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The growth of plant organs is a complex process powered by osmo-
sis that attracts water inside the cells; this influx induces simulta-
neously an elastic extension of the walls and pressure in the cells,
called turgor pressure; above a threshold, the walls yield and the
cells grow. Based on Lockhart’s seminal work, various models of
plant morphogenesis have been proposed, either for single cells, or
focusing on the wall mechanical properties. However, the synergis-
tic coupling of fluxes and wall mechanics has not yet been fully ad-
dressed in a multicellular model. This work lays the foundations of
such a model, by simplifying as much as possible each process and
putting emphasis on the coupling itself. Its emergent properties are
rich and can help to understand plant morphogenesis. In particular,
we show that the model can display a new type of lateral inhibitory
mechanism that could contribute to the amplification of growth het-
erogeneities, essential for shape differentiation.

Plant growth and morphogenesis | Biophysics | Mathematical modelling

| Emergence | Lateral inhibition

lants grow throughout their lifetime at the level of small

regions containing undifferentiated cells, the meristems,
located at the extremities of their axes. Growth is powered
by osmosis that tends to attract water inside the cells. The
corresponding increase in volume leads to simultaneous tension
in the walls and hydrostatic pressure (so-called turgor pressure)
in the cells. Continuous growth occurs thanks to the yielding
of the walls to these stretching forces [1-3].

This interplay between growth, water fluxes, wall stress
and turgor was first modelled by Lockhart in 1965 [4], in the
context of a single elongating cell. Recent models focused
on how genes regulate growth at more integrated levels [5-9].
To accompany genetic, molecular, and biophysical analyses
of growing tissues, various extensions of Lockhart’s model
to multicellular tissues have been developed. The resulting
models are intrinsically complex as they represent collections
from tens to thousands of cells in 2- or 3-dimensions inter-
acting with each other. To cut down the complexity, several
approaches abstract organ multicellular structures as polygo-
nal networks of 1D visco-elastic springs either in 2D [7, 10-12]
or in 3D [6, 13] submitted to a steady turgor pressure. Other
approaches try to represent more realistically the structure of
the plant walls by 2D deformable wall elements able to respond
locally to turgor pressure by anisotropic growth [8, 14, 15].

Most of these approaches consider turgor as a constant
driving force for growth, explicitely or implicitly assuming
that fluxes occur much faster than wall synthesis. Cells then
regulate the tissue deformations by locally modulating the
material structure of their walls (stiffness and anisotropy)
[6, 16—20]. However, the situation in real plants is more
complex: turgor heterogeneity has been observed at cellular
level [21, 22], which challenges the assumption of very fast

fluxes. As a matter of fact, the relative importance of fluxes or
wall mechanics as limiting factors to growth has fuelled a long
standing debate [3, 23] and is still an open question. Moreover,
from a physical point of view, pressure is a dynamic quantity
that permanently adjusts to both mechanical and hydraulic
constraints, which implies that a consistent representation of
turgor requires to model both wall mechanics and hydraulic
fluxes.

The aim of this article is to explore the potential effect of
coupling mechanical and hydraulic processes on the proper-
ties of the "living material" that corresponds to multicellular
populations of plant cells. To this end, we build a model
that describes in a simple manner wall mechanics and cell
structure, but do not compromise on the inherent complexity
of considering a collection of deformable object hydraulically
and mechanically connected.

The article is organized as follows (see Fig. 1): we first
recall the Lockhart-Ortega model and its main properties.
Then we explore two simple extensions of this model: first
we relax the constraint of uniaxial growth in the case of a
single polygonal cell; then we study how two cells hydraulically
connected interact with each other. Finally we describe our
multicellular and multidimensional model and numerically
explore its properties.

