern mid-latitudes. 36 

Keywords: SMOS; L-band; Level 3; ECMWF; SMOS-IC; soil moisture; vegetation optical depth; 37 
MODIS; NDVI 38 
 39 

1. Introduction 40 

The estimation of surface soil moisture (SM) at global scale is a key objective for the recent L-41 
band (1.4 GHz) microwave missions SMOS (Soil Moisture and Ocean Salinity) (Kerr et al., 2012 [1]) 42 
and SMAP (Soil Moisture Active Passive) (Entekhabi et al., 2010 [2]). Measurements of soil moisture 43 
are needed for applications related to the study of climate change or agriculture (droughts, floods, 44 
etc.) and hydrological processes (Brocca et al., 2010 [3]) such as precipitation, infiltration, runoff and 45 
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evaporation. Moreover, SM is considered as an Essential Climate Variable and it is included in the 46 
Climate Change Initiative (CCI) project (Hollmann et al., 2013 [4]). 47 

The soil moisture of the first 2-3 cm soil layer is highly related to the soil emissivity at L-band 48 
through the soil dielectric constant. SMOS uses an interferometric radiometer which delivers multi-49 
angular brightness temperature measurements at L-band (1.4 GHz). Currently, various products are 50 
derived from the SMOS data at Level 2 (Kerr et al., 2012 [1]) and at Level 3 (Al Bitar et al., 2017 [5]), 51 
such as the SMOSL3 Brightness Temperature (SMOSL3 TB) and the SMOSL3 SM and τ products, 52 
with a 625 km2 sampling. The SMOS SM retrieval algorithm, which is common to both SMOS Level 53 
2 (L2) and Level 3 (L3) products, has been continuously improved since the launch of the satellite in 54 
2009 (Kerr et al., 2001 [6]; Mialon et al., 2015 [7]; Al Bitar et al., 2017 [5]). It has been validated against 55 
several datasets from various space-borne sensors (Al-Yaari et al., 2014 [8]; Al-Yaari et al., 2015 [9], 56 
Kerr et al., 2016 [10]). All the different versions of the L2 and L3 products, are based on the inversion 57 
of the L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model (Wigneron et 58 
al., 2007 [11]), thus retrieving two main parameters, namely soil moisture and vegetation optical 59 
depth at nadir (τ).  60 

The SMOS τ is a measure of the attenuation of microwave radiation by the vegetation canopy at 61 
L-band. Vegetation is commonly studied at optical or infrared frequencies. However, the longer 62 
wavelength of L-band sensors allows penetration of the radiation within the canopy. Thus, τ can be 63 
related to different vegetation features such as forest height (Rahmoune et al., 2013 [12], 2014 [13]), 64 
vegetation structure (Schwank et al., 2005 [14], 2012 [15]), water content (Jackson and Schmugge, 1991 65 
[16], Mo et al., 1982 [17], Wigneron et al., 1995 [18]; Grant et al., 2012 [19]), sapflow (Schneebeli et al., 66 
2011 [20]) and leaf fall (Guglielmetti et al., 2008 [21]; Patton et al., 2012 [22]). Furthermore, some 67 
vegetation indices can also be related to τ such as the Leaf Area Index (LAI) (Wigneron et al., 2007 68 
[11]) and the normalized difference vegetation index (NDVI) (Grant et al., 2016 [23]). Note that some 69 
studies have also demonstrated the notable influence of soil roughness on the retrieved values of the 70 
τ parameter at both local and regional scales (Patton et al., 2012 [22]; Fernandez-Moran et al., 2015 71 
[24]; Parrens et al., 2017 [25]).  72 

The L-MEB model has been progressively refined and improved (Wigneron et al., 2011 [26], in 73 
press [27]). The SMOS L2 and L3 algorithms are based on a bottom-up approach where the TB 74 
contributions of 4 x 4 km land cover surfaces are convoluted using the antenna pattern to upscale the 75 
TB simulations to the sensor resolution. The use of such a bottom-up approach to retrieve SM and τ 76 
presents two main drawbacks. First this approach is impacted by the uncertainties associated with 77 
the higher resolution auxiliary files, like the land cover maps, which are used to characterize the pixel 78 
heterogeneity. Second, the approach is more time consuming as the exact antenna patterns have to 79 
be applied for each view angle. 80 

In this study an alternative SMOS product is presented, hereinafter referred to as SMOS-IC. This 81 
product is based on a simplified approach developed by INRA (Institut National de la Recherche 82 
Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère) and differs from the 83 
operational SMOS Level 2 and Level 3 products in three main ways: 84 

I. The SMOS-IC algorithm does not take into consideration pixel land use and assumes the 85 
pixel to be homogeneous as suggested by Wigneron et al. 2012 [28]. The SM and τ retrieval 86 
is performed over the whole pixel rather than over the fraction designated as either low 87 
vegetation or forest. Note that this approach is similar to the one considered in the 88 
development of the AMSR-E and SMAP SM algorithms (O’Neill et al., 2012 [25]). By 89 
simplifying the retrieval approach, the SMOS-IC product becomes independent of the 90 
ECMWF soil moisture information currently used as auxiliary information to estimate TB in 91 
the subordinate pixel fractions of heterogeneous pixels in the operational SMOS L2 and L3 92 
algorithms (Kerr et al., 2012 [1]). 93 

