

HNI9 and HY5 maintain ROS homeostasis under high nitrogen provision in *Arabidopsis*

Fanny Bellegarde, Amel Maghiaoui, Jossia Boucherez, Gabriel Krouk,
Laurence Lejay, Lien Bach, Alain Gojon, Antoine Martin

► To cite this version:

Fanny Bellegarde, Amel Maghiaoui, Jossia Boucherez, Gabriel Krouk, Laurence Lejay, et al.. HNI9 and HY5 maintain ROS homeostasis under high nitrogen provision in *Arabidopsis*. 2018. hal-02788343

HAL Id: hal-02788343

<https://hal.inrae.fr/hal-02788343v1>

Preprint submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Short title:

Transcriptional control of ROS homeostasis under high N

Article title:

HNI9 and HY5 maintain ROS homeostasis under high nitrogen provision in Arabidopsis.

Fanny Bellegarde¹, Amel Maghiaoui¹, Jossia Boucherez¹, Gabriel Krouk¹, Laurence Lejay¹,
Liên Bach¹, Alain Gojon¹, Antoine Martin^{1*}

¹ BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France.

*Corresponding author
Email: antoine.martin@supagro.fr

One sentence summary

Excessive N nutrition leads to ROS accumulation, and requires the function of major transcriptional regulators to maintain plants under physiological conditions.

Author contributions:

An.M. and A.G. conceived research plans and supervised the experiments; F.B, Am.M., J.B., L.L., L.B. and An.M performed most of the experiments; F.B, Am.M., J.B., G.K., L.L., L.B. and An.M analyzed the data; An.M. wrote the article with contributions of all the authors.

1 **Summary**

2 Reactive Oxygen Species (ROS) can accumulate in cells at excessive levels, leading to
3 unbalanced redox status and to a potential oxidative stress, which can have damaging effects to
4 the molecular components of plant cells. Several environmental conditions have been described
5 as causing an elevation of ROS production in plants. Consequently, this requires the expression
6 of detoxification responses in order to maintain ROS homeostasis at physiological levels. In
7 case of mis-regulation of the detoxification systems, oxidative stress can lead ultimately to
8 growth retardation and developmental defects. Here, we demonstrate that *Arabidopsis* plants
9 growing under high nitrogen environment have to express a set of genes involved in
10 detoxification of ROS in order to maintain ROS at physiological levels. We show that the
11 chromatin factor HNI9 is an important actor of this response, required for the expression of
12 these detoxification genes. Mutation in HNI9 leads to elevated ROS levels, and to ROS-
13 dependent phenotypic defects under high but not low N provision. In addition, we identify HY5
14 as one of the major transcription factors also required for the expression of this detoxification
15 program under high N condition. Our results demonstrate the requirement of a balance between
16 N nutrition and ROS production, and identified the first major regulators required to control
17 ROS homeostasis under excessive N nutrition.

18

19 **Introduction**

20 Reactive Oxygen Species (ROS) are integral part of plant metabolism, generated as by-products
21 of a large range of enzymatic reactions. The dynamics of ROS in plant cells corresponds to two
22 distinct scenarios. First, ROS are involved in numerous signaling pathways, and thus their
23 dynamic affects a lot of developmental and physiological processes, like cell differentiation or
24 response to biotic and abiotic stresses (Noctor et al., 2018). In such cases, variations in ROS
25 are generally dynamic and transient, and occur at moderate concentration. However, on another
26 hand, ROS can also accumulate in cells at excessive and constant levels, leading to unbalanced
27 redox status and to potential oxidative stress (Schieber and Chandel, 2014). At the cellular level,
28 excessive accumulation of ROS can lead to oxidation and to damage of many essential
29 molecules (Moller et al., 2007). For instance, oxidation of enzymatic proteins often leads to
30 loss of activity, oxidation of DNA can lead to degradation or mutations, and oxidation of lipids
31 leads to disorganization of cellular membranes. The maintenance of ROS homeostasis is
32 therefore essential to keep cell integrity. ROS levels are also associated with a range of
33 physiological and developmental phenotypes. For instance, functioning of the shoot apical
34 meristem is largely influenced by the redox status (Schippers et al., 2016), and many
35 developmental processes imply interactions between ROS and phytohormones (Considine and
36 Foyer, 2014). Several reports have also demonstrated a role for ROS in root growth and
37 development (Tsukagoshi, 2016). As a consequence, mutations leading to excessive ROS
38 production or exogenous application of ROS at high concentration lead to retardation of root
39 growth in *Arabidopsis* (Dunand et al., 2007; Tsukagoshi et al., 2010; Zhao et al., 2016).
40 Altogether, these observations highlight that controlling the level of ROS is crucial for plant
41 growth, development and physiology.
42 Given the importance of ROS homeostasis, plants possess a large range of mechanisms that are
43 able to remove ROS from the cells. A main part of this antioxidant response corresponds to

44 enzymes, such as peroxidases, that use reducing power in oxidation/reduction reactions to
45 decrease the cell redox status (Moller et al., 2007). These enzymes work in complex systems
46 also involving essential antioxidant molecules, like ascorbic acid, glutathione or thiamin, that
47 are known to protect against oxidative stress (Tunc-Ozdemir et al., 2009; Ramírez et al., 2013).
48 At the molecular level, transcriptional induction of ROS-sensitive genes in plants constitutes a
49 major part of the response to ROS overproduction (Willems et al., 2016). However, in
50 agreement with the high number of genes coding for components of antioxidant responses in
51 *Arabidopsis*, a specificity of response seems to occur in function of the signals at the origin of
52 ROS production. Indeed, signaling pathways and genes involved in ROS homeostasis in
53 response to stress largely vary according to the type of stress encountered by the plant (Apel
54 and Hirt, 2004). However, many of the actors that drive each transcriptional response and its
55 specificity remain to be identified.

56 ROS production has been observed in plants in response to many environmental factors, with
57 both biotic interactions and abiotic stress often leading to ROS signaling (Baxter et al., 2014).
58 Concerning abiotic constraints, drought, salinity or heat stress are known to induce the
59 production of ROS (Choudhury et al., 2017). However, these responses correspond to cases
60 where ROS contribute to a signaling pathways, but do not accumulate and generate oxidative
61 stress. In opposition, several examples of abiotic stress have been directly linked to an elevation
62 of ROS, which is eventually perceived as a perturbation of the plant redox balance. This is the
63 case for nutrients deprivation, where potassium, nitrogen (N) or phosphorus starvation rapidly
64 leads to an accumulation of H₂O₂ in the roots (Shin and Schachtman, 2004; Shin et al., 2005).
65 This suggest that the redox status of plants can be very sensitive to changes in the nutritional
66 environment.

67 Previously, the chromatin factor HNI9 has been shown to be involved in the response to high
68 N provision in *Arabidopsis*. Mutations in *HNI9* leads to an increase in transcripts level

69 corresponding to the nitrate transporter *NRT2.1* under high N provision, where this gene is
70 normally strongly downregulated (Widiez et al., 2011). However, the direct relationship
71 between HNI9 and *NRT2.1* has not been demonstrated. Furthermore, several reports in plants,
72 animals and yeast demonstrated that HNI9 is a positive regulator of gene expression (Yoh et
73 al., 2008; Li et al., 2010; Chen et al., 2012; Wang et al., 2013; Wang et al., 2014), which is not
74 consistent with the hypothesis of a direct role of HNI9 on *NRT2.1* downregulation. Here, we
75 reexamined the function of HNI9 in the response of plants to high N provision, and we show
76 an unexpected role of HNI9 in the regulation of ROS homeostasis under high N provision,
77 through the induction of a subset of genes involved in detoxification. We also identify the
78 transcription factor HY5 as an important component of this response, and highlight a new
79 interaction between plant nutrition and ROS homeostasis.