Significance Statement

Plant cells are surrounded by a rigid wall that prevents cell dis-
placements and rearrangements as in animal tissues. There-
fore, plant morphogenesis relies only on cell divisions, shape
changes, and local modulation of growth rate. It has long been
recognized that cell growth relies on the competition between
osmosis that tends to attract water into the cells and wall me-
chanics that resists to it, but this interplay has never been fully
explored in a multicellular model. The goal of this work is to an-
alyze the theoretical consequences of this coupling. We show
that the emergent behavior is rich and complex: among other
findings, pressure and growth rate heterogeneities are pre-
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Apoplasmic fluxes
=» Symplasmic fluxes

Fig. 1. Hierarchy of models presented in this article. Main variables are turgor P and
elastic deformation €. a) Lockhart-Ortega model: uniaxial growth in the = direction
of a cylindrical cell of length [; the section perpendicular to z is a square of side h. b)
two cells extension, both growing along «; ¢) 2D extension of a single cell growth; d)
Multicellular, multidimensional model; left: fluxes, right: mechanical equilibrium; the
stress o is proportionnal to the elastic deformation ¢; E is the elastic modulus.

The Lockhart model

In 1965, Lockhart [4] derived the elongation of a cylindrical
plant cell by coupling osmosis-based fluxes and visco-plastic
wall mechanics. Ortega [24] extended this seminal model to
include the elastics properties of the cell walls. We recall
here the main properties of this model, see Fig. 1a for the
geometrical configuration.

Cell wall elongation. It is expressed as a rheological law [4, 24]:

the total strain rate of the walls € is decomposed into the sum
of a plastic and an elastic strain rate:
1dP
= ¢ (P - P” —— 1
e= " (P- P )ut = il

where the extensibility ¢* (inverse of a viscosity) describes
the ability of the cell to synthesize wall material, and E is an
effective elastic modulus. Here, ¢ and E both depend on cell
wall thickness. The notation (x)+ denotes z if x > 0 and 0
otherwise for any real number z.

Water uptake. Lockhart described water uptake by the cell as
a flux through a semi-permeable membrane characterized by
its surface A and its permeability L*. Assuming the membrane
is perfectly impermeable to solutes, the rate of volume change

is the result of a difference between the water potential ¥ of
the cell and W, of its exterior [25]:
dv
— = AL (Weyr — ), 2
= AL (Ve — V) 2

The cell water potential ¥ = P— results from the antagonistic
effect of the cell hydrostatic pressure P that tends to expel
water from the cell and its osmotic pressure 7 that tends to
attract water inside the cell. In the case of a single solute of
concentration ¢, we have m = RT'c where R is the ideal gas
constant and T' the temperature. Let us denote ¢* = Aéa
which has the same dimension as ¢"'. Assuming that the fluxes
occur mostly on the lateral surface, the ratio A/V is constant

in the configuration of a cylindrical cell. After division by V,
Eq. (2) turns into:

y=¢* (P - P). (3]

where PM = W,,,+m quantifies the power of the osmotic pump:
it is positive if 7 is high enough to overcome the negative water
potential of the exterior of the cell. Growth (¥ > 0) implies
P < PM and hence PM is an upper bound for turgor, above
which the cell would lose water to the exterior. The additional
condition for growth P > PY (see above) requires PM > PY:
growth is possible only when the osmotic pump is able to
overcome the mechanical resistance of the walls.

In order to keep the analysis as simple as possible, we take
here and in the remaining of the article P constant with
time and homogeneous among the cells, which corresponds
for instance to constant m and We,:. This choice will be
commented in the discussion section.

Coupling hydraulics and mechanics for a single cell. Equating
the expressions of strain rate € from Eq. (1) and relative
growth rate 4 from Eq. (3) ensures that the requirements for
water uptake and yield of the cell wall are simultaneously
satisfied. This means that turgor P, that is present in both
equations, has to be adjusted to satisfy both hydraulic and
mechanical constraints. The resolution of the model is detailed
in Supplementary Information (SI), Egs. (S3)-(S4). The time
dependent solutions can be analytically determined and we
find that P and 4 converge towards a stationary solution
(P*,%"): first, P* writes

