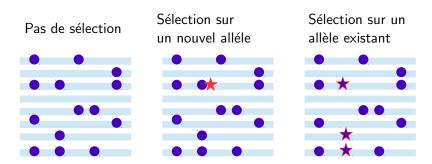
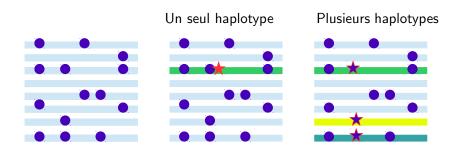
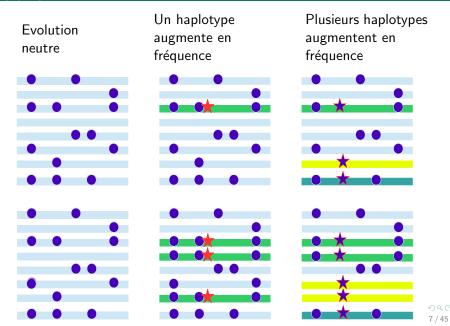
Détection de locus sous sélection positive

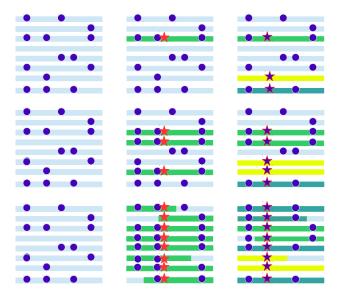
Simon Boitard, Bertrand Servin

INRA, GenPhySE, Toulouse

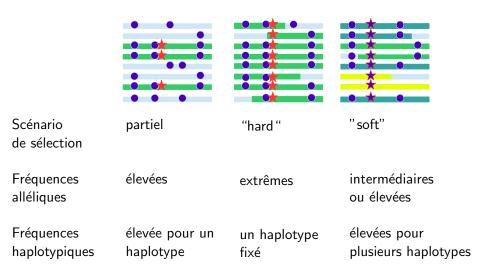

M2 BBS, Atelier Génétique Statistique, 2017-2018

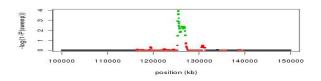

Contexte

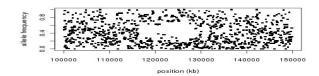

- La plupart des régions du génome évoluent sous neutralité, mais certaines ont évolué sous sélection positive / adaptative, naturelle ou artificielle.
- En étudiant la diversité génétique à l'échelle du génome entier (puces de génotypage, séquençage), on peut chercher à identifier ces régions : scans de sélection.
- Sélection positive modifie les fréquences alléliques du locus sous sélection, mais aussi des locus voisins.
- Enjeu théorique (mécanismes évolutifs) et appliqué (gènes liés à des fonctions stratégiques en médecine, agronomie ...).


- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TP

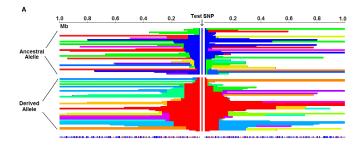
- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TP



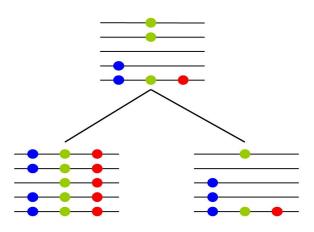



Effets de la sélection

Méthodes de détection


- Baisse de la diversité génétique / modification des fréquences alléliques dans une population.
- CLR (Nielsen et al 2005), Freq-HMM (Boitard el al, 2009).
- Hard sweeps.

Méthodes de détection


- Recherche d'haplotypes longs à forte fréquence dans une population.
- EHH (Sabeti et al 2002), iHS (Voight et al 2006).
- Sweeps partiels.

■ Extension à **deux populations** : XP-EHH (Sabeti *et al*, 2007).

Méthodes de détection

- Différenciation génétique élevée entre plusieurs populations.
- Scénarios de sélection plus variés mais postérieurs à la divergence des population → récents.

- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TP

- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF

Utilisation des F_{ST}

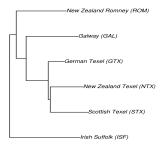
Pour un SNP:

■ $p = (p_1, ..., p_i, ..., p_n)$ fréquences de l'allèle 1 dans n populations,

$$F_{ST} = \frac{s_p^2}{\bar{p}(1-\bar{p})}$$

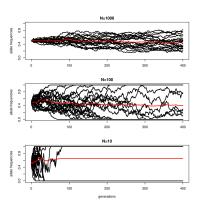
 \overline{p} et s_p^2 moyenne et variance de p.

- Tester H_1 : "sélection dans (au moins) une population" contre H_0 : "évolution neutre".
- H_0 rejeté si F_{ST} grand.


Test de Lewontin et Krakauer (1973)

$$LK = \frac{n-1}{\bar{F}_{ST}} F_{ST}$$

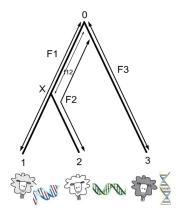
- Sous H_0 , LK suit un χ^2 à n-1 degrés de liberté . . .
- ...si les populations ont une phylogénie en étoile, sans migration, et des tailles efficaces égales.


Test FLK (Bonhomme et al, 2010

- **Estime la phylogénie** moyenne sur génome.
 - \rightarrow Loi de p sous H_0 .
- Pour chaque SNP, mesure l'écart des fréquences observées à ce modèle nul : FLK, extention de LK.

Dérive génétique dans une population

Population de taille constante N, un locus bi-allélique, alléle dérivé de fréquence p_0 .


$$\mathbb{E}(p(t)) = p_0 \qquad (1)$$

$$Var(p(t)) = F_t p_0(1 - p_0)$$
 (2)

Indice de fixation de Wright-Fisher

$$F_t = 1 - \left(1 - \frac{1}{2N}\right)^t \approx \frac{t}{2N}$$

Extension à plusieurs populations sans migration

$$Var(p_i) = F_i p_0 (1 - p_0)$$

 $Cov(p_i, p_j) = f_{ij} p_0 (1 - p_0)$

$$F_3 = 1 - \left(1 - \frac{1}{2N_3}\right)^t \approx \frac{t}{2N_3}$$

$$f_{12} = 1 - \left(1 - \frac{1}{2N_{12}}\right)^{t_{12}} \approx \frac{t_{12}}{2N_{12}}$$

matrice de kinship

$$F = \left(\begin{array}{ccc} F_1 & f_{12} & 0\\ f_{12} & F_2 & 0\\ 0 & 0 & F_3 \end{array}\right)$$

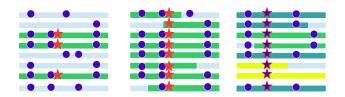
$$ightarrow Var(p) = Fp_0(1-p_0)$$

Estimation de la matrice de kinship

- En utilisant un grand nombre de SNPs sur le génome, on calcule la **distance génétique de Reynolds** \mathcal{D}_{ij} (Reynolds, Weir and Cockerham, 1983) entre toutes les paires de populations i and j.
- On construit un arbre de phylogénie en accord avec toutes ces distances (neighbour joining).
- On sait que

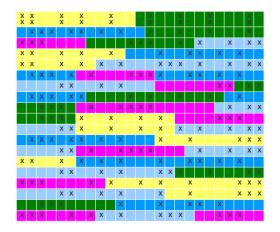
$$E(\mathcal{D}_{ij}) = \frac{F_i + F_j}{2}$$

Test FLK


Pour un SNP donné

- $\hat{p_0} = f(p, F)$
- $FLK = g(p \hat{p_0}, F)$
- Sous H_0 , FLK suit un χ^2 à n-1 degrés de liberté \rightarrow p-valeur.

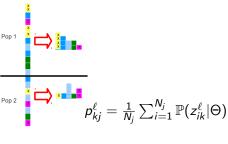
- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TP


Principe

- Fréquences alléliques corrélées, fréquences haplotypiques affectées par la sélection.
- Appliquer FLK sur des haplotypes locaux.

Modèle de Scheet and Stephens (2006)

Estime des haplotypes locaux autour de chaque SNP (Scheet and Stephens, 2006).