80

81 **Results**

82 **HNI9 is required to upregulate the expression of a set of genes involved in redox processes 83 in response to high N provision.**

84 In order to reexamine the role of HNI9 in the response to high N provision, we compared
85 transcriptomic data of WT and *hni9-1* mutant plants under low nitrate and high N provisions
86 (Widiez et al., 2011). As HNI9 is a positive regulator of gene expression, we selected genes
87 that are induced by high N provision in WT, and looked for those that do not display such
88 induction in the *hni9-1* mutant line. Using these criteria, we obtained a list of 108 genes induced
89 under high N condition in a HNI9-dependent manner (Table S1). In order to determine which
90 biological functions are affected by the HNI9 mutation under high N provision, we performed
91 a gene ontology analysis using this list of 108 genes. Among the biological functions
92 overrepresented, we found that several categories related to redox processes, including
93 oxidoreductase activity, peroxidase activity, or antioxidant activity, were the most significantly

94 represented (Figure 1, Table 1). In addition, using further manual curation, we observed that
95 many other genes present in other GO categories might also encode for enzymes or proteins
96 associated with ROS detoxification or with antioxidant biosynthesis pathways (Table S1).
97 Therefore, we hypothesized that high N provision could challenge ROS homeostasis in plants,
98 and that HNI9 could be required in order to induce a set of genes involved in cellular
99 detoxification.

100

101 **HNI9 mutation leads to higher ROS levels and to ROS-dependent phenotypes under high
102 N provision.**

103 In order to assess the role of HNI9 in ROS homeostasis under high N provision, we measured
104 H₂O₂ and total ROS levels in WT and *hni9-1* mutant lines under low nitrate and high N
105 provisions. In WT line, H₂O₂ levels remained constant whatever N provision, whereas total
106 ROS levels slightly increase under high N provision, yet not significantly, showing that ROS
107 homeostasis is maintained from low to high N provision (Figure 2A, B). In contrast, ROS
108 accumulation displayed significant changes in the *hni9-1* mutant line. The levels of H₂O₂ and
109 total ROS in the *hni9-1* mutant line were identical to that of WT under low N provision, but
110 they increased significantly under high N provision (Figure 2A, B). To confirm these results,
111 we used an Arabidopsis line expressing the *GRX1-roGFP2* construct (hereafter mentioned as
112 *roGFP2*), in order to visualize ROS levels *in planta*. RoGFP2 is a redox-sensitive probe, which
113 allows to monitor plant redox status and in particular to address H₂O₂ levels *in vivo* (Meyer et
114 al., 2007; Marty et al., 2009). In WT plants under high N provision, fluorescence signal of
115 roGFP2 was very low, in agreement with our measurements of H₂O₂ and ROS levels (Figure
116 2C). In contrast, fluorescence signal of roGFP2 in *hni9-1* plants was strong, corresponding to
117 the elevation of H₂O₂ and ROS levels measured in this line (Figure 2D). Quantification of
118 roGFP2 signals in each lines validates a strongly significant increase in ROS levels in *hni9-1*

119 mutant line as compared to the WT (Figure S1). Altogether, these results led us to conclude that
120 HNI9 contributes to prevent ROS overaccumulation under high N supply, likely through the
121 induction of a set of genes required to detoxify ROS produced under high N condition.
122 We next looked whether upregulation of *NRT2.1* expression under high N supply, which is a
123 main phenotype described for the *hni9-1* mutant line, could be linked with ROS
124 overaccumulation in this mutant. Therefore, we investigated the expression of *NRT2.1* under
125 two conditions associated with elevated ROS levels. First, we measured *NRT2.1* transcript
126 levels in WT plants treated with menadione, a redox-active quinone which causes an elevation
127 of ROS in plant roots (Lehmann et al., 2009). Our results showed that this treatment indeed
128 results in an increase in *NRT2.1* transcript levels (Figure 3A). Then we measured *NRT2.1*
129 transcript levels in the ascorbate-deficient mutant *vtc2*, which is affected in ROS detoxification
130 processes and displays significantly higher H₂O₂ levels than in WT plants (Kotchoni et al.,
131 2009). In comparison to WT, *NRT2.1* transcripts levels were significantly higher in the *vtc2*
132 mutant line, as we observed for the *hni9-1* mutant (Figure 3B). These observations suggest that
133 *NRT2.1* is induced by ROS, and thus lend support to the hypothesis that the previously reported
134 *hni9-1* phenotype under high N condition may be due to elevation of ROS levels in this mutant.
135 Conversely, we investigated whether well-known phenotypes associated with ROS
136 overaccumulation were also observed in *hni9-1* plants under high N supply. In particular,
137 elevated ROS levels have been shown to alter root growth, and thus plants growing under
138 elevated ROS levels display a reduced primary root length (Dunand et al., 2007; Tsukagoshi et
139 al., 2010). Therefore, we asked whether elevated ROS levels in *hni9-1* mutant line under high
140 N provision are correlated with an alteration of root growth. We used the *vtc2* mutant line,
141 affected in ROS detoxification processes, as a positive control to confirm that elevated ROS
142 levels lead to a reduction of root growth under our experimental conditions. Indeed, the *vtc2*
143 mutant line showed a reduction of primary root length as compared to the WT, regardless of

144 the level of N provision; however, the reduction of root growth was significantly higher under
145 high N than under low N (Figure 4). The *hni9-1* mutant line also displays a reduction of root
146 growth in comparison to the WT (Figure 4), which is consistent with the general role of HNI9
147 on plant growth and development that has been previously described (Li et al., 2010). However,
148 the reduction of root growth was also significantly higher under high N condition than under
149 low N condition (Figure 4). Again, this suggests that phenotypic changes due to HNI9 mutation
150 under high N supply may be explained by ROS overaccumulation. Finally, we tested whether
151 external application of antioxidant molecule could complement the *hni9-1* root growth
152 phenotype. We therefore measured root growth of WT and *hni9-1* lines under high N
153 conditions, supplemented or not with thiamin, an antioxidant known to mitigate growth
154 retardation caused by oxidative stress (Tunc-Ozdemir et al., 2009). Indeed, we observed that
155 primary root growth defect of *hni9-1* was fully abolished in the presence of thiamin (Figure 5).
156 This demonstrates that the presence of antioxidant can complement *hni9-1* root growth
157 phenotype, further indicating that HNI9 affects root development under high N supply
158 specifically through altered ROS homeostasis.

159 **HNI9 is required to achieve full levels of H3K4me3 at the locus of detoxification genes.**

160 HNI9 is part of a large protein complex, including elongation and chromatin remodeling factors,
161 which affects the histone modification state of genes (Yoh et al., 2008; Li et al., 2010). Indeed,
162 several reports in plants and animals demonstrated that HNI9 operates at the switch between
163 transcriptional repression and activation, in cooperation with H3K27me3 demethylases, and
164 H3K36 methyl-transferases (Li et al., 2013; Wang et al., 2014). Therefore, we tested the
165 hypothesis that HNI9 controls the expression of ROS detoxification genes by modulating their
166 chromatin state in response to high N condition. To do so, we assayed the level of 3 active
167 chromatin marks (H3K4me3, H3K9ac and H3K36me3) and 1 repressive chromatin mark
168 (H3K27me3) at the locus of several HNI9-dependent genes involved in ROS detoxification in

169 response to high N condition. Here, the results showed that the level of H3K27me3 and
170 H3K36me3 were not changed in the *hni9-1* mutant at the locus of HNI9-dependent
171 detoxification genes (Figure 6). In addition, the levels of H3K9ac, associated with active
172 transcription were also generally similar between WT and *hni9-1*. However, we observed that
173 H3K4me3 levels were globally lower in the *hni9-1* mutant at the locus of HNI9-dependent
174 detoxification genes (Figure 6). We therefore conclude that HNI9 may induce the expression
175 of ROS detoxification genes by regulating the profile of H3K4me3.