P*=a"PM 4+ (1-a*)P", [4]
where
at=—2 o [5]
¢+ T

measures the relative importance of ¢ compared to ¢*. In
the limit ¢* < ¢” (a® = 0), any excess of turgor above the
threshold is relaxed by cell wall synthesis and turgor is minimal
at P = PY. Conversely, in the limit ¢ < ¢° (a® =1), the
wall synthesis is not able to relax turgor, which reaches then
its maximal value P = P™. Second, the expression of the
relative growth rate is:

v %Y oM py
7—¢a+¢w(P P, [6]

or equivalently: PM — pY = (q%a + (j%w) 4*. This equation is
the analog of Ohm’s law AU = (R:1 + R2)I with two resistors

Ry =1/¢* and Ry = 1/¢" in series: growth can be limited
by either hydraulic conductivity or wall synthesis.

Link with wall rheology. Wall expansion law (Eq. (1)) can be
equivalently described as a function of wall stress o rather
than cell turgor P: in the cylindrical geometry of the Lockhart-
Ortega model, we find (see SI for the calculations) P = 2%,
where w is the width of the walls and h their height. Thanks
to this relation, Eq. (1) translates into ¢ = £ 92 + & (0 —
")+, where E = JLE (resp. ®* = 22¢") is the intrinsic
elastic modulus (resp. extensibility) of the walls. Let ¢® =
o/FE be the so-called elastic deformation of the walls. It is
dimensionless and can be measured from the image analysis
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of experiments, without the knowledge of the elastic modulus.
The wall rheology is then described as follows:

o de® | pwn e

e= o+ eUBE — ), 7]

where e¥ = 0¥ /E is the threshold elastic deformation. Note
that ﬁ can be interpreted as the characteristic time of wall
synthesis.

Multidimensional and multicellular models

A multicellular extension of the Lockhart-Ortega model
adapted to the study of morphogenesis requires first to relax
the constraint of uniaxial growth and allow multidimensional
geometries, and second is complexified by the possibility of
fluxes between cells. We study separately the effect of each of
these extensions before presenting the complete model.

First extension: Multidimensional growth. In order to keep the
analysis as simple as possible, we study here the expansion
of a single 2D cell whose shape is a regular polygon with n
edges (see Fig. 1c). This model allows to evaluate the effect
of a varying surface/volume ratio compared to the Lockhart-
Ortega model where this ratio is constant. The fluxes are
described in the same way as for Lockhart’s model (Eq. (2))
but wall synthesis is described with Eq. (7), as a function
of elastic deformation instead of turgor. We find (see SI for
detailed calculations) that the relation between cell turgor and
wall stress becomes P = ﬁw/n)a where R is the cell radius.
In contrast with the Lockhart-Ortega model, the ratio P/o is
no more constant as cell grows, and the turgor vanishes at long
times if the stress remains in the order of magnitude of the
threshold. Note also that for a given stress the turgor decreases
with the number of edges n. Therefore, the yield turgor PY
depends both on n and R and is not a well defined parameter.
It suggests also that cells with less neighbours should have a
higher turgor, as experimentally observed in [21, 22].

The prediction of growth rate requires a numerical reso-
lution of the model (see SI). The parameters are chosen to
ensure a turgor of the order of 0.5 MPa and a relative growth
rate of the order of 2% per hour, using the predictions Eq. (4)
and Eq. (6). First let’s examine the case of a cell of initial
radius R = 10pm for which wall synthesis is the limiting factor
to growth (case a® = 0.9 in SI, fig. S2). We find that it results
initially in an accelerating growth (the bigger the cell, the
faster the growth), much faster than predicted by the Lock-
hart model, during which the elastic deformation of the walls
can reach values up to 20%. The ratio area/surface = 1/R
decreases with growth and there is less and less water available
compared to the volume; as a consequence, the relative growth
rate vanishes at long times after this initial accelerating phase.

In the case where the fluxes are already limiting in the initial
state (case a® = 0.1 in SI, Fig. S2), the initial behaviour is
closer to the predictions of the Lockhart model but the relative
growth rate still vanishes at long times.

Altogether, these results show that a non constant sur-
face/volume ratio deeply modifies the behavior of the model
compared to the Lockhart model. In particular, flux and wall
synthesis as limiting factors fro growth are no more equivalent.

