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Abstract. This paper introduces a new semi-supervised evidential clus-
tering algorithm. It considers label constraints and exploits the evidence
theory to create a credal partition coherent with the background knowl-
edge. The main characteristics of the new method is its ability to ex-
press the uncertainties of partial prior information by assigning each
constrained object to a set of labels. It enriches previous existing algo-
rithm that allows the preservation of the uncertainty in the constraint
by adding the possibility to favor crisp decision following the inherent
structure of the dataset. The advantages of the proposed approach are
illustrated using both a synthetic dataset and a real genomics dataset.
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1 Introduction

Evidential clustering algorithms, such as ECM [1], rely on the theoretical foun-
dation of belief functions and evidence theory [2] and allow to express many
types of uncertainty about the assignment of an object to a cluster. It enables
to handle crisp single cluster assignment, as well as cluster membership degrees,
total ignorance and outliers detection. The credal partition, which is formed with
the assignments of all the objects, generalizes other soft partitions such as fuzzy,
possibilistic or rough partitions [3].

Clustering is a complex unsupervised task that often requires additional as-
sumptions to determine relevant solutions. The performances of a clustering al-
gorithm can be highly improved by using background knowledge [4]. To this end,
several semi-supervised evidential clustering approaches have been proposed [5–
7]. In [7], the SECM-pl algorithm integrates prior information in the form of
labeled data instances. The particularity of SECM-pl is its ability to handle par-
tial knowledge, which corresponds to the uncertainty about the assignment of an
object to several classes. This partial knowledge is controlled by the algorithm
in such a way that the uncertainty can be preserved.

In this paper, we propose an approach that generalizes SECM-pl, which main-
tains a high flexibility on the constraints, by favoring a decision making on the
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constraints. The paper is organized as follows: section 2 recalls the basics con-
cerning the evidence theory and its application in clustering. Section 3 details
the novel SECM algorithm and focuses on how labels constraints are expressed
and incorporated in ECM. Section 4 presents experimental settings and results.
Finally a discussion and future work are presented in section 5.

2 Preliminaries

2.1 Belief functions

The evidence theory (or belief functions theory) [2, 8] is a mathematical frame-
work that enables to reflect the state of partial and unreliable knowledge. Let
Ω = {ω1, . . . , ωc} be the frame of discernment where ωi is the true state of the
system which will be defined below. The mass function m : 2Ω → [0, 1], also
called basic belief assignment (bba), measures the degree of belief that ωi be-
longs to a subset A ⊆ Ω. It satisfies

∑
A⊆Ω m(A) = 1. Any subset A such that

m(A) > 0 is named a focal set of m. Given a mass function m, the plausibility
function pl : 2Ω → [0, 1] is defined by:

pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Ω. (1)

The quantity pl(A) corresponds to the maximal degree of belief that could
be given to A. To make a decision, a mass function can be transformed into a
pignistic probability distribution BetP [8].

2.2 Evidential c-Means

Evidential clustering algorithms generate for each object x1, . . .xi, . . .xn ∈ R
p

a mass function mi on the set Ω = {ω1, . . . , ωc} denoting the clusters. The
collection M = (m1, . . . ,mn) forms the credal partition and allows to represent
the uncertainties and imprecisions regarding the class membership of each object.
ECM [1] is the credibilistic version of Fuzzy C-Means [9]. It considers for each
subset Aj ⊆ Ω a representation of the subset with a prototype vector vj in R

p.
The objective function is:

JECM (M,V) =
n∑

i=1

∑

Aj⊆Ω,Aj 6=∅

|Aj |
αmβ

ijd
2

ij +
n∑

i=1

ρ2mβ
i∅, (2)

where V is the collection of prototypes, mij = mi(Aj) corresponds to the bba
of the object xi for the subset Aj , mi∅ denotes the mass of xi allocated to the
empty set and d2ij represents the squared Euclidean distance between xi and
the prototype vj . The last term of the objective function enables to handle the
empty set which can be interpreted as a cluster for outliers. The ρ parameter is
a fixed coefficient representing the distance between any object and the empty
set. The two parameters α and β > 1 are introduced to penalize the degree of
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belief assigned to subsets with a high cardinality and to control the fuzziness of
the partition. The objective function is subject to

∑

j/Aj⊆Ω,Aj 6=∅

mik +mi∅ = 1; mij ≥ 0 ∀i = {1, . . . n}, ∀j/Aj ⊆ Ω. (3)

2.3 SECM-pl

The main idea of the algorithm [7] is to add a penalty term in the objective
function of ECM, in order to take into account a set of already labeled objects.
Any mass function which partially or fully respects a constraint on a label ωk

has a high plausibility pl(ωk) given to the label. Similarly, an object constrained
in several classes, i.e. on the set Aj ⊂ Ω is respected with mass functions given
a high plausibility pl(Aj). Thus, the following penalty term has been proposed:

JS =

n∑

i=1

∑

Aj⊂Ω,Aj 6=∅

bij(1− Pli(Aj)), (4)

where bij = 1 if xi is constrained on Aj and 0 otherwise.