II. SMOS-IC uses as input SMOS Level 3 fixed angle bins Brightness Temperature (TB) data 94 
at the top of the atmosphere and contains different flags allowing to filter SM retrievals 95 
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accounting for the quality of the input TB data and for the TB angular range in the LMEB 96 
inversion. SMOS-IC does not make use of the computationally expensive corrections based 97 
on angular antenna patterns to account for pixel heterogeneity as in the L2 and L3 retrieval 98 
algorithms. 99 

III. New values of the effective vegetation scattering albedo (ω) and soil roughness parameters 100 
(HR, NRV, and NRH) are considered in the SMOS-IC product. This change is based on the 101 
results of Fernandez-Moran et al. (2016) [29] who calibrated the L-MEB vegetation and soil 102 
parameters for different land cover types based on the International Geosphere-Biosphere 103 
Programme (IGBP) classes, as well as the findings of Parrens et al. (2016) [30] who 104 
computed a global map of the soil roughness HR values . The calibration of Fernandez-Moran 105 
et al. (2016) [31] was obtained by selecting the values of the parameters (HR, NRV, NRH, and 106 
ω) which optimized the SMOS SM retrievals, with respect to the in situ SM values measured 107 
over numerous sites obtained from ISMN. The parameter values resulting from this new 108 
calibration differ from those used in the current SMOS L2 and L3 products. Values currently 109 
used in the SMOS L2 and L3 algorithms (Kerr et al., 2012 [1]) were those decided before 110 
launch from literature. Over forested areas, values were updated but not over low vegetation. 111 
Consequently, in Version 620 of the L2 (and Version 300 for L3) algorithm, ω is still assumed 112 
to be zero over low vegetation canopies and ω ~ 0.06 – 0.08 over forests. Similarly, HR is 113 
equal to 0.3 for forests and HR = 0.1 for the rest of the cover types, while QR is set to zero 114 
whereas NRH and NRV are respectively set to 2 and 0 at global scale.  115 

IV. In some cases, the Level 2 and Level 3 algorithms use values of LAI derived from MODIS 116 
[32], to initialize the value of optical depth in the inversion algorithm (Kerr et al., 2012 [1]). 117 
In SMOS-IC, this is not implemented, and the initialization of optical depth in the inversion 118 
algorithm is based on a very simple approach (given in the following) and is completely 119 
independent of the MODIS data. 120 

An evaluation and calibration of SMOS-IC at local scale was performed in Fernandez-Moran et 121 
al. (2016) [29]. The present study aims at presenting SMOS-IC and illustrating the main features of 122 
the SMOS-IC SM and τ products at global scale, in comparison to the current SMOSL3 product. To 123 
achieve this, the SMOS-IC and SMOSL3 SM products were compared against the ECMWF SM 124 
product for ease of comparison. Furthermore, NDVI (Rouse et al., 1974 [33]) from the Moderate-125 
Resolution Imaging Spectroradiometer (MODIS) was used as a vegetation index to analyze the 126 
seasonal changes in the τ products from both SMOS-IC and SMOSL3. The NDVI index which is 127 
derived from optical observations cannot be directly compared to the τ product, which is derived 128 
from microwave observations. However, the NDVI index is a good indicator of the vegetation density 129 
and it can be used to interpret the seasonal changes in the SMOS τ product at large scale as found by 130 
Grant et al. (2016) [23], but with some caveats: saturation effects at high levels of vegetation density, 131 
sensitivity to the effects of snow and soil reflectivity (Qi et al., 1994 [34]), etc. It may be noted that 132 
NDVI is the proxy used for estimating τ in the current operational algorithm of the SMAP mission 133 
(O’Neill et al., 2012 [35]). 134 

In section 2, we present a description of both SMOS algorithms (SMOSL3 and SMOS-IC) and of 135 
the MODIS NDVI and ECMWF SM data sets. The inter-comparison of the SMOS products in terms 136 
of soil moisture and vegetation optical depth is given in section 3. The inter-comparison covers almost 137 
6 years of data, from 2010 to 2015, excluding the commissioning phase (the first six months of 2010; 138 
Corbella et al., 2011 [36]). Discussion and conclusions are presented in section 4. 139 

2. Materials and method 140 
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2.1 SMOSL3 brightness temperature, soil moisture and vegetation optical depth  141 

At Level 3, there are different SMOS products (Al Bitar et al., 2017 [5]). In this study we used the 142 
SMOS L3 products which include TB, τ and SM (version 300) data produced by the CATDS (Centre 143 
Aval de Traitement des Données SMOS) (Al Bitar et al., 2017 [5]). These products are available in the 144 
NetCDF format and on the Equal-Area Scalable Earth (EASE) 2.0 grid (Armstrong et. al, 1997 [37]) 145 
with a 625 km2 sampling (Brodzik and Knowles, 2002 [38]). The SMOSL3 TB is measured at the top 146 
of the atmosphere and provided in the surface reference frame (i.e., H and V polarizations) at angles 147 
ranging from 2.5º ± 2.5º to 62.5 º ± 2.5º. Ascending (~ 06:00 LST at the equator) and descending (~ 18:00 148 
LST) orbits are processed separately.  The Level 3 processor uses the same physically based forward 149 
model (L-MEB) as the ESA SMOS Level 2 processor (Kerr et al., 2012 [1], Kerr et al., 2013 [39]) for the 150 
retrieval of both SM and τ from dual polarization (H, V) and multi-angular SMOS measurements. 151 
The retrieval algorithm consists of the minimization of the differences between observed and 152 
modeled Level 1 TB (through the L-MEB forward model) in a Bayesian cost function which accounts 153 
for the observation uncertainty, and also contains a prior parameter constraint. One of the 154 
characteristics of the TB modeling is the consideration of surface heterogeneity. The total modeled 155 
TB is simulated as the sum of TB contributions from several fractions (nominal or low vegetation, 156 
forest, and others as urban, water, etc.). In most of the cases, the SM retrieval is estimated from the 157 
TB contribution which corresponds to areas with low vegetation (nominal fraction), while the TB 158 
forest contribution is computed using ancillary data such as ECMWF SM. In other cases, the retrieval 159 
is performed entirely over the forest fraction. Dynamic changes as freezing or rainfall events are 160 
considered through ancillary weather data from ECMWF. 161 