Second extension: Multicellular growth. Then, we study a sim-
ple multicellular extension of the Lockhart-Ortega model where

Cheddadi et al.

two cylindrical cells ¢ = 0, 1 are in contact through one of their
wall (see Fig. 1b). The cells can absorb water from their lateral
surface and in the meantime exchange water with each other
through their common wall. We look for stationary solutions:

dpP; _ 1.dv; _
4 = 0 and v ar = Cst.

We set for both cells a common value of PM, L% and
#™, while the value of the yield turgors P} can differ; this
corresponds for instance to a heterogeneity of wall elastic
modulus or yield deformation. For the sake of convenience, we
refer to fluxes between cells as symplasmic fluxes, characterized
by a water conductivity L®, and to fluxes from the water source
as apoplasmic fluxes, characterized by a water conductivity
L% Assuming that the symplasmic fluxes occur through
plasmodesmata that are permeable to both water and solutes,
the flux equation writes

dV;
dt

where 7 = 1 — ¢, and Ao is the surface of the common wall
of cells 0 and 1. We introduce the number ¢° = 240, L°/V;
which has the same dimension as ¢ and ¢*. In order to allow
an analytical resolution of this set of equations, we assume ¢*
to be constant with time, and consider it in this section as a
parameter of the model. Thus, we have

= A LE(PM — P) + A L° (P — P,),

ji= 6" (P - P) + S, - P). 8
‘We introduce the dimensionless number
s ¢°
a=————¢€10,1
e

which represents the relative importance of symplastic fluxes
with respect to apoplastic ones. We combine this flux equation
with the growth equation Eq. (1) and find analytical solutions
for any values of the parameters (see SI). We use here the
following set of control parameters:

M Y .x a s
P 7Pi y Y0, &y

and fix the value 45 = 2% - h™'; this way, the parameters
space to explore is reduced to (P™, PY a®, o). When o* = 0,
the cells are completely isolated one from another and reach
turgors P and growth rates ;" as predicted by the Lockhart
model (Eq. (4) and Eq. (6)). In particular, the condition
PM > PY ensures that each cell is growing. When a® > 0,
the fluxes between cells modify this behaviour. We restrict
to the case P < P} < PM, which corresponds to less
mechanical constraints on cell 0 than cell 1; therefore we can
expect P > Py and 41 < 0. The calculations show a complex
non linear behaviour that is illustrated in Fig. 2, in which
the parameters subspace (a®, a®) is explored for given values
of P and PM (detailed calculations are provided in SI). Let
APY = P — P{ > 0 be the difference of the two yield turgors
and P¥ = 0.5(Py + P) their average; we also introduce the
dimensionless number

APY

2PV — YY)’ (9]

p =

Note that the hypothesis P} < P < P™ is equivalent to
p €]0,1[.

We find that the subspace (a®, a’®) can be divided in two

main regions separated by the curve o’ = ll_fapn, (see Fig. 2a):
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1—p
T—ad>

(%% > 0, 41 = 0, and equivalently Py > Py, Pi < P{). Hence,
the growth of cell 1 is inhibited by fluxes with cell 0. Conversely,
in the region o’ < 11:Q"a both cells are growing (4; > 0 and
equivalently P; > PY). The size of the region a® > ll_fapa
increases with p and fills the whole square [0, 1] x [0, 1] when
p — 1; such values can be reached when APY is large and /
or PM is close to PY.

More quantitatively, Figs. 2d-e) show that 41 is always
below 47, while 7o is always above 4§ and can reach up to
twice this value. Furthermore, maximal values of 4o coincide
with minimal values of 41: this confirms quantitatively that
the growth of the cell with less favorable mechanical condition
is slowed down if not inhibited by the growth of its neighbour.
This shows also that the growth rate heterogeneity is amplified
by fluxes.

