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bUMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech,

Université Paris-Saclay, 75005, Paris, France
cCenter for Diabetes Technology, University of Virginia, Charlottesville, VA.

Abstract

Empirical and phenomenological based models are used to represent biolog-

ical and physiological processes. Phenomenological models are derived from

the knowledge of the mechanisms that underlie the behaviour of the system

under study, while empirical models are derived from analysis of data to quan-

tify relationships between variables of interest. For studying biological sys-

tems, the phenomenological modeling approach offers the great advantage of

having a structure with variables and parameters with physical meaning that

enhance the interpretability of the model and its further used for decision mak-

ing. The interpretability property of models, however, remains a vague con-

cept. In this study, we tackled the interpretability property for parameters

of phenomenological-based models. To our knowledge, this property has not

been deeply discussed, perhaps by the implicit assumption that interpretability

is inherent to the phenomenological-based models. We propose a conceptual

framework to address the parameter interpretability and its implications for

parameter identifiability. We use as battle horse a simple but relevant model

representing the enzymatic degradation of β−casein by a Lactococcus lactis bac-

terium.
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1. Introduction1

How can we assess the capability of a mathematical model to provide mech-2

anistic insight on the system under study? That is, how the mathematical3

structure of the model translates and captures the knowledge of the phenomena4

taking place in the system? To what extent can we interpret mechanistically our5

model? In biotechnology, biology, and biomedical fields two main approaches ex-6

ist to model processes of interest, namely empirical and phenomenological based7

modeling. Empirical based models are derived from data, while phenomenolog-8

ical based models are derived from knowledge about the process. In biomedical9

fields, phenomenological based models are more relevant than empirical based10

models since, in addition to prediction, their parameters and variables provide11

information that can be used to perform diagnosis, discriminate clinical risk12

groups and guide treatment for stratifying patients by disease severity [1, 2]. In13

spite of this, in the fields mentioned before many models have been developed14

from an empirical point of view by using black box modeling approaches like15

machine learning and fuzzy models. Machine learning models, for example, are16

increasingly used in the field of medicine and healthcare but there is still an17

inability by humans to understand how those models work and what meaning18

their parameters have. Some approaches have been proposed to improving the19

level of explanation and interpretability of such emprirical models, that is to20

open the black box [3]. The deployment of the above mentioned approaches en-21

counters its first hurdle by the difficulty of formalising the definition of central22

concepts such as transparency, explanation, and interpretability. In the present23

work, we focus on the interpretability concept but applied to phenomenological-24

based models. Many studies propose interpretability as a means to engender25

trust in empirical-based models and to reach features as close as possible to26

humans [1, 4, 5, 6, 7] regarding decision making. In this context, Caruana, R.27
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et al. [1] evaluated a method for rule-based learning [8] and applied general-28

ized additive models [2, 9, 10] to real healthcare problems to get intelligible29

and accurate models, in order to predict risk prior to hospitalizations, to have30

a more informed decision about hospitalization, and to reduce healthcare cost31

by reducing hospital admissions [1]. In the same line, Lou et al. [9, 10] call32

intelligible models to those models that can be easily interpreted by users. For33

decision models, the interpretability concept has been ascribed to (i) the ability34

of making decisions as close as a human being will do [11, 12], and (ii) the ability35

of being understood [11, 13]. Since, decision making is favored by the under-36

standing of how the model works, optimal decision-based models are those that37

provide a trade-off between the predictive accuracy and interpretability [14].38

Model interpretability is a term used in various works but without an explicit39

definition [11, 15]. The meaning of that term is not direct because the model40

as a whole is a complex piece of knowledge. Therefore, the model interpretabil-41

ity, scarcely will be an on-off property, i.e, a model is or is not interpretable.42

To grade the model interpretability will be equivalent to establish a scale of43

interpretability. Obviously, that scale requires a metric to generate the value44

of interpretability for a given model. That metric is the major problem to45

establishing an interpretability scale. For example, two models, one with 3046

parameters and the other with only 3 parameters, but both has only one of47

their parameters without interpretability. If an on-off approach is maintained,48

both models are not interpretable. If an interpretability index (II) is staed as:49

II = 1− NPNoI

NTotP
, with NPNoI number of non-interpretable parameter and NTotP50

the total number of parameters, the II for first model will be 1 − 1
30 = 0.966651

and for the second one will be 1− 1
3 = 0.6666. Does this proposed II give useful52

information about model size or complexity? Due to this unsolved item, in the53

current work the interpretability will be only evaluated in terms of individual54

parameters. Interpretability of model parameters is the result of multiple fac-55

tors including the level of detail or specification [16], that is its granularity [17].56