176 **Analysis of HNI9-dependent genes involved in ROS detoxification under high N condition**
177 **reveals the role of HY5 in the control of ROS homeostasis.**

178 HNI9 is a generic regulator of gene expression, as it does not provide by itself any sequence
179 specificity to its target loci. Specificity of response thus requires the action of transcription
180 factors, to drive chromatin remodeling complexes to target loci (Li et al., 2010). Therefore, we
181 tested whether promoter sequence analysis of genes involved in ROS detoxification under high
182 N could reveal the implication of transcription factors. We submitted the promoter sequences
183 from the 108 genes induced by high N and dependent on HNI9 to MEME software in order to
184 find putative conserved cis regulatory elements (CREs). This analysis reveals a significant
185 enrichment of 2 CREs showing significant homology with the binding site consensus of the
186 transcription factor HY5 defined by DAP-seq (O'Malley et al., 2016) (Figure 7A, B). In total,
187 45 out of 108 genes involved in ROS detoxification under high N contained a putative HY5
188 binding site (Table S2 and S3). Interestingly, it has been shown previously that HY5 is involved
189 in the control of ROS production in response to light or temperature treatments (Catala et al.,
190 2011; Chen et al., 2013; Chai et al., 2015). To first validate the implication of HY5 in the
191 regulation of genes involved in ROS detoxification under high N condition, we aimed to
192 investigate the binding of HY5 to the putative consensus sequences identified in part of the
193 ROS detoxification genes. To this end, we performed chromatin immunoprecipitation followed

194 by quantitative PCR on a subset of genes with or without putative HY5 binding sites. The results
195 showed that HY5 indeed binds to the promoter of detoxification genes containing a putative
196 HY5 binding site, whereas no significant binding was observed for genes without putative HY5
197 binding site, although they are also involved in detoxification processes under high N provision
198 (Figure 7C). Next, in order to test the effect of HY5 mutation, we measured the expression of
199 these genes (with or without HY5 binding sites) in WT and in *hy5-215* mutant lines. Every gene
200 we tested, except one, were statistically down-regulated in the *hy5-215* mutant line under high
201 N provision (Figure 7D), strongly supporting a major role of HY5 in the activation of the
202 detoxification program under high N provision. Finally, to test the effect of the mis-regulation
203 of the detoxification program under high N following HY5 mutation, we measured the levels
204 of ROS and H₂O₂ in WT and in *hy5-215* mutant lines. The results clearly showed that ROS and
205 H₂O₂ levels were higher in *hy5-215* than in WT, demonstrating the functional importance of
206 HY5 in the process of detoxification under high N provision (Figure 8). Altogether, our results
207 demonstrate the induction of a transcriptional program needed for ROS detoxification under
208 high N provision, which is driven in most part by the chromatin remodeler HNI9 and the
209 transcription factor HY5.

210

211 **Discussion**

212 Plants, like every living organism, have to cope with environmental constraints. ROS
213 accumulation has been shown to be involved in numerous signaling pathways or to cause
214 oxidative stress in response to different environmental challenges (Baxter et al., 2014;
215 Choudhury et al., 2017; Noctor et al., 2018). The main finding of our work is that high N
216 provision leads to the generation of ROS in plant roots, which are managed by the
217 transcriptional induction a specific detoxification program. Interestingly, increasing N
218 provision is viewed positively and as favorable conditions for plant growth, but we

219 demonstrated here that excessive N nutrition could in fact be detrimental for the plant. Indeed,
220 even if efficient detoxification systems exist and maintain ROS homeostasis, we can reasonably
221 think that their induction and functioning imply a cost for plants, and that their efficiency can
222 be limited under certain circumstances. In spite of the demonstration that high N nutrition leads
223 to ROS accumulation, the physiological cause of ROS production under high N conditions
224 remains to be determined. Nitrate assimilation and to a lower extent ammonium assimilation
225 pathways can be candidate, as they consume a lot of reducing power (Hachiya and Sakakibara,
226 2017), and may in consequence alter the cellular redox balance of plants. However, it may also
227 reflect a more general link between nutrition and redox balance. Indeed, several reports have
228 described that excessive nutrition in animals leads to ROS production and perturbation of the
229 cellular redox status (Sies et al., 2005; Samoylenko et al., 2013; Gorlach et al., 2015). In the
230 case of plants, nutrient starvation has also been identified as a condition that generates oxidative
231 stress through the production of ROS (Shin and Schachtman, 2004; Shin et al., 2005). In
232 addition, recent reports demonstrated that ROS accumulate early during N starvation response,
233 and most probably contribute to regulate nitrate-responsive genes like *NRT2.1* (Jung et al.,
234 2018; Safi et al., 2018). Therefore, these studies and our present work suggest the existence of
235 thresholds of N provision inside which the cellular redox balance is optimal. This situation is
236 reminiscent of what has been described for iron (Fe) homeostasis. Indeed, excessive Fe
237 provision can also lead to an accumulation of ROS, and specific mechanisms have been
238 described to limit this negative effect (Briat et al., 2010). Nutrient deficiency or excess (at least
239 for N and Fe) would correspond to conditions in which ROS production is above a physiological
240 limit and alter plant redox status. Again, it is interesting to observe that the same analysis is true
241 for animals (Gorlach et al., 2015).

242 In our work, we highlight the role of HNI9 in the transcriptional induction of this detoxification
243 program. In *Arabidopsis*, HNI9 has been mainly associated to brassinosteroids (BRs) signaling

244 (Li et al., 2010; Wang et al., 2014). In response to BRs, HNI9 is associated with the chromatin
245 remodeling factors ELF6, REF6 and SDG8, and with the transcription factor BES1. ELF6 and
246 REF6 are responsible for removing of the repressive chromatin mark H3K27me3, and SDG8 is
247 supposed to catalyze the trimethylation of H3K36, which promotes elongation of transcription.
248 This suggests a role for HNI9 in complexes associated with transcriptional switch, from
249 repression to activation, as demonstrated in animals (Chen et al., 2012; Wang et al., 2013). In
250 our work, HNI9 is mainly linked with differences in H3K4me3 levels. This suggests that HNI9
251 could be associated with other chromatin complexes or other steps of transcriptional regulation.
252 Nevertheless, it identifies another transcriptional pathway in which HNI9 is essential for the
253 induction of expression of a large set of genes.
254 In addition, our work identifies HY5 as a major component for the induction of the gene
255 network involved in ROS detoxification under high N provision. HY5 is a master regulator of
256 gene expression in *Arabidopsis*, at the center of several transcriptional networks. It is notably
257 involved in the responses to photosynthesis, light, temperature or hormones (Gangappa and
258 Botto, 2016). Interestingly, it has been also implicated in the control of ROS homeostasis in
259 response to light or cold treatments (Catala et al., 2011; Chen et al., 2013; Chai et al., 2015). In
260 each cases, HY5 is required to suppress ROS accumulation during stressful conditions.
261 However, the set of genes induced by HY5 to balance ROS levels seems different from one
262 stimulus to the others. This suggests that other transcription factors, in addition to HY5, could
263 specify the response according to the environmental signal. Interestingly, we found that the
264 expression of every gene of the ROS detoxification network in response to high N that we tested
265 was dependent on HY5, whatever the presence of a HY5 binding site in their promoter. This
266 may be due to the existence of several layers in this gene network, and suggests that HY5 would
267 be at the top of the network.

268 In conclusion, we identified how a detoxification program is induced in order to maintain plant
269 redox status under physiological conditions even under high nutritional provision. However,
270 usage of detoxification processes is certainly not costless for plants. Thus, this work
271 demonstrates that excessive N input is not appropriate for plant physiology and development,
272 and lends support to the occurrence of an optimum between nutrition and ROS production in
273 physiology.

274

275 **Material and methods**

276 **Plant material and growth conditions**

277 The *Arabidopsis thaliana* accession used in this study was Col-0. Mutant alleles and transgenic
278 plants used in this study are *hni9-1* (Widiez et al., 2011), *vct2* (Collin et al., 2008), *hy5-215*
279 (Oyama et al., 1997), and *GRX1-roGFP2* (Meyer et al., 2007). Experiments were performed
280 using roots from 7 days-old seedlings grown under a long-day photoperiod (16 h light and 8 h
281 dark) on vertical MS/2 plates without N (PlantMedia) supplied with 0.8 % agar, 0.1 % of
282 sucrose, 0.5 g/L MES and the appropriate concentration of N as described in figures legend or
283 in the main text.

284 **Analysis of gene expression by quantitative PCR**

285 Root samples were frozen and ground in liquid nitrogen, and total RNA was extracted using
286 TRI REAGENT (MRC), DNase treated (RQ1 Promega), and reverse transcription was achieved
287 with M-MLV reverse transcriptase (RNase H minus, Point Mutant, Promega) using an anchored
288 oligo(dT)20 primer. Transcript levels were measured by qRT-PCR (LightCycler 480, Roche
289 Diagnostics) using the TB Green™ Premix Ex Taq™ (Tli Rnase H plus) Bulk (TaKaRa). Gene
290 expression was normalized using *ACT2* as an internal standard. Sequences of primers used in
291 qPCR for gene expression analysis are listed in Supplementary file 2.