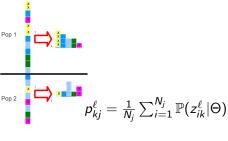
Test hapFLK (Fariello et al, 2013)

Estimation des clusters

Fréquence des clusters pour chaque SNP ℓ et population j:

Calcul de FLK, en considérant les clusters comme des allèles.

Moyenne de FLK sur les différents runs → hapFLK

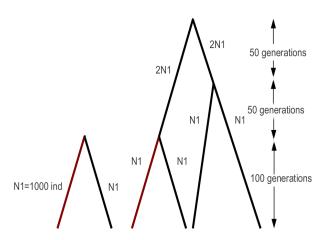

Test hapFLK (Fariello *et al*, 2013)

Estimation des clusters

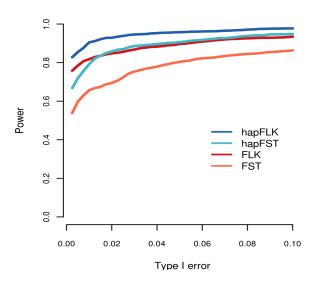
Algorithme EM

Fréquence des clusters pour chaque SNP ℓ et population j:

Calcul de FLK, en considérant les clusters comme des allèles.


Moyenne de FLK sur les différents runs → hapFLK

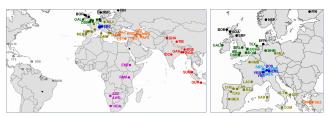
- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF


- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF

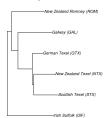
Simulations

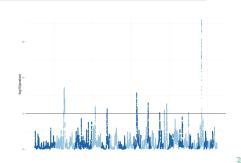
Locus de 5Mb avec 100 SNPs (génotypage haut débit).

Puissance de détection

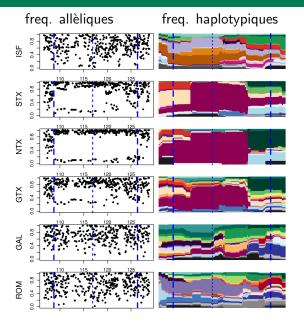


Hard sweep, 4 populations.

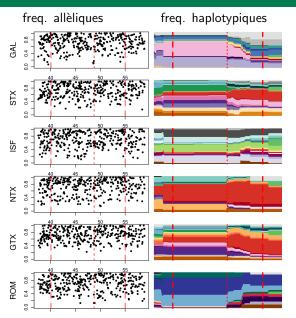

- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF

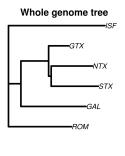

Projet Sheep HapMap

74 populations, 50K SNPs (Kijas et al, 2012)

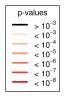


Focus sur les populations d'Europe du Nord


Hard sweep dans les races Texel

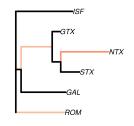

Mutation candidate dans MSTN

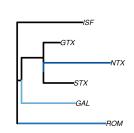
Soft sweep partiel en Nouvelle Zélande



- Un cluster assez fréquent en New Zealand Texel (NTX)
- Deux clusters fixés en New Zealand Rommey (ROM).

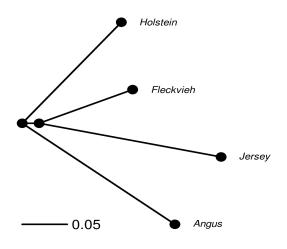
Les races de Nouvelle Zélande sont sous selection

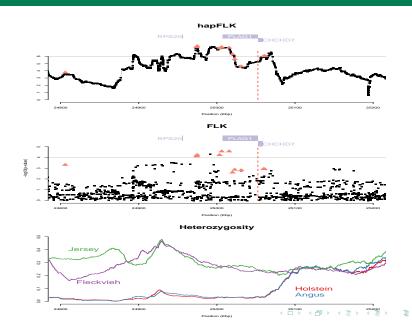




Haplotype trees

OAR 14




- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF

Projet 1000 genomes bovins, run2

- 234 séquences issues de 4 races (90 utilisées).
- 29 millions de variants bi-allèliques (SNPs et indels)

Sélection autour du gène PLAG1 - variant candidat?

- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF

Conclusion

L'approche hapFLK:

- Détection de locus sous sélection positive par comparaison d'échantillons de plusieurs populations.
- Tient compte des différences de tailles des populations et de leur structure hiérarchique.
- Tient compte de la corrélation entre marqueurs (haplotypes).
- \rightarrow Puissance de détection accrue.
- Autres avantages:
 - Nombre de populations arbitraire.
 - Données non phasées et éventuellement manquantes.
 - Plusieurs types de sélection détectés.
- Limitations:
 - Modèle de dérive pure (pas de migration).

Références

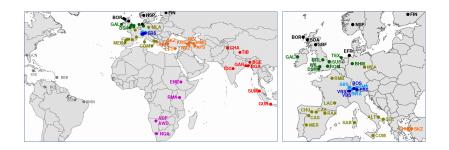
Méthodes:

- M. Bonhomme, C. Chevalet, B. Servin, S. Boitard, J. Abdallah, S. Blott, M. San Cristobal (2010). Detecting selection in population trees: the Lewontin and Krakauer test extended. *Genetics* 186: 241-26.
- M. I. Fariello, S. Boitard, H. Naya, M. SanCristobal, B. Servin (2013).
 Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. *Genetics* 193: 929-941.

Applications:

- M.I. Fariello, B. Servin, G. Tosser-Klopp, R. Rupp, C. Moreno, International Sheep Genome Consortium, M. San Cristobal and S. Boitard (2014). Selection Signatures in Worldwide Sheep Populations. *PLoS ONE* 9(8), e103813.
- P.F. Roux, S. Boitard, Y. Blum et al (2015). Combined QTL and Selective Sweep Mappings with Coding SNP Annotation and Cis-eQTL Analysis Revealed PARK2 and JAG2 as New Candidate Genes for Adiposity Regulation. G3 5(4) 517-529.
- S. Boitard, M. Boussaha, A. Capitan, D. Rocha and B. Servin (2016). Uncovering Adaptation from Sequence Data: Lessons from Genome Resequencing of Four Cattle Breeds. *Genetics* 203: 433-450.

- 1 Effets de la sélection positive sur le génome
- 2 Tests basés sur la différenciation entre populations
 - Approche SNP par SNP
 - Approche haplotypique
- 3 Résultats
 - Simulations
 - Application chez le mouton
 - Application chez la vache
- 4 Conclusions et Perspectives
- 5 TF


Logiciel hapflk software

- Construit une phylogénie des populations (libraries R)
- Calcule les statistiques FLK and hapFLK.
- Calcule les p-valeurs associées à ces statistiques.
- Trace des courbes aidant l'interprétation : fréquences des clusters, arbres locaux.

Information technique

- Adresse: https://forge-dga.jouy.inra.fr/projects/hapflk
- Code source python, besoin de numpy, scipy et d'un compilateur C.
- Scripts additionels en R, besoin de ape, phangorn et ggplot2.

Jeu de données: projet Sheep HapMap, Europe du Nord

Kijas et al. (2012) PLoS Biology 6 Populations + Outgroup (Soay), 388 animaux, 50K SNPs. Disponible ici: http://www.sheephapmap.org

Avant de commencer...

- Se rappeler des hypothèses du modèle :
 - Dérive pure (pas de mutations depuis divergence, pas de migration).
 - F_i petit (< 0.2), pour le calcul des p-valeurs.
- II faut donc
 - Enlever les populations admixées ou très consanguines.
 - Enlever les variants rares (à l'échelle de la méta-population), susceptibles d'être apparus récemment.
- Réaliser d'abord une étude de diversité :
 - PCA, clustering (LEA) pour enlever les individus outliers.
 - Enlever les individus trop apparentés.

Les étapes de l'analyse

- Calculer la matrice de kinship Calculer FLK pour tous les SNPs.
- Calculer hapFLK pour tous les SNPs.
- Calculer les p-valeurs de hapFLK pour tous les SNPs.
- Tracer les p-valeurs et détecter les régions significatives (FLK et hapFLK).
- **5** Etudier plus en détail les régions significatives :
 - Fréquence des clusters.
 - Arbres locaux.