The SMOSL3 τ and SM retrievals are provided at different temporal resolutions: daily, 3-days, 162 
10-days, and monthly averaged (Kerr et al., 2013 [39]; Jacquette et al., 2010 [40]). The quality of the 163 
SMOSL3 product containing SM and τ data is improved by the use of multi-orbit retrievals (Al Bitar 164 
et al., 2017 [5]). The SMOS ascending (6 am LST) and descending (6 pm LST) orbits are processed 165 
separately in this product in order to better account for the diurnal effects (surface, Total Electron 166 
Content which drives Faraday rotation and sun corrections) and, in some areas, Radio Frequency 167 
Interferences (RFI) effects (Oliva et al., 2012 [41]) and sun glint impacts at L-band (Khazâal et al., 2016 168 
[42]).  169 

In SMOS-IC, we used the SMOS L3 TB product as input to the inversion algorithm. This product, 170 
which includes many corrections, is very easy and convenient to use (conversely, the L2 and L3 171 
algorithms are based on L1 C TB data). 172 

2.2 SMOS-IC soil moisture and vegetation optical depth dataset 173 

2.2.1 Model description 174 

As for the L2 and L3 algorithms, in SMOS-IC, the retrieval of the soil moisture and vegetation 175 
optical depth at nadir is based on the L-MEB model inversion (Wigneron et al., 2007 [11]). The 176 
retrieval is performed over pixels which are considered as entirely homogeneous; in other words, a 177 
single representative value of each input model parameter is used for the whole pixel. 178 

In L-MEB, the simulation of the land surface emission is based on the τ-ω radiative transfer 179 
model (Mo et al., 1982 [17]) using simplified (zero-order) radiative transfer equations. The model 180 
represents the soil as a rough surface with a vegetation layer. The modeled TB from the soil vegetation 181 
medium is calculated as the sum of the direct vegetation emission, the soil emission attenuated by 182 
the canopy and the vegetation emission reflected by the soil and attenuated by the canopy following 183 
equation (1). The atmospheric contribution is neglected. 184 

                   TB(θ) = (1 − ω)[1 − γ(θ)][1 + γ(θ)rୋ(θ)]Tେ + [1 − rୋ(θ)]γ(θ)Tୋ 185 

 (1)     186 
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where θ is the incidence angle, rGP is the soil reflectivity, TG and TC are the soil and canopy 187 
effective temperatures, γ୮ is the vegetation transmissivity (or vegetation attenuation factor) and ω is 188 
the effective scattering albedo (polarization effects are not taken into account for this parameter). 189 

Roughness effects are parameterized through a semi-empirical approach initially developed by 190 
Wang and Choudhury (1981) [43] and refined in more recent studies (Escorihuela et al., 2007 [44]; 191 
Lawrence et al., 2013 [45]; Parrens et al., 2016 [25]). The roughness modelling is based on four 192 
parameters (QR, HR, NRH and NRV). The values of QR and NRP (P = H, V) have been calibrated in 193 
Fernandez-Moran et al. (2015, 2016) [46][29] where optimized values of QR = 0 and NRP = -1 (p = H, V) 194 
were obtained globally. Thus, the calculation of the soil reflectivity rୋ is given by: 195 rୋ(θ) = rୋ∗ (θ)exp[−Hୖ/cos(θ)]       (2) 196 

where rୋ∗  (P = H, V) is the reflectivity of a plane (specular) surface, which is computed from 197 
the Fresnel equations (Ulaby, 1982 [47]) as a function of θ and of the soil dielectric constant (ε), 198 
expressed as a function of SM, soil clay fraction and soil effective temperature (TG) using the model 199 
developed by Mironov et al. (2012) [48]. HR accounts for the decrease of rୋ due to soil roughness 200 
effects. 201 

Under the assumption of isotropic conditions and no dependence of the vegetation optical depth 202 
on polarization, the vegetation attenuation factor γ can be computed using the Beer’s law as: 203 γ୮ = exp [−τ/cos (θ)]         (3) 204 

The retrieval of SM and τ involves the minimization of the following cost function x:  205 x = ∑ (౦()ౣ౩ି౦())మಿసభ ()మ + ∑ (ି)మ()మଶୀଵ                 (4) 206 

where N is the number of observations for different viewing angles (θ) and both polarizations 207 
(H & V), TB(θ)୫ୣୱ  is the measured value over the SMOS pixels from the SMOSL3 TB product 208 
(presented in section 2.2.2), σ(TB)  is the standard deviation associated with the brightness 209 
temperature measurements (this parameter was set to the constant value of 4 K in this study), TB(θ) 210 
is the brightness temperature calculated using equation (1), P୧ (i = 1, 2) is the value of the retrieved 211 
parameter (SM, τ); P୧୧୬୧ (i= 1, 2) is an a priori estimate of the parameter P୧; and σ(P୧) is the standard 212 
deviation associated with this estimate. A constant initial value of 0.2 m3/m3 was considered for SM 213 
and σ(SM) and a value of 0.5 was considered for τୈ and 1 for σ(τୈ).  214 