292 **ChIP quantitative PCR**

293 ChIP experiments were performed as previously described (Bellegarde et al., 2018). Chromatin
294 was precipitated with 2.5 µg of antibodies against H3 (Abcam 1791), H3K27me3 (Millipore
295 07-449), H3K4me3 (Diagenode C15410030), H3K36me3 (Abcam 9050), H3K9ac (Agrisera
296 AS163198), or HY5 (Agrisera AS12 1867). Immunoprecipitated DNA was purified by phenol-
297 chloroform and ethanol-precipitated, and resulting DNA was analyzed by qPCR analysis. For
298 chromatin marks analyses, ChIP experiments were quantified using H3 level as an internal
299 standard, and normalized using *ACT7* (H3K4me3, H3K9ac), *ACT2* (H3K36me3) or *LEC2*
300 (H3K27me3) enrichment. For HY5 binding sites analyses, ChIP experiments were normalized
301 to the input levels. Sequences of primers used in qPCR for ChIP experiments are listed in
302 Supplementary file 2.

303 **ROS and H₂O₂ assays**

304 Root samples were frozen and ground in liquid nitrogen, and ROS and H₂O₂ were extracted
305 using about 30 mg of plant material in 200 µL of phosphate buffer (20 mM K₂HPO₄, pH 6.5).
306 For ROS measurements, 50 µL of supernatant were mixed with 50 µL of 20 µM DFFDA
307 (Molecular Probes). Reactions were incubated 30 minutes at ambient temperature, and
308 fluorescence was detected using 492/527 nm as excitation/emission parameters. H₂O₂ was
309 measured using the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Invitrogen), as
310 described in (Brumbarova et al., 2016).

311 **Microscopy**

312 Confocal imaging of *Arabidopsis* root cells expressing *GRX1-roGFP2* were performed using a
313 Leica SP8 Confocal Microscope (Leica, Germany). GFP quantifications were done with an
314 Axiovert 200 M microscope (Zeiss, Germany) and images were analyzed with ImageJ analysis
315 software. The data represent the fluorescence quantification values measured in the root tip.

316 **Root growth analyses**

317 Vertical agar plates containing plants were scanned after 7 days of growth and root length was
318 analyzed using ImageJ analysis software. For experiments with thiamin, plants were grown on
319 vertical plates with MS/2 without N (PlantMedia) supplied with 0.8 % agar, 0.1 % of sucrose,
320 0.5 g/L MES and 10 mM NH₄NO₃ for 4 days, and transferred to the same medium with or
321 without 100 µM thiamin. Position of the root tip was marked on the back of the new plates, and
322 root length was analyzed 2 days after transferred by measuring growth from the mark to the
323 root tip.

324 **Determination of conserved cis regulatory sequences**

325 Putative cis regulatory sequences were identified using the MEME suite (Bailey et al., 2009).
326 500 base pairs of promoter sequences were used as primary input, with the following
327 parameters: 0-order background model, classic discovery mode, 0 or one occurrence per
328 sequence, motif width between 6 and 50 nucleotides.

329 **Analysis of gene ontology**

330 Gene ontology analysis was performed using BINGO under Cytoscape environment, using
331 Biological Process file, and a significance level of 0.05.

332 **Statistical analysis**

333 Mean ± SE is shown for all numerical values. Statistical significance was computed using a
334 two-tailed Student's t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

335

336

337 **Competing interests**

338 The authors declare no competing financial interests.

339 **Acknowledgments**

340 We thank members of A.G. lab for discussion. This work was supported by a grant from the
341 National Agency for Research (ANR14-CE19-0008 *IMANA* to A.G., An.M., & G.K.). F.B. was

342 the recipient of a PhD fellowship from INRA BAP department. We thank Andreas Meyer and
343 Alexandre Martinière for the *GRX1-roGFP2* line, Fredy Barneche for the *hy5-215* line, and
344 Jean-François Briat for the *vtc2* line. We thank the Montpellier Rio Imaging platform for
345 microscopy observations.

346

347 **Table 1:** Gene ontology enrichment identified in HNI9-dependent genes induced by high N
348 conditions (10 mM NH₄NO₃). The gene ontology term enrichment analysis was performed
349 under Cytoscape environment by BINGO software using the Molecular Function ontology file.
350 Details of the analysis are provided in Supplementary File 1.

351

GO-ID	p-value	Number of genes in the GO category	Description
3824	6.5259E-4	50	catalytic activity
16491	6.5259E-4	17	oxidoreductase activity
51739	6.5259E-4	2	ammonia transmembrane transporter activity
15200	6.5259E-4	2	methylammonium transmembrane transporter activity
16684	1.5486E-3	5	oxidoreductase activity, acting on peroxide as acceptor
4601	1.5486E-3	5	peroxidase activity
50284	2.2260E-3	2	sinapate 1-glucosyltransferase activity
16209	3.4940E-3	5	antioxidant activity
15250	5.4994E-3	3	water channel activity
5372	5.4994E-3	3	water transmembrane transporter activity
20037	1.5347E-2	6	heme binding
22838	1.5347E-2	4	substrate-specific channel activity
22803	1.5347E-2	4	passive transmembrane transporter activity
15267	1.5347E-2	4	channel activity
9055	1.6121E-2	7	electron carrier activity
46906	1.6121E-2	6	tetrapyrrole binding
19825	1.8955E-2	5	oxygen binding
5506	2.5391E-2	6	iron ion binding
34074	2.7983E-2	1	marneral synthase activity
22820	2.7983E-2	1	potassium ion symporter activity
46905	2.7983E-2	1	phytoene synthase activity
16767	2.7983E-2	1	geranylgeranyl-diphosphate geranylgeranyltransferase
80014	2.7983E-2	1	thalianol hydroxylase activity
9674	2.7983E-2	1	potassium:sodium symporter activity
8171	4.5083E-2	2	O-methyltransferase activity
80041	4.6532E-2	1	ADP-ribose pyrophosphohydrolase activity
8909	4.6532E-2	1	isochorismate synthase activity
249	4.6532E-2	1	C-22 sterol desaturase activity
16866	4.6532E-2	2	intramolecular transferase activity

352

354 **Figure Legends**

355

356 **Figure 1: Genes induced by high N provision in HNI9 dependent manner are associated**
357 **with redox processes.** Functional network realized from the list of 108 genes induced
358 specifically under high N condition (10 mM NH₄NO₃) in a HNI9 dependent manner. Orange
359 and yellow circles correspond to p-values lower than 0.01 and 0.05, respectively (see also Table
360 1 for details). Insert in the right corresponds to the central hub of the network with biological
361 function associated with antioxidant activities.

362 **Figure 2: ROS levels are higher in *hni9-1* under high N provision.** Measurement of H₂O₂
363 (A) and ROS (B) in roots of WT and *hni9-1* lines under low (0.3 mM NO₃⁻) and high N (10
364 mM NH₄NO₃) provision. Statistical significance was computed using a two-tailed Student's t-
365 test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001. Visualization of H₂O₂ levels *in*
366 *vivo* using *GRX1-roGFP2* probe in WT (C) or *hni9-1* (D) lines under high N conditions.

367 **Figure 3: *NRT2.1* expression is sensitive to ROS homeostasis.** A. Relative expression of
368 *NRT2.1* in the presence of 100 μM menadione in roots of WT plants. Plants were grown under
369 MS/2 medium containing 1 mM NO₃⁻, and transferred on the same medium with or without
370 menadione for 4 hours. B. Relative expression of *NRT2.1* in roots of WT, *hni9-1* and *vtc2*
371 mutants. Plants were grown under MS/2 medium containing high N provision (10 mM
372 NH₄NO₃). Statistical significance was computed using a two-tailed Student's t-test.
373 Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

374 **Figure 4: Root growth retardation is more pronounced under high N provision in *hni9-1***
375 **and *vtc2* mutants.** Primary root length measurement of 7 days-old plants grown under low (0.3
376 mM NO₃⁻) and high N (10 mM NH₄NO₃) provision, in WT, *hni9-1* and *vtc2* lines. The extent
377 of root growth reduction is enhanced under high N condition, correlated with the presence of
378 ROS in the mutant lines. Statistical significance was computed using a two-tailed Student's t-
379 test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

380 **Figure 5: External application of antioxidant molecule complement the *hni9-1* root**
381 **growth phenotype.** Plants were grown under high N condition (10 mM NH₄NO₃) for 4 days,
382 and transferred to the same medium with or without 100 μM thiamin. Primary root growth of
383 WT and *hni9-1* lines was measured after 2 days of growth. Statistical significance was
384 computed using a two-tailed Student's t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p
385 < 0.001.