Turgor heterogeneity is also affected by fluxes (see Figs. 2b-
c¢): when «° is close to zero, the cells are hydraulically isolated
and their turgors vary with a® as predicted by Lockhart model
(Eq. (4)), this is where the turgor heterogeneity is maximal.
Conversely, when o’ is close to 1, there is no hydraulic re-
sistance between the two cells and the two turgors are equal.
Between these two limits, Py is only slightly affected and re-
mains in the [POY , pM | interval; conversely, P; is dramatically
affected as it shifts from the interval [Py, P*] when o® = 0 to
the interval [Py , PM] when o = 1. Therefore, as Py < Py,
there is a region where P; < PY which corresponds to the
region o’ > 11_;&'“&, where cell 1 is not growing.

Finally, we have seen that intercellular fluxes tend to in-
crease (resp. decrease) growth rate (resp. turgor) hetero-
geneities; the cell with less mechanical constraints takes con-
trol over the other one and imposes its turgor, which can lead
the other one to stop growing. The growing cell then benefits
from the water resources of the other cell and its growth is all
the more increased.

surprisingly, in the region a*® > only cell 0 is growing

Generalization: a multidimensional and multicellular model
of growth. We consider (see Fig. 1d) a collection of N cells
that form a (non necessarily regular) 2D mesh with a fixed
topology (distribution of neighbours) as is the case with plant
tissues when no division occurs.

The cell walls rheology is described by the visco-elasto-
plastic law (Eq. (7)) of the Ortega model and the fluxes toward

a cell 7 are described as in the simple multicellular model
presented above:
Vi _ pep™ - p ALY (P — P,
5 = ALIPY - P+ 2(:) Li (P = P), (10
jen(i

where n(7) is the set of neighbours of cell i, A;; is the area
of the common wall with cell j, Lj; its permeability (it is
symmetric: L;j; = L};), and Li is the permeability of the
lateral walls to the supply of water.

The last missing part to obtain a closed set of equation is
the mechanical equilibrium, that allows to link cells turgors,
walls tensions, and geometry. Contrary to the cases studied
above, no explicit expression of turgors as a function of stresses
can be obtained and the equilibrium has to be solved at each
time step. Let P; be the turgor pressure in each cell . The
tissue being at every moment in a quasi-static equilibrium,
pressure forces on wall edges and elastic forces within walls

balance exactly at each vertex v:
1 e
5 Z AP Sipne + Z Ekakskek,v = O, [11}

ke f(v) ke f(v)

where f(v) is the set of faces adjacent to junction wv,
AgP = Py, — Py, is the pressure jump across face k, with
k1 < k2 being indices of the cells across face k, S, = hlj is
the area of the face k on which pressure is exerted, ny is the
normal vector to face k, oriented from cell k1 to cell k2, and
sk = hw is the cross-section area of the face, on which the
elastic stress is exerted; finally, eg,, is the unit vector in the
direction of face k, oriented from junction v to the other end
of face k.

Coupling mechanical and hydraulic models. In the Lockhart-
Ortega model, the compatibility between wall enlargement
and cell volume variation is automatically enforced through
the geometrical constraint of uni-directional growth that leads
to the identity between the relative growth rate of the cell and
the strain rate of the walls. In contrast, in the multicellular
model, this identity is no longer true. One has to solve the
closed set of equations Eq. (7)-Eq. (10)-Eq. (11) with respect
to the unknowns X, P, and &°.

Despite its apparent simplicity, the problem to be solved
is not straightforward as water fluxes induce potentially long
range interactions. In this respect, it differs from most vertex-
based models (e.g [11, 26]) where turgor is an input of the
model. The numerical resolution required the development
of an original algorithm (see SI) implemented in an in-house
code.

Numerical experiments: growth of primordia in the shoot api-
cal meristem (SAM). The properties of this model cannot be
as thoroughly studied as those of the simpler models presented
above, first because of the numerical cost of the resolution,
but above all because it allows an infinite variety of geometries
and spatial distribution of its parameters. We present here a
numerical experiment that illustrates on the one hand how the
properties of the simple multidimensional and multicellular
submodels are combined in the generalized model; in turn the
study of these models helps us to anticipate the properties
of the generalized model. And on the other hand, we show
that this model is readily applicable to the study of systems
of biological interest.