2.2.2 Effective vegetation scattering albedo, soil roughness and soil texture parameters 215 

One of the most important features of the SMOS-IC product is the ability to test new calibrated 216 
values of ω (Fernandez-Moran et al, 2016 [29]) and HR (Parrens et al. 2016 [30]. Table 1 presents these 217 
values for SMOS-IC and SMOSL3 V300 as a function of the IGBP land category classes. It must be 218 
noted that SMOSL3 V300 uses the ECOCLIMAP classification (Masson et al., 2003 [49]) and that in 219 
new versions of SMOSL3, IGBP land use maps could be used.  220 

Table 1: Calibrated values of ω and HR as function of the IGBP land category classes for SMOS-IC and 221 
SMOSL3. 222 

Class 
ω  

(SMOS-IC) 

ω  
(SMOSL3 

V300) 

HR  
(SMOS-IC) 

HR  
(SMOSL3 

V300) 
1 – Evergreen needle leaf 
forest 

0.10 0.06 – 0.08* 0.30 0.30 
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2 – Evergreen broadleaf forest 0.10 0.06 – 0.08* 0.47 0.30 
3 – Deciduous needle leaf 
forest 

0.10 0.06 – 0.08* 0.43 0.30 

4 – Deciduous broadleaf forest 0.10 0.06 – 0.08* 0.46 0.30 
5 – Mixed forests 0.10 0.06 – 0.08* 0.43 0.30 
6 – Closed shrublands 0.10 0.00 0.27 0.10 
7 – Open shrublands 0.08 0.00 0.17 0.10 
8 – Woody savannas 0.12 0.00 0.35 0.10 
9 – Savannas 0.10 0.00 0.23 0.10 
10 – Grasslands 0.10 0.00 0.12 0.10 
11 – Permanent wetland 0.10 0.00 0.19 0.10 
12 – Croplands 0.12 0.00 0.17 0.10 
13 – Urban and built-up 0.10 0.00 0.21 0.10 
14 – Cropland/Natural     
Vegetation Mosaic  

0.12 0.00 0.22 0.10 

15 – Snow and ice 0.10 0.00 0.12 0.10 
16 – Barren and sparsely 
vegetated 

0.12 0.00 0.02 0.10 

* ω = 0.08 over boreal forests, ω = 0.06 over other forest types 223 

In SMOS-IC, the retrieval of SM and τ is performed over the totality of each pixel and the input 224 
parameters HR and ω are consequently constant values for the whole pixel. However, due to the 225 
heterogeneity present in all pixels, the input HR and ω parameters used in the retrieval are calculated 226 
by linear weighting the HR and ω contribution according to the percentage of each IGBP class within 227 
the pixel based on the values provided in Table 1. For instance, if a pixel is covered by 60% of 228 
grasslands and 40% of croplands, the effective vegetation scattering albedo considered for that pixel 229 
is calculated as follows: ω = 0.60·0.10 + 0.40·0.12 = 0.108. The assumption of linearity, which is 230 
questionable, was made here as it leads to a very simple correction, and as no other more physical 231 
and general formulation was available. 232 

The soil texture in terms of clay content is obtained in the SMOS-IC product from the Food and 233 
Agriculture Organization map (FAO, 1998) [50]. This map is re-gridded in the same EASE 2.0 grid 234 
used by SMOSL3. 235 

2.2.3 Quality flags 236 

The data filtering of the SMOS-IC product was done through different scene and quality flags 237 
which are summarized in Tables 2 and 3. The scene flags indicate the presence of moderate and strong 238 
topography, frozen soil or polluted scene. TB data for pixels where the sum of the water, urban and 239 
ice fractions were higher than 10% were filtered out (considered as polluted scene). For ECMWF soil 240 
temperatures below 273.15 K, the soil was considered as frozen. The quality flags helped to filter out 241 
all cases suspected to give dubious results. Consequently, only TB values not affected by noise (RFI, 242 
Sun glint effects, etc) were selected. For this, only TB values whose standard deviations were within 243 
radiometric accuracy were kept (TB with a standard deviation exceeding 5 K plus the TB radiometric 244 
accuracy were filtered out). Moreover, only retrievals (i) made in the range of incidence angles of 20 245 
to 55° and (ii) with a range of angular values exceeding 10° (to ensure a sufficient sampling of the 246 
angular distribution) were considered. The quality flags helped also to filter out those retrievals 247 
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where the RMSE values between the measured (L3 TB) and the L-MEB modeled TB data were larger 248 
than 12 K as suggested in Wigneron et al. (2012) [28]. 249 

Table 2: Description of the SMOS-IC scene flags  250 

Scene flags Description 

Presence of moderate topography Same filter as SMOSL3 V300 

Presence of strong topography Same filter as SMOSL3 V300 

Polluted scene 
Water, urban and ice fractions (according to the IGBP 

classification) represent less than 10% of the pixel 

Frozen scene Soil temperature < 273.15 K 

 251 

Table 3: Description of the SMOS-IC quality flags 252 

 253 

2.3 ECMWF and MODIS data 254 

The ECMWF dataset used in this study for the SM product inter-comparison was obtained from 255 
the SMOSL3 SM pre-processor. This ECMWF product has a spatial resolution of 625 km2 and 1-day 256 
temporal resolution, using the same EASE 2.0 grid and interpolated in time and space to fit the 257 
SMOSL3 sampling resolutions. It is based on the ERA-Interim dataset. ERA-Interim uses a numerical 258 
weather prediction (NWP) system (IFS – Cy31r2) to produce reanalyzed data (Berrisford et al., 2011) 259 
[51]. 260 

