Composition and quality of artisanal red palm oils in cameroon in link with production factors
Germain Kansci, Doris Nanda, Sylvain Rafflegeau, Pierre Villeneuve, Lucie Ribourg, Nathalie Barouh, Claude Genot

To cite this version:

HAL Id: hal-02788253
https://hal.inrae.fr/hal-02788253
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction: Cameroon, amongst African countries of the Guinean gulf, is a traditional producer and eater of both artisanal and industrial crude palm oil (CPO) [1]. Nowadays oils and fats consumption per capita is regularly increasing in these countries. In parallel, health problems associated to obesity, type 2 diabetes and vitamin A deficiency are alarming [2]. The production of oil palm Volcal CPO sold on the informal market out of any quality control, is rising due to the development of small-scale mills in the southern Cameroon. In such a context, it seemed necessary to assess the chemical and physical quality of artisanal CPO and to relate the recorded quality differences to producing conditions.

Material

Ripe bunches of oil palms (Elaeis guineensis)

Artisanal Crude Palm Oil

Oils samples

32 artisanal producers from 4 different production regions were interviewed, and 32 samples collected. One oil sample was also collected from a local industrial as a reference.

Results 1. Identification of CPO samples and processes

Table: planting material and extraction processes.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Planting material</th>
<th>Press type</th>
<th>Method of storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selected tenera type (Pamel, IRAD)</td>
<td>Manual Cutteh (a)</td>
<td>Bunchnuts sheared open air, shed and bags</td>
</tr>
<tr>
<td></td>
<td>Unselected open pollinated progenies</td>
<td>Hydraulic cage press (c)</td>
<td>open air, shed and bags</td>
</tr>
<tr>
<td></td>
<td>Unselected dura type</td>
<td>Motorized water extractor (d)</td>
<td>Bags and bags in the rain</td>
</tr>
</tbody>
</table>

The storage time between harvesting and treatment of palm fruit ranged from 2 to 14 days depending their availability or demand on the market.

Results 2. Effect of production processes on:

a. Carotene content

- The Western region had the highest carotene content; this is due to the presence of unselected dura type planting material.
- ANCOVA: 69% of the variability of these data are explained by time and method of storage of bunches/fruit before oil extraction. Each day of storage significantly reduced by 14 points carotene content.

b. Free fatty acid (FFA) content

- Peroxide value: 0 - 8,62 meq. O₂/kg oil ; MDA : 0 - 11 nmol/g oil. According to Codex Alimentarius [6], the artisanal palm oils were not oxidized.

Conclusions: In agreement with previous studies [3, 7] artisanal CPOs produced in Cameroon present FFA contents superior to current edible oil standards. This is related to the time and method of storage of bunches or fruit before oil extraction. These oils are also characterized by high variations in carotene content linked to the type of planting material and length of storage between harvest and oil extraction. The role played by FFA in typicality of artisanal CPOs and functional role in the achievement of local dishes should be explored.


*Contact: doris.nanda@yahoo.fr

Department of Biochemistry, Faculty of Science
University of Yaoundé I BP: 812 Yaoundé - Cameroon

Acknowledgements: Service de Coopération et d’Action Culturelle de l’Ambassade de France au Cameroun for providing travel allowance (DN) and financial support. from INRA - CIRAD Interprogramme GloFoodS for Qualipalm project