Growth heterogeneities can be triggered by the local mod-
ulation of the mechanical properties of the cell walls [27]. In
SAMs, new organs are initiated by a local increase in growth
rate that leads to the appearance of small bumps. Measure-
ments show that physico-chemical properties of walls are mod-
ified so that mechanical anisotropy and elastic modulus are
decreased. In our 2D model, we can explore what effect a
local softening of the walls has on growth rate and turgor
heterogeneities; based on our previous analysis of the model
in simple configurations, we expect that the growth hetero-
geneities will be maximal for parameters such that the growth
is restricted by fluxes rather than wall synthesis (low a%),
cell-cell conductivity is large, and the walls deformations are
just above the growth threshold, which can be enforced by a
low value of the osmotic pressure (yet large enough to ensure
growth). The set of parameters (REF) is chosen according
to these criteria; then we explore the effect of a higher a®
((ALPHA+) set) and lower cell-cell conductivity ((CC-) set)
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that should both decrease the growth heterogeneities, and also
test the effect of a lower osmotic pressure ((PM-) set) that
should conversely increase the growth heterogeneity. See table
1 in SI for the values of the parameters corresponding to these
sets and SI for more precise explanations.

We build a mesh made primarily of hexagons (see Fig. 3a)
and first let it grow with homogeneous parameters until the
elastic regime ends and plastic growth occurs. Then we di-
vide by two the elastic modulus of a small group of cells
(marked with a white star in Fig. 3a) that will be referred to
as “bump cells” thereafter. All the details of the computations
are presented in SI. First, Fig. 3b shows that the multicellular
system grows globally in the same way as the single hexagonal
cell studied above; it diverges from the Lockhart predictions
because the ratio A/V of the cells is not constant: the (AL-
PHA+) simulations exhibit a very large initial growth rate
that decreases only when the cells are so large that water
fluxes become limiting. The (PM-) set leads to a roughly
twice lower growth rate than (REF). The set (CC-) leads to
the same dynamics at the tissue level as (REF), because the
total influx of water is not affected by fluxes between cells in
this setup.

Then we turn to the observation of heterogeneities: we focus
on the differences between the bump region and the rest of the
tissue. For all the parameters sets, Fig. 3c shows that turgor
is in general lower in bump cells, but the gap varies depending
on the parameters, as it has been predicted by the study of
the two-cells model: compared to (REF), the heterogeneity
in turgor is increased by a lower cell-cell conductivity (set
CC-), and decreased by a larger value of a® (set ALPHA+).
Decreasing the value of P (set PM-) does not alter much
the turgor heterogeneity compared to (REF). The maps of
turgor (Figs. 3e,g,i,k) confirm visually these observations.

Fig. 3d shows the time evolution of /4™ where 4" is the
relative growth rate predicted by the Lockhart model (see
Eq. (6)); its value is 2% h™" for (REF), (CC-) and (ALPHA+),
and 0.5% h™! for (PM-). In the considered time frame, the
relative growth rate of bump cells is always higher except for
(ALPHA+): after an initial fast increase where bump cells
grow faster, the tendency is inversed at ¢ ~ 20h because the
bump cells have grown so much that fluxes become limiting. In
the (REF) simulation, while the growth rate of non bump cells
is almost constant and close to 4*, the growth rate of the bump
cells is up to 6 times 4™ at the beginning of the simulation and
progressively decreases toward 4*. As a result of this large
discrepancy, the bump region can be clearly distinguished from
the rest of the tissue (Figs. 3e-f). In (CC-), the growth rate of
the non bump cells is close to that of (REF), but the growth
rate of the bump cells is much lower (Fig. 3d). As a result,
the global shape remains convex and the bump is not clearly
detached from the rest of the tissue (Figs. 3i-j). Note that
(CC-) corresponds to a lower value of a® compared to (REF),
which corresponded to a lower growth heterogeneity with the
two-cells model studied above; this is also confirmed by the
lower cell-cell fluxes towards the bump cells for (CC-), see
the arrows in Figs. 3e,i. The (ALPHA+) simulation exhibits
also a convex shape (Fig. 3k-1); it corresponds to a larger
value of o than (REF), and similarly to the two-cells model
studied above, the growth rate heterogeneity is lower than
(REF). Finally, the set (PM-) corresponds to an increase of
the dimensionless parameter p (see Eq. (9)), and accordingly
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to an increase in growth rate heterogeneity as can be seen
with Fig. 3d. Consequently, the bump region can clearly
distinguished from the rest of the tissue, even better than
(REF) (Fig. 3g-h); moreover, the growth of the cells close to
the bump seems to be inhibited by fluxes as explained in the
two-cells model described above and further explored below.