386 **Figure 6: Mutation in HNI9 is associated with reduction of H3K4me3 at the loci of**
387 **detoxification genes.** ChIP analysis of H3K4me3, H3K27me3, H3K36me3 and H3K9ac in WT
388 and *hni9-1* roots of 7 days-old plants grown under high N provision (10 mM NH₄NO₃).
389 Quantification by qRT-PCR is shown as the percentage of H3K4me3, H3K36me3, H3K27me3
390 or H3K9ac over H3 at target loci, normalized by the percentage of H3K4me3, H3K36me3,
391 H3K27me3 or H3K9ac over H3 at positive controls (*ACT2* for H3K4me3, H3K36me3, and
392 H3K9ac, *LEC2* for H3K27me3). Data are presented relative to the WT level. Error bars
393 represent standard errors of the mean based on at least 3 biological replicates.

394 **Figure 7: HY5 binds to and regulates the expression of genes involved in detoxification**
395 **under high N provision.** A, B. Comparison of 2 conserved motifs discovered by MEME
396 analysis in the promoters of HNI9-dependent genes induced under high N provision (10 mM
397 NH₄NO₃) with HY5 consensus binding site identified by DAP-seq. C. ChIP analysis of HY5
398 enrichment in WT roots at the loci of HNI9-dependent genes induced under high N provision.
399 Quantification by qRT-PCR is shown as the percentage of input. Error bars represent standard
400 errors of the mean based on at least 3 biological replicates. Statistical significance was
401 computed using a two-tailed Student's t-test (significance cutoff: *p < 0.05, **p < 0.01, ***p
402 < 0.001), in comparison to a negative control (Neg. Ct.: *AT4G03900*, showing no relation with
403 N or HY5 signaling). D. Relative expression of genes involved in detoxification induced under

404 high N provision in roots from WT and *hy5-215* lines. Statistical significance was computed
405 using a two-tailed Student's t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

406 **Figure 8: ROS levels are higher in *hy5-215* under high N provision.** Measurement of H₂O₂
407 (A) and ROS (B) in roots of WT and *hy5-215* lines under high N (10 mM NH₄NO₃) provision.
408 Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff:
409 *p < 0.05, **p < 0.01, ***p < 0.001.

410

411 **Literature cited**

412

413 **Apel K, Hirt H** (2004) Reactive oxygen species: metabolism, oxidative stress, and signal
414 transduction. *Annu Rev Plant Biol* **55**: 373-399

415 **Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble**
416 **WS** (2009) MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res*
417 **37**: W202-208

418 **Baxter A, Mittler R, Suzuki N** (2014) ROS as key players in plant stress signalling. *J Exp Bot*
419 **65**: 1229-1240

420 **Bellegarde F, Herbert L, Séré D, Caillieux E, Boucherez J, Fizames C, Roudier F, Gojon**
421 **A, Martin A** (2018) Polycomb Repressive Complex 2 attenuates the very high
422 expression of the *Arabidopsis* gene NRT2.1. *Scientific Reports* **8**

423 **Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F**
424 (2010) New insights into ferritin synthesis and function highlight a link between iron
425 homeostasis and oxidative stress in plants. *Ann Bot* **105**: 811-822

426 **Brumbarova T, Le C, Bauer P** (2016) Hydrogen Peroxide Measurement in *Arabidopsis* Root
427 Tissue Using Amplex Red. *Bio-Protocol* **6**

428 **Catala R, Medina J, Salinas J** (2011) Integration of low temperature and light signaling during
429 cold acclimation response in *Arabidopsis*. *Proc Natl Acad Sci U S A* **108**: 16475-16480

430 **Chai T, Zhou J, Liu J, Xing D** (2015) LSD1 and HY5 antagonistically regulate red light
431 induced-programmed cell death in *Arabidopsis*. *Front Plant Sci* **6**: 292

432 **Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R** (2013) Antagonistic basic helix-loop-
433 helix/bZIP transcription factors form transcriptional modules that integrate light and
434 reactive oxygen species signaling in *Arabidopsis*. *Plant Cell* **25**: 1657-1673

435 **Chen S, Ma J, Wu F, Xiong L-j, Ma H, Xu W, Lv R, Li X, Villen J, Gygi SP, Liu XS, Shi**
436 **Y** (2012) The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by
437 impacting transcriptional elongation. *Genes & Development* **26**: 1364-1375

438 **Choudhury FK, Rivero RM, Blumwald E, Mittler R** (2017) Reactive oxygen species, abiotic
439 stress and stress combination. *Plant J* **90**: 856-867

440 **Collin VC, Eymery F, Genty B, Rey P, Havaux M** (2008) Vitamin E is essential for the
441 tolerance of *Arabidopsis thaliana* to metal-induced oxidative stress. *Plant Cell Environ*
442 **31**: 244-257

443 **Considine MJ, Foyer CH** (2014) Redox regulation of plant development. *Antioxid Redox*
444 **Signal** **21**: 1305-1326

445 **Dunand C, Crevecoeur M, Penel C** (2007) Distribution of superoxide and hydrogen peroxide
446 in *Arabidopsis* root and their influence on root development: possible interaction with
447 peroxidases. *New Phytol* **174**: 332-341

448 **Gangappa SN, Botto JF** (2016) The Multifaceted Roles of HY5 in Plant Growth and
449 Development. *Mol Plant* **9**: 1353-1365

450 **Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP,**
451 **Palmeira CM, Kietzmann T** (2015) Reactive oxygen species, nutrition, hypoxia and
452 diseases: Problems solved? *Redox Biol* **6**: 372-385

453 **Hachiya T, Sakakibara H** (2017) Interactions between nitrate and ammonium in their uptake,
454 allocation, assimilation, and signaling in plants. *J Exp Bot* **68**: 2501-2512

455 **Jung JY, Ahn JH, Schachtman DP** (2018) CC-type glutaredoxins mediate plant response and
456 signaling under nitrate starvation in *Arabidopsis*. *BMC Plant Biol* **18**: 281

457 **Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C** (2009) Alterations in
458 the endogenous ascorbic acid content affect flowering time in *Arabidopsis*. *Plant*
459 *Physiol* **149**: 803-815

460 **Lehmann M, Schwarzlander M, Obata T, Sirikantaramas S, Burow M, Olsen CE, Tohge**
461 **T, Fricker MD, Moller BL, Fernie AR, Sweetlove LJ, Laxa M** (2009) The metabolic
462 response of *Arabidopsis* roots to oxidative stress is distinct from that of heterotrophic
463 cells in culture and highlights a complex relationship between the levels of transcripts,
464 metabolites, and flux. *Mol Plant* **2**: 390-406

465 **Li L, Ye H, Guo H, Yin Y** (2010) *Arabidopsis* IWS1 interacts with transcription factor BES1
466 and is involved in plant steroid hormone brassinosteroid regulated gene expression. *Proc*
467 *Natl Acad Sci U S A* **107**: 3918-3923

468 **Li T, Chen X, Zhong X, Zhao Y, Liu X, Zhou S, Cheng S, Zhou DX** (2013) Jumonji C
469 Domain Protein JMJ705-Mediated Removal of Histone H3 Lysine 27 Trimethylation Is
470 Involved in Defense-Related Gene Activation in Rice. *Plant Cell* **25**: 4725-4736

471 **Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y,**
472 **Meyer AJ, Reichheld JP, Hell R** (2009) The NADPH-dependent thioredoxin system
473 constitutes a functional backup for cytosolic glutathione reductase in *Arabidopsis*. *Proc*
474 *Natl Acad Sci U S A* **106**: 9109-9114

475 **Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R** (2007) Redox-
476 sensitive GFP in *Arabidopsis thaliana* is a quantitative biosensor for the redox potential
477 of the cellular glutathione redox buffer. *Plant J* **52**: 973-986

478 **Moller IM, Jensen PE, Hansson A** (2007) Oxidative modifications to cellular components in
479 plants. *Annu Rev Plant Biol* **58**: 459-481

480 **Noctor G, Reichheld JP, Foyer CH** (2018) ROS-related redox regulation and signaling in
481 plants. *Semin Cell Dev Biol* **80**: 3-12

482 **O'Malley RC, Huang SS, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti**
483 **A, Ecker JR** (2016) Cistrome and Epicistrome Features Shape the Regulatory DNA
484 Landscape. *Cell* **165**: 1280-1292

485 **Oyama T, Shimura Y, Okada K** (1997) The Arabidopsis HY5 gene encodes a bZIP protein
486 that regulates stimulus-induced development of root and hypocotyl. *Genes Dev* **11**:
487 2983-2995