3 New ECM algorithm with partial supervision

3.1 Modeling the constraints

Let us consider a set of partially labeled constraints, i.e. a collection of objects
xi such that xi ∈ Aj , ∀Aj 6= ∅. If Aj is a singleton, then the object i belongs
to a class with certainty. Otherwise, xi belongs to a class listed in Aj without
knowing which one more precisely. Notice that xi ∈ Ω corresponds to complete
ignorance concerning the class of the object i. Degrees of belief containing the
set of clusters Aj or a part of it should be favored as well as mass functions of
subsets with a low cardinality. Thus, we define the measure 1 ≥ Tij ≥ 0 by the
following formula:

Tij = Ti(Aj) =
∑

Aj∩Al 6=∅

|Aj ∩ Al|
r
2

|Al|r
mil, ∀i ∈ {1 . . . n}, Aj ⊆ Ω, (5)

where r ≥ 0 controls a degree of penalization of the subsets. The coefficient
|Al|r is used to penalize subsets with a high cardinality and |Aj ∩ Al|

r
2 allows

to concentrate efforts on subsets containing mostly elements of Aj . Notice that
when r = 0, Tij corresponds to the plausibility that the object xi belongs to Aj .
For the rest of the paper, we set r = 1.
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3.2 Illustration

The behavior of the new measure Tij is illustrated with the DiamondK3 dataset
presented Figure 1(a). This dataset is composed of 15 objects that should be
separated into 3 groups. As it can be observed, points 13 to 16 are well isolated,
whereas objects 1 to 11 seem to correspond to two natural clusters connected by
the object 6. Let us suppose that some partial knowledge is available: e.g. object
6 is in the cluster ω1 and object 13 belongs either to ω1 or to ω3, but not to ω2.
Thus, we obtain the two following constraints: x6 ∈ {ω1} and x13 ∈ {ω1, ω3}.
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Fig. 1. DiamondK3 dataset (a) and illustration of the proposed penalty term Ti(Aj)
when considering several possible mass functions and compared to penalty term based
on plausibility P l(Aj) for previous SECM-pl [7] (b).

Figure 1(b) presents in each column a set of possible mass functions for an ob-
ject xi coming from the DiamondK3 dataset. First, let us consider that xi = x6

and let us assume that m6(ω1) = 1 as shown in the first column of Figure 1(b).
Thus, the constraint is respected and it can be observed that T6(ω1) = 1. In-
versely, if m6(ω2) = 1 as presented in the last column of Figure 1(b), then the
constraint is totally neglected and T6(ω1) = 0. Other columns illustrate partial
respect of the constraint, since the bba is allocated to subsets containing the
label ω1. The larger the cardinality of the subset, the lower the value of Tij .

Let us assume that xi = x13 and let us focus on the value obtained by
Ti({ω1, ω3}) for the set of possible mass functions. As it can be observed, Tij = 0
when no focal sets contain ω1 and/or ω3. Conversely, if there exists a degree of
belief not null on a subset including at least one of the classes included in the
constraint, then Tij > 0. As previously, the larger the cardinality of the subset,
the lower the value of Tij . For the same amount of subsets, for example columns
2 and 3 in Figure 1(b), a higher value is given to subsets containing the most
of classes in the constraint, i.e. {ω1, ω3}. This is a significant difference with
the plausibility measure for which all subsets intersecting with the constraints
contribute equally to the final value.
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3.3 Objective function and optimization

Based on the mass function mi of an object i, we can quantify the degree to
which a partial constraint xi ∈ Aj is respected by computing Tij in equation (5).
Tij = 1 when the belief is given to a cluster in Aj and is 0 when the belief
is assigned to none of the clusters included in Aj , i.e. when the constraint is
not respected. If we consider now that the bbas have to be found, a natural
requirement is to obtain a value of Tij as high as possible if there exists a
constraint such that xi ∈ Aj . This goal is achieved by minimizing the following
objective function:

JSECM (M,V ) = (1− γ)
1

2cn
JECM (M,V ) + γ

1

s

n∑

i=1

∑

Aj⊂Ω,Aj 6=∅

bij(1− Tij), (6)

such that constraints (3) are respected, s corresponds to the number of con-
straints, and bij = 1 if xi ∈ Aj , i.e if the object i is constrained with Aj and 0
otherwise.

The coefficient γ controls the tradeoff between the objective function of ECM
and the constraints. Notice that if r = 0 for the computation of Tij , then JSECM

is identical to the objective function proposed in [7]. Such setting allows the
penalty term to give equal importance to any subset intersecting with the con-
straints, whereas r > 0 favors subsets with low cardinality. As ECM, the credal
partitioning is carried out through an iterative optimization of the objective
function, with the update of the mass functions and the prototypes. If β is set
to 2, then the problem becomes quadratic with linear constraints and can be
resolved with classical methods, for instance [10].