Flux-based lateral inhibition predicted by the model. As we saw,
cells that benefit from better mechanical conditions for growth
(in the present case a lower elastic modulus) have a lower turgor
than the other cells, and therefore attract water from them.
Not only does it amplify their growth but it also inhibits
the growth of their neighbours. Such a lateral inhibition
mechanism is important for morphogenesis, as it allows very
large growth rate heterogeneities and the appearance of well
differentiated shapes (in the present case the appearance of a
bump on the surface of the meristem). The efficiency of this
mechanism varies depending on the position in the parameters
space: for instance it is increased if the cell-cell conductivity
L*® (or equivalently «®) is increased (see Fig. 4a-d); even
the whole tissue can be inhibited. Inhibited cells can also
relax the tension of their walls and decrease their volume (see
Fig. 4a). To further explore and quantify the spatial range of
this inhibition process, we extended our two-cells model (see
SI for detailed equations) to a chain of 2N + 1 cells where
the central cell has twice softer walls. We numerically solved
the corresponding system of differential equations for the set
(REF) and then for a large range of values of L°. Fig. 4e shows
that the number 2N; of inhibited cells scales with \/F . We
computed the prefactor ¢ (such that N; =~ ¢V L#®) for values
of (a®, PM) € [0.05,0.35] x [0.51,0.85] (the interval for P* is
in MPa) and plotted its value in the (a®, PM) space (Fig. 4f).
This shows that the inhibition is favored by low values of a®
and PM — PY.

Discussion

A minimal model with a complex and rich behavior. The model
proposed in this article is a minimal multicellular and multidi-
mensional extension of the Lockhart 1-D single cell model; it
can be regarded as a conceptual tool to study the interplay
between fluxes and wall mechanics in a multicellular tissue.
Wall expansion is modeled with a visco-elasto-plastic rheolog-
ical law, while fluxes derive from water potential gradients.
These two contributions are integrated into the mechanical
equilibrium and interact through the pressure term. Contrary
to most previous approaches, turgor is not an input of the
model but a variable that adjusts simultaneously to mechani-
cal, hydraulic, and geometrical constraints. First of all, this
leads to a physically consistent representation of turgor: for
instance, the model predicts that cells with softer walls have
a lower turgor. Moreover, this has deep implications at tissue
level: in the previous example, lower turgor is associated with
a faster growth which can be itself amplified by fluxes that
follow decreasing pressure gradients.

Thanks to the simplicity of the model, the predicted behav-
ior can be analyzed and interpreted with two submodels built
from the Lockhart model: first, a 1-D multicellular submodel
was build with two or more side-by-side cells; it was used to
study the growth of competing cells with heterogeneous prop-
erties. Key ingredients here are the wall synthesis threshold,
the fact that fluxes and growth can relax turgor, and cell to
cell fluxes that allow long range interactions. Second, in a
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1-D system, cells are considered essentially as cylinders and
their surface-to-volume ratio is constant. We thus extended
also the Lockhart model in two dimensions, where cells have
more degree of freedom to change their shape. In particular
their allometric surface-to-volume ratio may then vary. This
new possibility induces additional complexity in the tissue
development as the rate of growth of cell surfaces may become
a limiting factor for growing cells.