488 **Ramírez L, Bartoli CG, Lamattina L** (2013) Glutathione and ascorbic acid protect
489 Arabidopsis plants against detrimental effects of iron deficiency. *Journal of*
490 *Experimental Botany* **64**: 3169-3178

491 **Safi A, Medici A, Szponarski W, Marshall-Colon A, Ruffel S, Gaymard F, Coruzzi G,**
492 **Lacombe B, Krouk G** (2018) HRS1/HHOs GARP transcription factors and reactive
493 oxygen species are regulators of Arabidopsis nitrogen starvation response. *bioRxiv*

494 **Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T**
495 (2013) Nutritional countermeasures targeting reactive oxygen species in cancer: from
496 mechanisms to biomarkers and clinical evidence. *Antioxid Redox Signal* **19**: 2157-2196

497 **Schieber M, Chandel NS** (2014) ROS function in redox signaling and oxidative stress. *Curr*
498 *Biol* **24**: R453-462

499 **Schippers JH, Foyer CH, van Dongen JT** (2016) Redox regulation in shoot growth, SAM
500 maintenance and flowering. *Curr Opin Plant Biol* **29**: 121-128

501 **Shin R, Berg RH, Schachtman DP** (2005) Reactive oxygen species and root hairs in
502 Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. *Plant Cell*
503 *Physiol* **46**: 1350-1357

504 **Shin R, Schachtman DP** (2004) Hydrogen peroxide mediates plant root cell response to
505 nutrient deprivation. *Proc Natl Acad Sci U S A* **101**: 8827-8832

506 **Sies H, Stahl W, Sevanian A** (2005) Nutritional, dietary and postprandial oxidative stress. *J*
507 *Nutr* **135**: 969-972

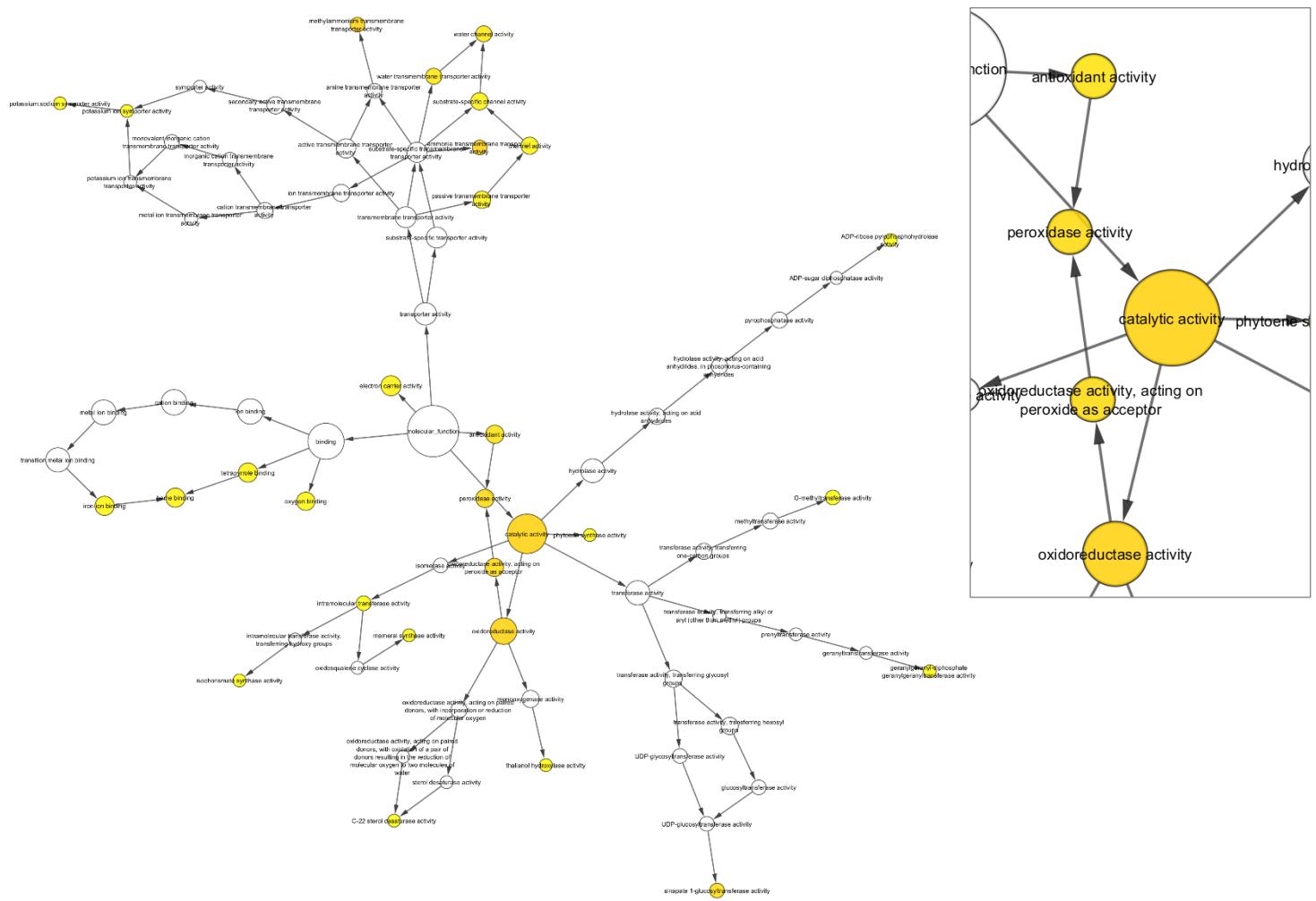
508 **Tsukagoshi H** (2016) Control of root growth and development by reactive oxygen species.
509 *Curr Opin Plant Biol* **29**: 57-63

510 **Tsukagoshi H, Busch W, Benfey PN** (2010) Transcriptional regulation of ROS controls
511 transition from proliferation to differentiation in the root. *Cell* **143**: 606-616

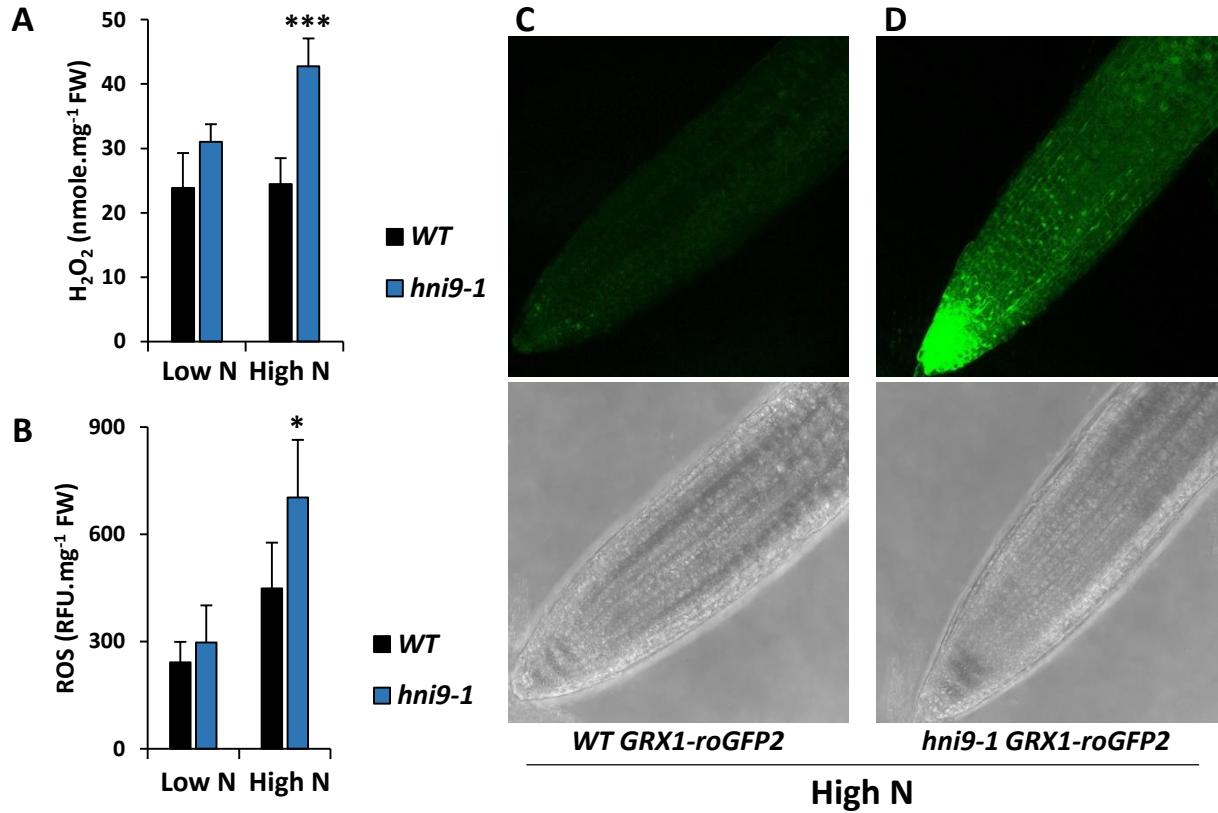
512 **Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler**
513 **R, Shintani D** (2009) Thiamin confers enhanced tolerance to oxidative stress in
514 *Arabidopsis*. *Plant Physiol* **151**: 421-432