Due to the lacking of formalism about interpretability like a property of the57

parameters in a model, there is no consensus about quantifying or measuring58
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such a property. The approach we want to elaborate in this article consists in59

referring the interpretability of a model to its parameters and the degree by60

which those parameters have physical meaning. We focus on Phenomenological61

Based Semi-physical Models (PBSMs) [18], of which, to the best of our knowl-62

edge, the concept of interpretability has not been deeply discussed, perhaps by63

the implicit assumption that interpretability is inherent to the PBSM since they64

are derived from a phenomenological representation of the system under study.65

In this work, we propose a conceptual framework that can facilitate the incor-66

poration of interpretability for model construction. We use as battle horse a67

simple model to elaborate our developments. The paper is organized as follows.68

In Section 2, we present a summary of the steps of a modeling methodology69

proposed by [19] to build PBSMs. In Section 3, a conceptual framework for70

interpretability analysis is set using a simple mathematical model of the dy-71

namics of enzymatic hydrolysis of β−casein by a Lactococcus lactis bacterium.72

Finally, we discuss in Section 4 the potential links between interpretability and73

identifiability. Some concluding remarks are provided in Section 5.74

2. The process of PBSM construction75

The construction of a model may be linked to a form of art. This subjec-76

tive character explain the existence of several methodologies for building PB-77

SMs [20, 21, 22, 23, 24, 25]. In our group (KALMAN, Universidad Nacional de78

Colombia), several studies have been developed [19, 26] to propose the following79

methodology, described by 10 steps, which are summarized here in the interest80

of completeness.81

82

1. Process description and model aim: a verbal description of the pro-83

cess taking place is performed including a process flow diagram as graph-84

ical representation. Also, the model aim is set by the question that is85

expected to be answered by the model.86
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2. Model hypothesis and level of detail: a hypothesis or analogy about87

the behavior of the real process is proposed. Although the present method-88

ology was originally intended for process engineering systems, it can be89

extended to any type of process by mean of a model hypothesis. A model90

hypothesis is a feasible analogy of the unknown phenomena in terms of91

known and well studied phenomena. If the modeled process is located in a92

specific area of the engineering in which the phenomena of the process are93

known, the hypothesis is the description of those phenomena and an anal-94

ogy is not necessary. Otherwise, the process must be related to a known95

process, an analogy is required, and a set of assumptions is fixed. The96

level of detail is determined by the model objective, that is, the question97

that will be solved by the model.98

3. Definition of the process systems: a process system is an abstraction99

of a part of the process under study [22]. Each process system (PS) is100

a partition of the real process, and this partition should be as real as101

possible, that is, physical distinctions, changes in phases or characteristics102

showing spatial variations in the process of interest.103

4. Application of the conservation law: the conservation law is applied104

to every PS defined in step 3. Typically, mass, energy, and momentum are105

mainly accounted for. The equations obtained are described by either a106

set of ordinary differential equations in lumped models or a set of partial107

differential equations in distributed models; they form the basic structure108

of the model.109

5. Determination of the basic structure of the model: after applying110

the conservation principle, select the set of equations needed to describe111

the model objective. Discard those equations with trivial information.112

6. Definition of the variables, structural parameters and constants:113

make a list of variables, structural parameters, and constants. Variables114

are quantities whose values result from the solution of the model equations115

forming the basic structure. Parameters are values that need to be defined116

beforehand to solve the model. They can be known values or must be117
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identified. Finally, the constants are fixed values either because of its118

universality (e.g., the gravity constant) or because of the modeler choice119

(e.g., setting a parameter with a known value from literature).120

7. Definition of constitutive and assessment equations and func-121

tional parameters: constitutive and assessment equations are proposed122

to calculate the largest number of unknown parameters of each process123

system. The set of constitutive and assessment equations are selected124

according to the modeler knowledge and criteria.125

8. Verification of the degrees of freedom (DoF): the DoF are the dif-126

ference between the number of unknowns and the number of equations.127

9. Construction of the computational model: the solution of the math-128

ematical model is carried out by a computational program able to solve129

the set of differential and algebraic equations forming the model.130

10. Model validation: verification of the model’s domain of validity with131

respect to available experimental data or other validated models.132

3. Setting a conceptual framework for interpretability analysis133

In this section, we propose a conceptual framework for parameter inter-134

pretability analysis. The concepts that constitute the proposed framework to135

analyse parameter interpretability are defined and summarized in Table 1. For136

the sake of clarity, the conceptual framework is studied using a simple mathe-137