4 Experimentations

4.1 Toy example

To illustrate the behavior of the SECM algorithm, we used the DiamondK3
dataset. First, an execution of ECM is performed with α = 1, β = 2, ρ2 = 103

and the final mass functions for the most representative subsets varying with the
objects number are presented Figure 2(a). It can be seen that ECM identifies
the 3 clusters by assigning the belief to the 3 singletons. The object 6, which is
located between the cluster ω1 and ω2, is ambiguous as it can belong to either
ω1 or ω2. Thus, ECM assigns for x6 a high mass for the subset {ω1, ω2}.

Let us consider now that the following set of constraints are available: x5 ∈
{ω1}, x6 ∈ {ω2} and x13 ∈ {ω1, ω2}. The SECM algorithm is executed with
γ = 0.5 and the credal partition obtained is presented Figure 2(b). As it can
be observed, constraints are well respected. The object 6, previously ambiguous
with the ECM algorithm, is now assigned with certainty to ω2. Similarly, the
object 5 had with ECM its belief divided into {ω1, ω2} and ω1, whereas now
all its belief is given to {ω1}. Finally, the mass function m13(ω3) for the object
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Fig. 2. Credal partitions obtained for DiamondK3 with (a) ECM and (b) SECM such
that x6 ∈ {ω1} and x5 ∈ {ω2} and x13 ∈ {ω1, ω3}.

13, which is already high with ECM, has increased with SECM. It shows that
SECM is able to constrained x13 more specifically on ω3 following the inherent
structure of the dataset.

4.2 Genomics application

Dataset: Dozens of thousands microorganism’s genomes are available in pub-
lic databases. We selected three known genomes from the RefSeq database [11],
namely Clostridium acetoburylicum, Bacillus cereus and Brachyspira hyodysen-

teriae, to simulate a small microbial community. DNA sequences were extracted
from these genomes then embedded in numerical vectors using normalized te-
tranucleotide frequencies with a CONCOCT-inspired approach [12]. The final
dataset, called tetragen, is composed of 22 attributes and 1188 objects corre-
sponding to DNA sequences. Classes, i.e. the genomes B. hyodysenteriae, C. ace-
toburylicum and B. cereus contain respectively 288, 383 and 517 instances. In
order to obtain the tetragen dataset, the largest DNA sequences were divided
in several objects. We took benefit of this process to create label constraints:
we assigned two DNA sequences composed of 13 and 21 objects in the subsets
{B. cereus} and {B. cereus,B. hyodysenteriae} respectively. As a consequence,
we obtained a dataset composed of 2.9% of constrained objects. Figure 3 presents
the class and prior information used for the tetragen dataset.

Experimental protocol: For both ECM and SECM, we performed 10 execu-
tions with random initialization of the centroids and kept the credal partition
giving the minimum value for the objective function. To synthesize the infor-
mation provided by the partitions, we transformed them into hard credal par-
titions by assigning each object to the subset of classes with the highest mass.
Figures 4(a) and (b) illustrates the obtained results. As it can be observed,
constraints helped SECM to impact the boundary of ω3.
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Fig. 3. Real classes (color) and constrained objects (encircled) for the tetragen data
set.

In order to compare the methods, partitions obtained with ECM and SECM
were transformed into hard partitions by selecting the cluster with the maximal
pignistic probability. Then, their agreement with the real partition were mea-
sured with the Adjusted Rand Index (ARI) [13] and the Normalized Mutual
Information (NMI). Both of them provide a 1 value when the partitions totally
match.With ECM, we obtained ARI=0.75 and NMI=0.71 whereas SECM gives
an ARI=0.78 and a NMI=0.73. It shows that a few number of constrained ob-
jects, even partially labeled, can lead our clustering algorithm to a better result
than ECM.
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Fig. 4. Hard credal partition obtained with (a) ECM and (b) SECM for tetragen. Col-
ors are lightened in (b) for objects for which the assignment has not changed between
the two algorithms.

5 Conclusion

In this paper, a new semi-supervised clustering algorithm called SECM is pro-
posed. It generalizes previous approach [7] based on partial label constraints.
The new penalty term can be parameterized to favor either any credal partition
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for which constraints are still plausible or only credal partitions for which con-
strained objects have belief on subsets with low cardinalities. A proof of concept
is provided and shows the benefits of the new algorithm. Finally, a real test
is performed on genomics data set and shows the necessity of such expressive
approaches in real use case.

In the future, extensive tests on real and synthetic datasets should be con-
ducted in order to show the influence of the parameter r and to compare various
semi-supervised clustering algorithms. The genomics use case should also be de-
veloped as it offers a relevant testbed for partial user knowledge integration. A
further work is to scale SECM for larger datasets, in order to apply the algorithm
in a real genomics application.
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