515 **Wang AH, Zare H, Mousavi K, Wang C, Moravec CE, Sirotnik HI, Ge K, Gutierrez-Cruz**
516 **G, Sartorelli V** (2013) The histone chaperone Spt6 coordinates histone H3K27
517 demethylation and myogenesis. *EMBO J*

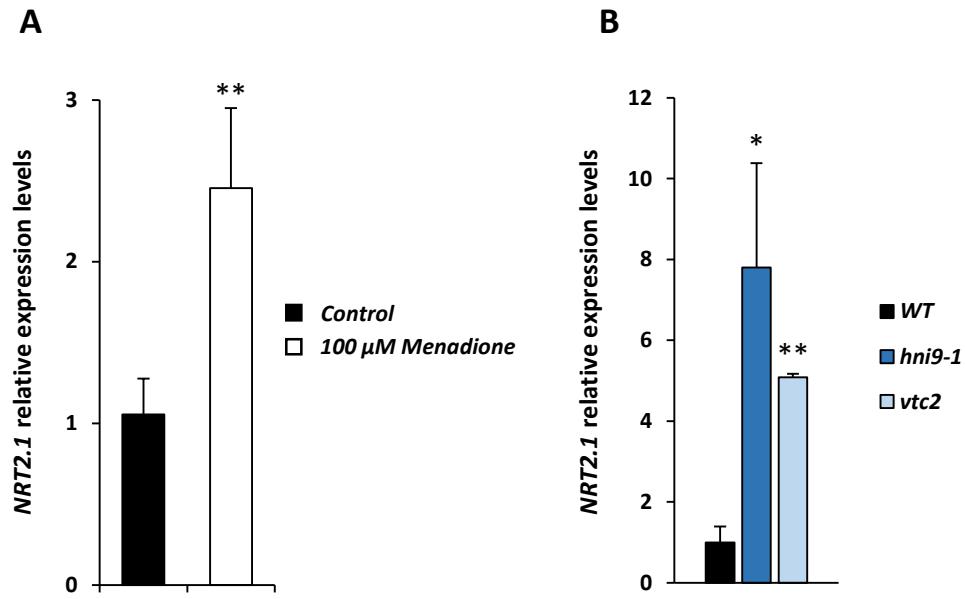
518 **Wang X, Chen J, Xie Z, Liu S, Nolan T, Ye H, Zhang M, Guo H, Schnable PS, Li Z, Yin**
519 **Y** (2014) Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-
520 Regulated Gene Expression in *Arabidopsis thaliana*. *Molecular Plant* **7**: 1303-1315

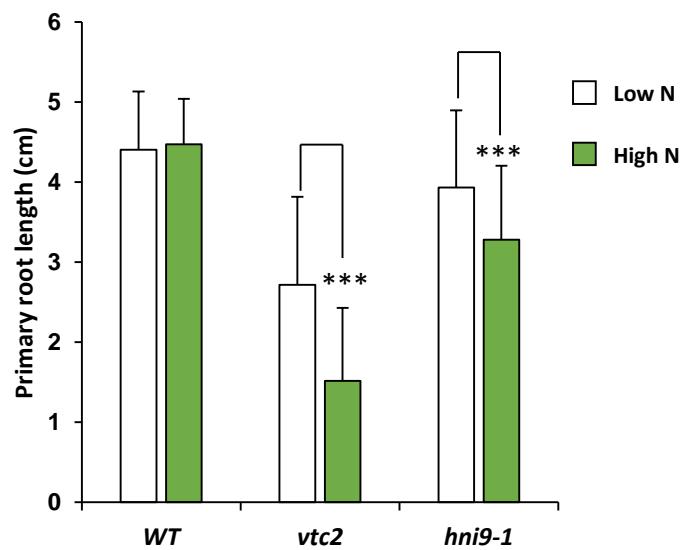

521 **Widiez T, El Kafafi ES, Girin T, Berr A, Ruffel S, Krouk G, Vayssières A, Shen W-H,**
522 **Coruzzi GM, Gojon A, Lepetit M** (2011) HIGH NITROGEN INSENSITIVE 9
523 (HNI9)-mediated systemic repression of root NO₃⁻ uptake is associated with changes
524 in histone methylation. *Proceedings of the National Academy of Sciences* **108**: 13329-
525 13334

526 **Willems P, Mhamdi A, Stael S, Storme V, Kerchev P, Noctor G, Gevaert K, Van**
527 **Breusegem F** (2016) The ROS Wheel: Refining ROS Transcriptional Footprints. *Plant*
528 *Physiol* **171**: 1720-1733


529 **Yoh SM, Lucas JS, Jones KA** (2008) The Iws1:Spt6:CTD complex controls cotranscriptional
530 mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. *Genes &*
531 *Development* **22**: 3422-3434

532 **Zhao P, Sokolov LN, Ye J, Tang CY, Shi J, Zhen Y, Lan W, Hong Z, Qi J, Lu GH, Pandey**
533 **GK, Yang YH** (2016) The LIKE SEX FOUR2 regulates root development by
534 modulating reactive oxygen species homeostasis in *Arabidopsis*. *Sci Rep* **6**: 28683




Figure 1: Genes induced by high N provision in HNI9 dependent manner are associated with redox processes. Functional network realized from the list of 108 genes induced specifically under high N condition (10 mM NH_4NO_3) in a HNI9 dependent manner. Orange and yellow circles correspond to p-values lower than 0.01 and 0.05, respectively (see also Table 1 for details). Insert in the right corresponds to the central hub of the network with biological function associated with antioxidant activities.

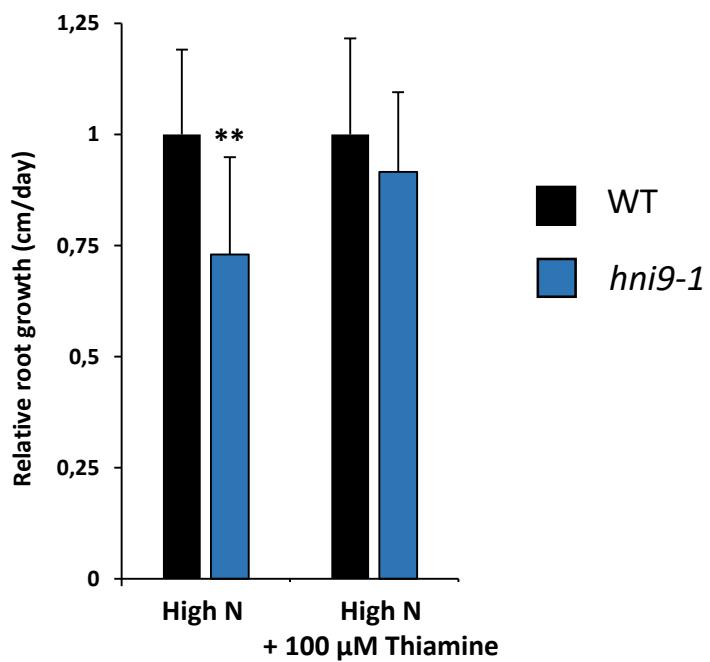

Figure 2 : ROS levels are higher in *hni9-1* under high N provision. Measurement of H_2O_2 (A) and ROS (B) in roots of WT and *hni9-1* lines under low (0.3 mM NO_3^-) and high N (10 mM NH_4NO_3) provision. Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Visualization of H_2O_2 levels *in vivo* using *GRX1-roGFP2* probe in WT (C) or *hni9-1* (D) lines under high N conditions.