matical model that describes the dynamics of enzymatic hydrolysis of β-casein138

by a Lactococcus lactis bacterium in a batch system [27]. The basic structure139

of the model is obtained from applying a component mass balance, which results140

in the following unique differential equation:141

dx

dt
= −r(·) (1)

where x (in µM) is the concentration of the substrate and r(·) (µM/min)142

is the reaction rate, using the symbol (·) to indicate the dependency of this143

structural parameter with respect to time and any other variable or parameter144
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of the model. It is worth to point out that global mass balance is worthless145

in this type of processes since no continuous inflow or outflow occurs. From146

Table 1, x is the variable whose dynamic trajectory is obtained by solving the147

model and r(·) is the unique structural parameter. Note that at this level of148

detail, the mathematical equation that represent r(·) is not yet defined. This149

fact suggests that for this example, Equation (1) is a unique representation of150

the phenomena of interest (i.e, the hydrolysis of β-casein).151

152

The mathematical definition of the structural parameter r(·) is the key el-153

ement for the construction of the complete model structure, that is, for the154

set of equations that define the model in its basic and extended form. Multiple155

mathematical functions exist to define r(·) and describe the hydrolysis rate of156

the intact β-casein. In the study here analyzed [27], the authors evaluate four157

kinetic candidate functions to determine the best function for r(·) parameter in158

terms of the goodness of fit:159

• First-order kinetics:160

r(·) = k1Ex (2)

• nth-order kinetics:161

r(·) = knExn (3)

• Michaelis-Menten kinetics:162

r(·) = kcE
x

Km + x
(4)

• Competitive inhibition kinetics:163

r(·) = kcE
x

Km(1 + I

Ki

) + x
(5)

with I = x0 − x. This expression can be further manipulated to reduce164

the number of its parameters as:165

r(·) = b1E
x

b2 − x
(6)
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with166

b1 =
kcKi

Km −Ki

(7)

167

b2 =
Km(Ki + x0)

Km −Ki

(8)

where E is the enzyme concentration, measured in optical density units168

(OD600). The parameter k1 (1/OD600 min) is the hydrolysis rate constant for169

the first-order kinetics, and kn (1/µMn−1OD600min) is the rate constant for170

the kinetics of order n. For the Michaelis-Menten equation, kc (µM/OD600min)171

denotes the catalytic rate constant and Km (µM) the substrate affinity con-172

stant. For the inhibition kinetics, Ki (µM) is the inhibition constant. The173

concentration of the inhibitor I (µM) is considered to be equal to the concen-174

tration of β-casein that has been hydrolyzed (x0−x), with x0 the initial protein175

concentration.176

177

It is up to the modeler to decide which kinetic function to use for represent-178

ing the hydrolysis rate of β-casein. Once, the kinetic function is defined by a179

new equation in addition to the basic structure, we obtain the extended struc-180

ture of the model. The selected kinetic function is a constitutive equation181

of the model that allows to determine r(·). For example, if we select the first-182

order kinetic function r(·) = k1Ex, we say that r(·) is a structural coupled183

parameter that depends on the variable x and two functional parameters:184

k1 and E. In this case, both functional parameters have physical meaning and185

are thus considered to be interpretable. While, the enzyme concentration E186

is a known numerical value imposed by the experimental protocol, k1 is a rate187

constant that needs to be determined via parameter estimation.188

189

Following the case when r(·) is specified by the first-order kinetic rate as190

in (2)), let’s analyze the parameter interpretability (the analysis also applies to191

other candidate kinetic functions, bearing in mind that the Michaelis-Menten192
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equation is derived from a biological hypothesis on the enzyme action and thus193

its parameters have a stronger level of interpretability than for instance those of194

the kinetic of order n). By analyzing different experimental conditions, it was195

found that the hydrolysis rate of β-casein was dependent of the initial protein196

concentration x0 [27]. That is, the kinetic rate was slower at higher initial pro-197

tein concentrations. To account for the dependency of the kinetic rate on the198

initial β-casein concentration, the authors performed a regression analysis with199

the estimated parameter values obtained for each experimental condition. After200

regression, the parameter k1 was further expressed as a power function of the201

initial β-casein concentration202

203

k1 =
c1

x0
m1

(9)