The ECMWF soil surface (Level 1, top 0-7 cm soil layer) and soil deep temperature (Level 3, 28-261 
100 cm) are used in the computation of the effective soil temperature for the SMOS-IC and SMOSL3 262 
SM products following the parameterization of Wigneron et al. (2001) [52]. It is worth noting that unlike 263 
the SMOSL3 SM product, the SMOS-IC processor does not use the ECMWF SM product to compute 264 
contributions from the fixed fractions (i.e. fraction of the scene over which the SM retrieval is not performed), 265 
and is only considered for evaluation purpose in this study.  266 

The ECMWF SM product represents the top 0-7 cm surface layer and it has been frequently 267 
compared to retrieved SM at global scale (Al-Yaari et al., 2014 [53]; Albergel et al., 2013 [54]; Leroux 268 
et al., 2014) [55]. ECMWF SM was found by Albergel et al. (2012) [56] to represent very well the SM 269 

Quality flags Description 

SM retrieved successfully  

SM retrieved successfully but not 

recommended 
RMSE < 12 K 

No data after first filtering 
TB not valid (angles out of the range 20–55º); TB standard 

deviation higher than accuracy + 5 K 

Failed retrieval (1) TB angle separation too narrow (angle difference < 10º) 

ECMWF soil temperatures out of range “No value” or values out of range 

Failed retrieval (2) Values of clay content are out of range  

Failed retrieval (3) SM < 0 m3/m3 
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variability at large scales. It is also known to give erroneous values in some areas (Louvet et al., 2015 270 
[57]; Kerr et al., 2016 [10]). 271 

The NDVI product used in this study was obtained from the 16 day NDVI MODIS Aqua and 272 
Terra data, with a 1 km resolution. This product was re-gridded in the EASE 2.0 grid in order to make 273 
it comparable with SMOS-IC and SMOSL3 SM. Different studies have shown that τ at microwave 274 
frequencies has high spatial correspondences with MODIS NDVI (De Jeu and Owe, 2003 [58]; Andela 275 
et al., 2013 [59]) even though both products have shown sensitivity to different aspects of the 276 
vegetation dynamics (Grant et al., 2016 [23]). 277 

2.4 Inter-comparison 278 

The inter-comparison was made for both SMOS-IC and SMOSL3 products by direct comparison 279 
between SM (m3/m3) and τ, against, respectively, the ECMWF SM and MODIS NDVI products. This 280 
section explains the filtering which was applied to the latter datasets and the metrics used in the 281 
evaluation process. 282 

2.4.1 Data filtering 283 

In the evaluation step, only ascending SMOS SM retrievals were selected (Al-Yaari et al., 2014 284 
[8][53]). Flags associated with SMOSL3 were used to filter both SMOSL3 and SMOS-IC. 285 

For the SMOSL3 SM product, a quality index (DQX) estimates the retrieval quality. In this study, data 286 
with DQX > 0.06 m3/m3 were excluded. In parallel, the Level 3 RFI probability flag was used to filter 287 
out SM data contaminated by RFI. SM retrievals with an associated RFI probability higher than 20% 288 
and frozen areas were removed (surface temperature < 273.15 K). The SMOS-IC and SMOSL3 filtered 289 
retrievals of SM and τ used in the study were inter-compared for the same dates. For both SMOS 290 
products (SMOSL3 and SMOS-IC), SM values out of the range 0 - 0.6 m3/m3 (Dorigo et al., 2013 [60]) 291 
and τ values out of the range 0 - 2 were filtered out. We only considered pixels with temporal series of at 292 
least 15 values for the product inter-comparison. 293 

In order to compare τ with MODIS NDVI, the daily τ values were re-gridded to 16-day mean 294 
values produced every 8 days following the same methodology as described in Grant et al. (2016) 295 
[23]. 296 

2.4.2 Metrics 297 

For evaluation purposes, the following metrics were used: Pearson correlation coefficient (R), 298 
bias, root mean square difference (RMSD) and unbiased RMSD (ubRMSD). Equations for the 299 
calculation of the SM metrics are the following: 300 ܴ = ∑ ൫ܵܯா() − ாതതതതതതത൯ୀଵܯܵ ൫ܵܯௌெைௌ() − ∑ௌெைௌതതതതതതതതതത൯ටܯܵ ൫ܵܯா() − ாതതതതതതത൯ଶୀଵܯܵ ∑ ൫ܵܯௌெைௌ() − ௌெைௌതതതതതതതതതത൯ଶୀଵܯܵ  301 

ݏܾܽ݅ = ௌெைௌܯܵ) −  ா)തതതതതതതതതതതതതതതതതതതതതതത 302ܯܵ

ܦܵܯܴ = ට(ܵܯௌெைௌ −  ா)ଶതതതതതതതതതതതതതതതതതതതതതതതത 303ܯܵ

ܦܵܯܴܾݑ = ඥܴܦܵܯଶ −  ଶ 304ݏܾܽ݅

where n is the number of SM data pairs, SMSMOS is the SMOS SM product (SMOSL3 SM or SMOS-305 
IC) and SMEC is the ECMWF SM. It should be noted the use of RMSD instead of root mean square 306 
error (RMSE) as ECMWF SM contain errors and cannot be considered as the “true” ground SM value 307 
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(Al-Yaari et al., 2014 [53]). In this study, only significant correlations were considered by means of a p-value 308 
filtering for SM retrievals, i.e. pixels where the p-value was above 0.05 were filtered out. 309 