Figure 3 : *NRT2.1* expression is sensitive to ROS homeostasis. A. Relative expression of *NRT2.1* in the presence of 100 μ M menadione in roots of WT plants. Plants were grown under MS/2 medium containing 1 mM NO_3^- , and transferred on the same medium with or without menadione for 4 hours. B. Relative expression of *NRT2.1* in roots of WT, *hni9-1* and *vtc2* mutants. Plants were grown under MS/2 medium containing high N provision (10 mM NH_4NO_3). Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Figure 4 : Root growth retardation is more pronounced under high N provision in *hni9-1* and *vtc2* mutants. Primary root length measurement of 7 days-old plants grown under low (0.3 mM NO_3^-) and high N (10 mM NH_4NO_3) provision, in WT, *hni9-1* and *vtc2* lines. The extent of root growth reduction is enhanced under high N condition, correlated with the presence of ROS in the mutant lines. Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

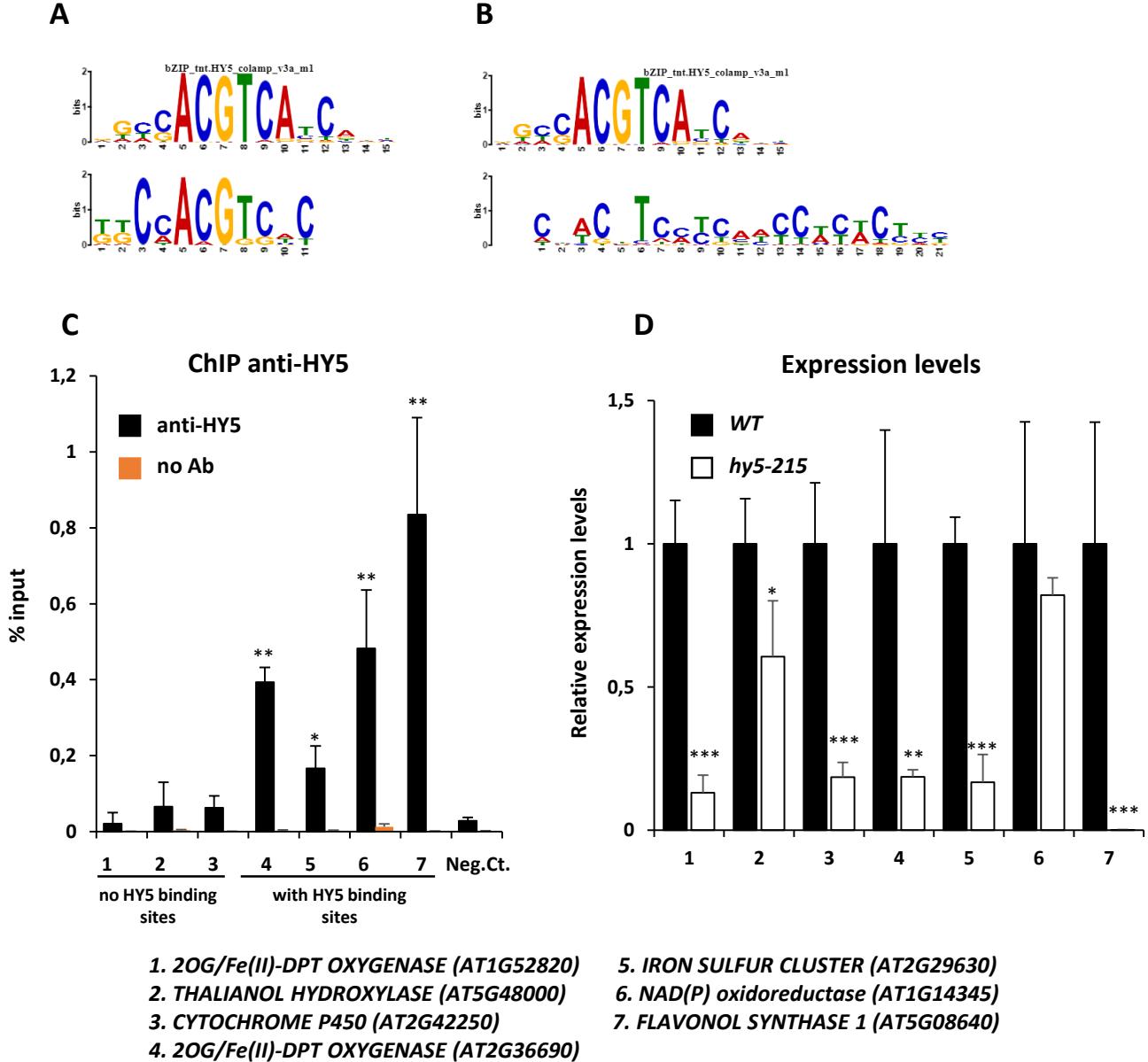
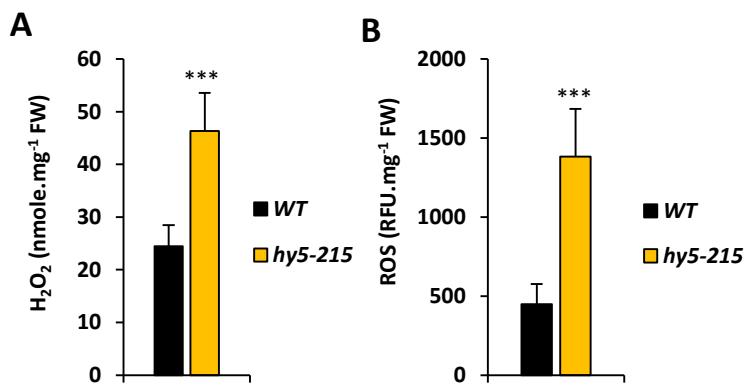


Figure 5 : External application of antioxidant molecule complement the *hni9-1* root growth phenotype. Plants were grown under high N condition (10 mM NH_4NO_3) for 4 days, and transferred to the same medium with or without 100 μM thiamin. Primary root growth of WT and *hni9-1* lines was measured after 2 days of growth. Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.



1. THALIANOL HYDROXYLASE (AT5G48000)
 2. 2OG/Fe(II)-DPT OXYGENASE (AT1G52820)
 3. CYTOCHROME P450 (AT2G42250)
 4. 2OG/Fe(II)-DPT OXYGENASE (AT2G36690)
 5. IRON SULFUR CLUSTER (AT2G29630)
 6. PEROXIDASE (AT2G37130)

Figure 6 : Mutation in HNI9 is associated with reduction of H3K4me3 at the loci of detoxification genes.
 ChIP analysis of H3K4me3, H3K27me3, H3K36me3 and H3K9ac in WT and *hni9-1* roots of 7 days-old plants grown under high N provision (10 mM NH₄NO₃). Quantification by qRT-PCR is shown as the percentage of H3K4me3, H3K36me3, H3K27me3 or H3K9ac over H3 at target loci, normalized by the percentage of H3K4me3, H3K36me3, H3K27me3 or H3K9ac over H3 at positive controls (*ACT2* for H3K4me3, H3K36me3, and H3K9ac, *LEC2* for H3K27me3). Data are presented relative to the WT level. Error bars represent standard errors of the mean based on at least 3 biological replicates.

Figure 7 : HY5 binds to and regulates the expression of genes involved in detoxification under high N provision. A, B. Comparison of 2 conserved motifs discovered by MEME analysis in the promoters of HNI9-dependent genes induced under high N provision (10 mM NH₄NO₃) with HY5 consensus binding site identified by DAP-seq. C. ChIP analysis of HY5 enrichment in WT roots at the loci of HNI9-dependent genes induced under high N provision. Quantification by qRT-PCR is shown as the percentage of input. Error bars represent standard errors of the mean based on at least 3 biological replicates. Statistical significance was computed using a two-tailed Student's t-test (significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001), in comparison to the negative control (AT4G03900, showing no relation with N or HY5 signaling). D. Relative expression of genes involved in detoxification induced under high N provision in roots from WT and *hy5-215* lines. Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 8 : ROS levels are higher in *hy5-215* under high N provision. Measurement of H_2O_2 (A) and ROS (B) in roots of WT and *hy5-215* lines under high N (10 mM NH_4NO_3) provision. Statistical significance was computed using a two-tailed Student's t-test. Significance cutoff: *p < 0.05, **p < 0.01, ***p < 0.001.