A potentially new type of lateral inhibition mechanism. Depend-
ing on mechanical and hydraulic parameters of tissue regions,
the model exhibits different growth regimes corresponding to
either uniform or differential growth. One unexpected conse-
quence of such an hydraulic-mechanical coupling at the tissue
level is the observation that in certain regions of the parameter
space where cell-to-cell hydraulic exchanges are non-limiting,
growing tissue may exert an inhibiting influence on the growth
of neighboring regions. This may be interpreted as a lateral
inhibition mechanism. It has for long been recognized that
lateral inhibitory mechanisms play a key role in setting some
morphogenetic patterns in procaryotes (e.g. [28]), animals (e.g.
[29, 30]) or plants (e.G. [31, 32]). Lateral inhibition operates
in these systems via chemical signals, such as delta-notch in
animals or auxin in plants. Our model predicts the existence
of a novel type of lateral inhibition mechanism based on the
coupling between mechanics and water fluxes. Previous obser-
vations of tissue growth suggest that such a phenomenon may
occur in real tissues. In the shoot apical meristem for instance,
detailed quantification of growth with cellular resolution indi-
cates that the region surrounding primordia growth may have
a negative growth rate [33], Figs. 2G and 3K. According to
our model, this decrease of volume in boundary regions might
be due to the primordium growth attracting locally most of
the water supply and depriving lateral regions from water, and
thus conforts the hypothesis of a new hydraulic-mechanical
component of primordium lateral inhibition, beyond already
identified auxin and cytokinin signals [34].

Model simplifications and further potential extensions.  Through-
out the development of the model, we made several key choices
concerning the abstraction of a multicellular plant tissue. First,
our model was developed in 2-D for reasons of computational
efficiency. In principle, it can be extended in 3-D, though at
the expense of more complex formalism and implementation.
Second, the current model considers that water transport is
performed in the plant tissue through two conceptually differ-
ent pathways ([1]). Water can first move within the apoplastic
compartment between the cells and finally enter a cell. Water
can also move locally from cell to cell. This movement includes
itself conceptually both symplasmic movements (water circu-
lates between cells through plasmodesmata without crossing
membranes) and movements from cell to cell with intermedi-
ate steps in the wall (water is for example exported locally
out of the cell by water transporters like aquaporins into the
wall and immediately re-imported by water transporters into
neighboring cells). For sake of simplicity in this first analysis,
we represented the apoplasm as a single abstract compartment
able to exchange water with every cell. To analyze precisely
the effect of water transporters and their genetic regulation or
to assess the impact of wall resistance to water movement in
the processes, explicit spatial representation of the apoplasm,
of plasmodesmata and of membrane water transporters could
be integrated into the model in the future.

Finally, we considered a simplified situation here by impos-
ing constant cell osmolarity. Allowing osmolarity variations
(for instance higher values in faster growing regions) may
impact turgor distribution (e.g [35]). However, this should
not affect the ability of the system to build up growth het-
erogeneities. Similarly, we further simplified our model by
keeping constant the apoplastic water potential. Relaxing
this hypothesis would increase cell-cell water fluxes (via the
apoplasm) and could also shift the model in the direction of
the flux-limiting regime. This would therefore favor regimes
where growth heterogeneities are amplified by fluxes.
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Fig. 4. Evidence of lateral inhibition: left: a) time evolution of the volume of two cells on the boundary of the bump (marked with a green dot on the maps b, ¢, d) with the sets
of parameters (REF), (PM-), (PM-) with o® = 0.95, (PM-) with o® = 0.99. V}, is the volume of the cells at ¢ = 0. b,c,d) maps of relative growth rate at ¢ = 33h for (PM-),
t = 20h for (PM-) and a® = 0.95, t = 10h for (PM-) and a® = 0.99. e-f) Results for a chain of 2V + 1 cells with N = 50, where the central cell has twice softer walls; e)
number N; of cells that are inhibited on each side of the central cell, for different values of L*; the line is a fit with a square root function, in the form c¢v/L=. f) Values of the
prefactor ¢ in the space (a®, PM).

10

Cheddadi etal.

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240


http://dx.doi.org/10.1101/511717
http://creativecommons.org/licenses/by-nc-nd/4.0/

	ACKNOWLEDGMENTS