In order to evaluate τ, R was calculated as follows: 310 ܴ = ∑ ܫܸܦܰ) − തതതതതതതത)ୀଵܫܸܦܰ ൫߬ௌெைௌ() − ߬ௌெைௌതതതതതതതത൯ට∑ ܫܸܦܰ) − തതതതതതതത)ଶୀଵܫܸܦܰ ∑ ൫߬ௌெைௌ() − ߬ௌெைௌതതതതതതതത൯ଶୀଵ  311 

where τSMOS is the vegetation optical depth at nadir (τ) retrieved from the SMOSL3 or SMOS-IC 312 
product. 313 

3. Results and discussion 314 

3.1 Soil moisture 315 

Figure 1 shows the values of the temporal mean SM over the globe and over the period 2010-316 
2015 for the three SM datasets considered in this study: (a) SMOS-IC, (b) SMOSL3 SM, and (c) 317 
ECMWF. It should be kept in mind that ECMWF SM is representative of the first 0-7 cm of the soil 318 
surface (Albergel et al., 2012 [61]) and the inherent nature of the simulated soil moisture (Koster et 319 
al., 2009 [62]) is different to that measured by the SMOS satellite observations, which are sensitive to 320 
the first ~ 0-3 cm of the soil surface (Escorihuela et al., 2010 [63]; Njoku and Kong et al., 1977 [64]). In 321 
Figure 1, ECMWF SM must be analyzed in terms of spatial patterns rather than absolute values. 322 
Although Figure 1 (a) and (b) have many similarities, some spatial patterns showed by the ECMWF 323 
SM product are in better agreement with SMOS-IC than with SMOS L3 SM. For instance, over the 324 
Appalachian region in the Eastern US, SMOSL3 SM shows a dry area whereas SMOS-IC SM is closer 325 
to ECMWF, as these regions are known to be relatively wetter than the regions of west and midwest 326 
(Sheffied et al., 2004 [65]; Fan et al., 2004 [66]). This was partly explained by differences between 327 
ECOCLIMAP and IGBP and the use of ECMWF SM data in Mahmoodi et al., 2015 [67]. On the other 328 
hand, drier retrievals were found for SMOS-IC in the intertropical regions of Africa, for instance over 329 
the savannas and grasslands of Sahel. Over these regions SMOS-L3 SM is closer to ECMWF SM than 330 
SMOS-IC SM. 331 
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 332 

Figure 1: Temporal mean of soil moisture (m3/m3) during 2010-2015: (a) SMOS-IC, (b) SMOSL3 SM, 333 
and (c) ECMWF data. White values mean “no valid SMOS data”. 334 

Figure 2 displays different time series metrics derived from the direct comparison between 335 
SMOSL3 SM (a) and SMOS-IC SM (b) with ECMWF SM for 2010-2015. According to correlation (R) 336 
results, lowest R values were found in forests for both products. A lower number of negative R values 337 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2017                   doi:10.20944/preprints201703.0145.v1

Peer-reviewed version available at Remote Sens. 2017, 9, , 457; doi:10.3390/rs9050457

http://dx.doi.org/10.20944/preprints201703.0145.v1
http://dx.doi.org/10.3390/rs9050457


 11 of 26 

 

were found between the SMOS-IC and ECMWF SM products. Conversely, SMOSL3 SM yielded 338 
negative correlations with ECMWF SM over several forest regions, namely the boreal forests of 339 
Alaska, Canada and Russia, and the tropical forests of Amazon and Congo basins. Over the non-340 
forested biomes, R values were also found to be generally higher for SMOS-IC, when compared to 341 
SMOSL3 SM. Substantial differences were found in terms of RMSD and ubRMSD: in general, lower 342 
values were obtained for the SMOS-IC product, especially over the intertropical regions of America 343 
and Africa (in terms of ubRMSD) and the boreal forests of Eurasia (in terms of RMSD). On the other 344 
hand, results do not show important differences in terms of bias between the two SMOS products: 345 
both SMOS-IC and SMOSL3 SM products are generally much drier than ECMWF SM, except over 346 
some arid and semi-arid areas (deserts in central Asia and Australia, Sahara in Northern Africa). The 347 
general negative values of the bias can be partly explained by the differences in sampling depths 348 
between the SMOS observations (~ 0-3 cm top soil layer) and the modeled ECMWF SM (0-7 cm top 349 
soil layer). Considering this difference in sampling depths, the observed difference in SM bias 350 
patterns in Figure 2, should be interpreted with care. 351 

 352 

 353 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2017                   doi:10.20944/preprints201703.0145.v1

Peer-reviewed version available at Remote Sens. 2017, 9, , 457; doi:10.3390/rs9050457

http://dx.doi.org/10.20944/preprints201703.0145.v1
http://dx.doi.org/10.3390/rs9050457


 12 of 26 

 

354 

 355 

Figure 2: Pixel-based statistics during 2010-2015 computed between ECMWF SM simulations and 356 
SMOSL3 SM (left) and SMOS-IC (right) SM retrievals: (a)(b) correlation coefficient, (c)(d) RMSD, (e)(f) 357 
bias, and (g)(h) ubRMSD. 358 