Equation (9) is referred to as a constitutive equation, defined by two new204

functional parameters: c1 and m1. These scalar parameters are numeri-205

cal values identified by regression analysis. Table 2 shows a classification of the206

components of the β-casein model according to the conceptual framework pre-207

sented in Table 1 and considering that r(·) is defined by the first-order kinetic208

rate in Equation (2). It is important to note that for the other kinetics options209

(Equations (3) - (5)) this classification is also applicable. That is, the basic210

structure or zero specification level is preserved, but the extended structure211

changes according to the chosen kinetic constitutive equation. The extended212

structure begins with the first specification level while the basic structure is the213

zero specification level and it is the only one with inherent interpretability in a214

PBSM.215

216

With respect to the parameter interpretability of this simple model, it217

can be said that the structural parameter r(·) has general interpretability218

because in the the specific scientific domain of chemical and process engineering,219

the symbol r(·) denotes a reaction rate. The reaction rate determines the dy-220
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namics at which reactants are converted into products, i.e., it is the number of221

moles of substance reacting by time unit within the reaction. The functional222

parameter k1 has contextualized interpretability and refers to the kinetic223

rate constant derived from the assumption that the hydrolysis rate follows a224

first-order kinetics. The functional parameter E has also contextualized225

interpretability representing the concentration of the enzyme. Contextualized226

means that these symbols, k1 and E, in other context can be used for repre-227

senting another physical properties of the process.228

229

When k1 is further defined by the constitutive equation (9) with the scalar230

functional parameters c1 and m1, they are not interpretable, since c1 and m1231

are empirical parameters without physical meaning. However, the parameter k1232

is still interpretable in spite of being expressed as function of non interpretable233

parameters. The interpretability of a parameter is not dependent on the con-234

stitutive equation that defines it in a lower specification level.235

236

In this example, we can appreciate the peculiarity of the basic structure237

of a model and the dependency on the modeler choices to define the extended238

structure. One basic structure can lead to multiple extended structures. This239

extended structure results from the mathematical specification of the structural240

parameters. Additionally, it is highlighted how the parameters interpretabil-241

ity of the model can be affected when the specification levels appear, that is242

when the structural and functional parameters must be defined through further243

parametrization. A graphical explanation of the concepts applied in the exam-244

ple is shown in Figure 1.245

246

4. Links between parameter interpretability and identifiability247

In this section, we discuss about possible relations between the concepts of248

interpretability and identifiability.249
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4.1. Brief recall on parameter identifiability250

Identifiability is a structural property of the model referred to the ability to251

find a unique best value of the model parameters from available measurements252

[28, 29]. Under the assumption that the model represents perfectly the system,253

model identifiability is tested in the hypothetical scenario set by continuous254

noise-free data and experimental conditions that provide a sufficient excitation255

on the model response. The structural identifiability is independent of real256

experimental data. Identifiability is a necessary condition for the parameter257

identification problem to be well posed. Identifiability testing is of great rele-258

vance for models where the parameters are biologically meaningful (as it is the259

case for PBSMs) and we may wish to identify them uniquely [30]. Identifiability260

testing can be helpful to provide guidelines to deal with non-identifiability, ei-261

ther providing hints on how to simplify the model structure or indicating when262

more information (measured data) are needed for the specific experiment [31].263

Let us consider M(p) a fixed model structure with a set of parameters p264

describing the input-output behavior of the system under study. The structural265

identfiability of the parameter pi is determined from the following equality266

M(p) = M(p∗) ⇒ pi = p∗i (10)

If the equality (10) holds for a unique value of the parameter pi, the param-267

eter is structurally globally identifiable. If there are a finite number of values268

for pi that hold the equality (10), the parameter is structurally locally iden-269

tifiable. If infinite solutions exist for pi, the parameter is nonidentifiable. A270

model is structurally globally (or locally) identifiable if all its parameters are271

structurally globally (or locally) identifiable. A model is non-identifiable if at272

least one of its parameters is non-identifiable. Different methods have been273

proposed to test identifiability of linear and nonlinear models. The interested274

reader is reffered to dedicated literature [32, 28, 33]. To facilitate identifiability275

testing, software tools such as DAISY (Differential Algebra for Identifiability of276

SYstems) [31] and GenSSI have been developed [34]. DAISY is implemented in277
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the symbolic language REDUCE and GenSSI is implemented in Matlab. Both278

of them are freely available. We made use of both toolboxes four our analysis.279