 359 
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Figure 3 is focused on the results in terms of correlation and ubRMSD, considered as first order 360 
criteria. It displays a world map which shows where the best correlation coefficient (R) and ubRMSD 361 
are obtained by comparing ECMWF SM with SMOS-IC SM (red) or SMOSL3 SM (blue) in the period 362 
2010-2015. Areas where the result differs by less than 0.02 in terms of R values between SMOSL3 SM 363 
and SMOS-IC are represented in green color. This threshold is different for the ubRMSD metric and 364 
it was set to 0.005 m3/m3. It can be seen that the red color is dominant, meaning that SMOS-IC SM is 365 
generally closer to ECMWF in terms of temporal dynamics. There are some exceptions. For instance, 366 
regions colored in blue (SMOSL3 is closer to ECMWF than SMOS-IC) can be found especially for the 367 
ubRMSD metric, in central Europe, central and Northern Asia. It should be noted here that only pixels 368 
with significant correlations i.e. p-value < 0.05 and a number of data (>15) are presented.  369 

370 
 371 

Figure 3: ComparFison of the SMOS SM products with respect to ECMWF showing: (a) where SMOS-372 
IC SM (red) or SMOSL3 SM (blue) leads to the best correlation coefficient, or where the difference in 373 
R < 0.02 (green) among both SMOS products; (b) where SMOS-IC SM (red) or SMOSL3 SM (blue) lead 374 
to the lowest ubRMSE or where the difference in ubRMSD < 0.005 (green). 375 
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In order to better assess the range of R and ubRMSD values, the dispersion diagrams displayed 376 
in Figure 4 show the scatter plot of both metrics for all pixels and for both SMOS products (SMOS-IC 377 
and SMOSL3 SM). In terms of correlation, the R values are generally larger for SMOS-IC. There are 378 
also a number of pixels where SMOSL3 SM yields negative correlations whereas R is positive for 379 
SMOS-IC. In terms of ubRMSD, the largest number of pixels with lower ubRMSD corresponds to the 380 
SMOS-IC SM product. 381 

382 
 383 

Figure 4: Scatter plot of correlation (a) and ubRMSD values (b) obtained by comparing both SMOS-384 
IC and SMOSL3 SM to ECMWF SM. 385 

3.2 Vegetation optical depth 386 

The evaluation of the accuracy of the τ values retrieved from SMOS at global scale is not a simple 387 
issue due to the absence of a consensus on the reference values to be considered at large scale coming 388 
from models or in situ measurements. Some studies have been done at local scale. For instance, over 389 
croplands and grasslands, τ values at L-band vary generally between 0 and 0.6 (Saleh et al., 2006 [68], 390 
Wigneron et al., 2007 [11]). Over forests and from L-band radiometer measurements, Ferrazzoli et al. 391 
(2002) [69] found maximum values of τ ~ 0.9, and Grant et al. (2008) [70] found values of τ ~ 0.6-0.7 392 
for a mature pine forest stand in les Landes forest, and τ ~ 1 for a mature deciduous (beech) canopy in 393 
Switzerland. 394 

Figure 5 shows a global map of the temporal mean of the retrieved τ values for both SMOS-IC 395 
and SMOSL3 products. Both products show τ values which are sensitive to vegetation, as the highest 396 
τ values were found for the main boreal and tropical forests. It must be noted that the τ values coming 397 
from the SMOSL3 product were larger than those obtained by the SMOS-IC product. 398 
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 399 

Figure 5: Temporal mean of τ during 2010-2015: (a) SMOS-IC and (b) SMOSL3. 400 

In order to identify possible patterns, Figure 6 shows a global map which illustrates the 401 
differences of τ between both SMOS datasets (SMOSL3 minus SMOS-IC). This result shows that the 402 
greatest differences between both τ datasets were found over forest areas, particularly tropical 403 
regions; namely Amazon and Congo River basins and Borneo and New Guinea tropical forests, 404 
where significantly larger τ values were obtained with SMOSL3. 405 

 406 
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Figure 6: mean bias: SMOSL3 τ minus SMOS-IC τ for 2010-2015. 407 

Figure 7 shows the correlations obtained by comparing the SMOSC-IC and SMOSL3 τ datasets 408 
to MODIS NDVI. All correlations values are presented here including those not significant as done 409 
by Grant et al. (2016) [23]. It can be noted that slightly higher correlation values are generally obtained 410 
with SMOS-IC especially in the west of Mexico, the Northeastern regions of Brazil and some parts of 411 
the Sahel. Conversely higher R values were obtained in western and central Europe with SMOSL3. 412 
The lowest correlations were found generally over forests for both SMOS products; a result which 413 
can be partly related to the tendency of NDVI to saturate for high biomass and LAI values. However, 414 
higher R values were obtained with SMOS-IC for some areas of the boreal forests and the tropical 415 
forests of Africa. 416 

 417 

Figure 7: Correlation (R) values obtained between SMOS-IC τ and MODIS NDVI (a) and between 418 
SMOSL3 τ and MODIS NDVI (b). 419 

A global map that shows for each pixel which τ dataset (SMOSL3 or SMOS-IC) leads to the 420 
largest correlation (R) values with MODIS NDVI is presented in Figure 8. Over northern mid-latitudes, 421 
larger correlations were generally obtained with SMOSL3. However, except for these regions, the 422 
highest R values were generally obtained with SMOS-IC while no clear patterns were found in terms 423 
of longitude. Figure 9 shows a dispersion diagram in order to assess the range of correlation values 424 
found for both SMOS τ datasets against MODIS τ. The diagram generally yields positive correlations, 425 
although a non-negligible number of negative correlations can be noted for both SMOS products.  426 
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427 
 428 