4.2. Interpretability vs. identifiability280

In our conceptual framework, interpretability is defined as the ability to find281

a physical meaning of a parameter when the model structure (basic plus ex-282

tended) and some knowledge of the real process are given. Interpretability is283

the property of the model parameters, inherited from the model structure, as-284

signing a physical meaning to a parameter within the context where the model285

is constructed. When the parameter has a physical meaning, it is possible to286

find from available knowledge a span of numerical values to make easier its iden-287

tification.288

289

The main role of parameter interpretability for parameter identification is290

to narrow the search space/domain of the cost function where the identification291

procedure operates, constraining the values of feasible parameters to match with292

the existing body of knowledge. On the other hand, structural identifiability is293

considered a theorerical property. In practice, however, model structure mis-294

specification and noise data can affect the identifiability of the parameters of295

the model [31] and therefore an accurate identification of the model parameters296

is not guaranteed. Practical identifiability is then subjected to the quality of297

available data. Interpretability can be of help in parameter identification [35]298

by adding prior knowledge that can be used to constraint the parameter esti-299

mation. For instance, if a parameter is interpretable, it is possible to know the300

threshold in which it should be placed. Also, the threshold could be restricted301

to improve the practical identification. A parameter can be non-identifiable,302

but if it is interpretable, then the prior information can be used to facilitate its303

practical identifiability.304

Identifiability and interpretability are relevant properties of PBSMs con-305

structed to gain mechanistic insight of the system under study. A PBSM has306

a basic structure that is universal and interpretable, that is, all its structural307
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parameters are interpretable. However, it is often required to specify the struc-308

tural parameters in the extended structure, yet maintaining the interpretability309

of a model become more challenging.310

Identifiability analysis applies only to scalar parameters (see definition of311

scalar parameters in Table 1). In the β-casein model, the structural parameter312

r(·) is a time variant quantity and thus identifiability testing is not relevant. The313

quantity r(·) is interpretable and we might wonder if it is possible to estimate314

it from the available measurements (x). The reconstruction of r(·) belongs to315

another subject namely observability, which is not detailed here.316

A structural identifiability analysis was performed for the β-casein model by317

using both DAISY software tool [31] and GenSSI-Matlab [34], to evaluate how318

the identifiability properties of the model change with respect to the level of319

specification or granularity and the candidate constitutive equations. Table 3320

summarizes the identifiability and intepretability analysis. It can be noted that321

the basic structure of the model is interpretable but its identifiability cannot be322

tested because r(·) is not a scalar. However, its identifiability analysis is latter323

applied and is affected when the structural parameter r(·) is defined by the324

different kinetics. When r(·) is replaced by the first-order kinetic, the model is325

still identifiable. But, when k1 is further defined by a mathematical expression326

dependent on the initial concentration of the protein (located in the second327

specification level), its identifiability is modified. In the same way, for the second328

form of competitive inhibition kinetics, where functional parameters b1 and b2329

are not replaced, the model is globally identifiable, but once b1 and b2 are defined330

and replaced at the next level of specification, the identifiability of the model is331

affected. Parameters k1, kn, kc, Km, and Ki are interpretable from Michaelis-332

Menten kinetics, but parameters b1 and b2 are not interpretable. When the333

mathematical expression of Michaelis-Menten is changed for the expression with334

parameters b1 and b2 to make easier its identification, the interpretability is335

affected.336

We deduce that a PBSM can have an extended structure to identify its337

parameters and an extended structure to interpret the model parameters. In338
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the case of the β−casein model, two extended structures of the model can be339

considered depending on the interest: if the interest is to perform parameters340

identification, the mathematical expression containing parameters b1 and b2 is341

more convenient. Contrary, if the interest is to exploit the descriptive ability of342

the model, the mathematical expression with interpretable parameters is then343

selected. Note that to perform an identifiability analysis of the whole model,344

all parameters must be replaced by the mathematical expression defining them,345

whilst interpretability analysis does not require to replace the constitutive equa-346

tions in the upper specification levels.347

348

5. Conclusion349

Due to the lack of a formal definition of the interpretability concept in the350

literature and that this topic is just emerging, we propose a conceptual frame-351

work for parameters interpretability. We discussed the links between parameter352

interpretability and identifiability.353

The concepts here described provide a useful framework to undertaking354

the construction of models of biological/biomedical systems where the physi-355

cal meaning of the model structure is a desired property. These concepts are of356

particularly usefulness for modeling systems that are poorly studied and thus357

facilitate further exploitation of in silico simulation. PBSMs offer great ad-358

vantages for representing biological systems as they allow to enhance model359

capabilities in sequential way, integrate multiscale information into the same360

model, and guarantee direct interpretability of model basic structure. In addi-361

tion, to endow with interpretability a parameter of a PBSM is an easier task362

when compared with the same effort over empirical models.363
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Figure 1: Concepts applied in a simple model of β-casein hydrolysis by a Lactococcus lactis

bacterium.
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Table 1: Definition of concepts used in this study

Term Definition

Variable Quantity to be solved by the model.

Basic structure Set of equations obtained after applying the conservation law. At this level,

the functions that represent the phenomena that take place in the study object

are not detailed mathematically.

Extended struc-

ture

Set of equations allowing to specify the parameters represented by mathemat-

ical functions. The extended structure results from defining the mathematical

equations of the parameters contained in the model basic structure. Some of

these equations, called assessment equations, are trivial, i.e., they imply only

the assignment of a numerical value to a parameter.

Model structure Set of equations consisting in the union of the basic and extended structures.

Constitutive

and assessment

equations

Equations inside the extended structure of the model acting as a mathematical

specification of a parameter.

Structural

parameter

Parameter inside the basic structure of the model. The structural parameter

represents either a quantity that varies in time or a scalar.

Functional

parameter

Parameter inside any constitutive or assessment equation. It is categorized in

coupled parameter, no coupled parameter or scalar parameter. These param-

eters result from the extended structure, once the mathematical equations of

the structural parameters are specified.

Scalar func-

tional parame-

ter

Parameter with numerical value (datum) time independent. This type of pa-

rameter can be known a priori or determined by parameter estimation.

Non coupled

functional

parameter

Parameter associated to a mathematical function that does not dependent on

any variable of the model.

Coupled func-

tional parame-

ter

Parameter that depends on at least one variable of the model.
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Term Definition

Parameter

interpretability

Given a model structure for a system, a parameter pi is interpretable if it

has physical meaning into the real object. In a specific knowledge context,

the symbol of the interpretable parameter provides additional information or

knowledge about the phenomena under consideration compared to a simple

numerical value. The interpretability of a parameter as a property depends

on the model structure. Also, the parameter position into the model structure

helps to provide interpretability to that parameter being defined.

Contextualized

interpretability

Physical meaning of a parameter valid only into a specific mathematical model.

The meaning is dependent on the considerations and hypothesis used to deduce

the mathematical model within a given context.

General inter-

pretability

Inherent physical meaning of the parameter within a model in a specific sci-

entific domain, i.e., its interpretation is independent on assumptions used to

deduce the basic model structure.

Non inter-

pretability

The parameter has not physical meaning within the model. Non interpretable

parameters must be then represented by a symbol without an interpretable

property in the knowledge domain of the process.
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Table 2: Classification of the β-casein model components when using the first-order kinetic

rate to represent β-casein hydrolysis

Symbol Type Equation Interpretability

Basic structure and basic specification or zero specification level

x Variable dx

dt
= −r(·) Non required a

r Structural parameter r(·) = k1Ex General

1st specification level

k1 Non coupled functional parameter k1 = c1

x
m1

0

Contextualized

E Scalar functional parameter E = known Contextualized

2nd specification level

c1 Scalar functional parameter c1 = known Non interpretable

m1 Scalar functional parameter m1 = known Non interpretable

x0 Scalar functional parameter x0 = known General

aAny model variable has inherent interpretability
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Table 3: A comparison between identifiability and interpretability analysis in β-casein model

Mathematical

expression

Unknown

parameters

Identifiability Interpretability

Basic structure and basic specification or zero specification level

dx

dt
= −r r Identifiability does not

apply at this level

General

Extended structure - 1st specification level

r = k1Ex k1 Globally identifiable a Contextualized

r = knExn kn,n Locally identifiable b Contextualized

r = kcE
x

Km+x
kc,Km Globally identifiable Contextualized

r =

kcE
x

Km(1+ I

Ki
)+x

kc,Km,Ki Non identifiable Contextualized

r = b1E
x

b2−x
b1,b2 Globally identifiable No interpretable

2nd specification level

k1 = c1

x
m1

0

c1,m1 Locally identifiable No interpretable

aGlobal analysis is performed by using DAISY [31].
bLocal analysis is performed by using GenSSI [34]
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