Figure 8: Comparison of SMOS-IC and SMOS-L3 τ products with respect to MODIS NDVI: higher 429 
correlation (R) values between SMOS-IC τ and MODIS NDVI (red) or between SMOSL3 τ and MODIS 430 
NDVI (blue) and where the difference in R < 0.02 (green). 431 

 432 

Figure 9: Scatter plot showing correlation values obtained between SMOS-IC τ and MODIS NDVI 433 
against correlation values obtained between the τ from SMOSL3 and MODIS NDVI. 434 

 435 

4. Summary and conclusions 436 

This study presents an alternative SMOS SM and τ product, referred to as SMOS-IC. In terms of 437 
soil moisture, the presentation is based on an inter-comparison between SMOS-IC, the official Level 438 
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3 SMOS SM product (SMOSL3, V300), and a modeled SM product (ECMWF SM). The SMOS-IC 439 
product is based on the retrieval of SM and τ over pixels treated as homogeneous by means of the L-440 
MEB model inversion. SMOS-IC uses the multi-angular and dual-polarization SMOSL3 TB product 441 
as the main input for the L-MEB model inversion. The L-MEB model input parameters (effective 442 
vegetation scattering albedo ω and the roughness parameter HR) are estimated as a function of IGBP 443 
land category classes which compose the pixel. These parameter values are derived from previous 444 
analyses made by Fernandez-Moran et al. (2016) [31] and global maps of the roughness HR parameter 445 
estimated by Parrens et al. (2016) [30]. Conversely, the SMOSL3 product considers different fractions 446 
over the pixel and performs SM and τ retrievals over the main fraction of the pixel (usually low 447 
vegetation) or over forests in some                 448 
cases. In the SMOSL3 retrieval algorithm, the TB value of the pixel fraction which is not considered 449 
in the retrieval (the forest fraction in general) is estimated based on auxiliary ECMWF SM data. This 450 
specific approach may lead to dry SM bias in forested regions, as noted by Wigneron et al. (2012) [28]. 451 
Currently, in the SMOSL3 V300 retrieval algorithm, the values of the vegetation and soil roughness 452 
parameters differ mainly between forest and low vegetation categories.  453 

The SMOSL3 and SMOS-IC soil moisture retrievals were compared globally against ECMWF 454 
SM data for the period 2010-2015. This evaluation extends the work of Fernandez-Moran et al. (2016) 455 
[31] who evaluated a preliminary version of the SMOS-IC product at local scale using numerous in 456 
situ SM stations from ISMN and found higher R and lower ubRMSE with SMOS-IC than with the 457 
SMOSL3 V300 product. At global scale, both the SMOS-IC and SMOSL3 SM products were generally 458 
found to be drier than the ECMWF SM product. However, the larger soil sampling depth of the 459 
ECMWF SM (0-7 cm) with respect to SMOS SM (~ 0 - 3 cm), as well as the inherently different nature 460 
of simulated soil moisture (Koster et al., 2009 [62]), makes it difficult to truly assess the performance 461 
of the SMOS products in terms of bias at global scale. In terms of temporal variations, higher 462 
correlation values and lower ubRMSD values were generally found between SMOS-IC SM and 463 
ECMWF SM, than between SMOSL3 SM and ECMWF SM. 464 

The ECMWF SM data set used in this study is not "truth", and a larger inter-comparison of 465 
SMOS-IC and SMOSL3 against other modeled SM products should be made in the future to confirm 466 
the very preliminary results found in this study. In terms of τ values, the SMOS-IC and SMOSL3 τ 467 
products were compared to MODIS NDVI values over 2010-2015 in terms of correlation values. The 468 
SMOS-IC τ product presents a lower range of values (~ 0-0.6) than the one obtained with the SMOSL3 469 
τ product (~ 0-1.2). The latter range of τ values (obtained for SMOSL3) is in better agreement than 470 
SMOS-IC τ, with the ranges of retrieved τ values based on in situ L-band radiometric measurements 471 
(τ ~0.6 -1.0) performed over mature coniferous and deciduous forests in Europe. Conversely, slightly 472 
higher correlation values were obtained between SMOS-IC τ and MODIS NDVI, than between 473 
SMOSL3 τ and MODIS NDVI, except in the Amazon basin and in regions of the northern mid-474 
latitudes. 475 

The τ results should also be interpreted with care:  the NDVI index is derived from optical 476 
sensors while the τ index is derived from L-band microwave measurements and therefore can sense 477 
deeper through the vegetation canopy. Moreover, the NDVI index is used to monitor the green 478 
vegetation, while the τ index is related to the whole vegetation water content (including stems, 479 
trunks, branches and senescent vegetation elements). So at L-band, the NDVI index (as the LAI index) 480 
is only a proxy which is used to provide an estimate of τ over rather low vegetation covers during 481 
the vegetation growth (O’Neill et al, 2012 [35]; Wigneron et al., 2007 [11]; Lawrence et al., 2014 [71]; 482 
Grant et al., 2016 [23]). A larger inter-comparison of the SMOS-IC and SMOSL3 τ products against different 483 
vegetation data sets (remotely sensed products, LAI, forest biomass) should be made in the future to confirm 484 
the results found in this study. 485 

As for the Level 2 and 3 algorithms, based on rather complex and detailed concepts and auxiliary 486 
data sets, the simple SMOS-IC algorithm will be improved regularly and will be used to improve L2 487 
and L3 SMOS retrieval algorithms. These different approaches are complementary and a regular 488 
inter-comparison analysis between them should be of great benefit to improve the L-MEB inversion, 489 
and ultimately the SM and τ products retrieved from the SMOS observations. 490 
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