Methods assessment of self-tanning of a rapeseed meal fraction enriched in proteins and phenolic compounds
Laurent Broudiscou, Oscar de Jesus Laguna, Jérôme Lecomte, Véronique Sole, Sylvie Dauguet

To cite this version:

HAL Id: hal-02788397
https://hal.inrae.fr/hal-02788397
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License
As part of a research program aiming at developing new value chains from rapeseed meal (RSM) production (in partnership with the SAS PIVERT, Compiègne France), two protein tanning methods (T4 and T50) have been assessed to contribute to the withdrawal of formaldehyde as a tanning agent in the treatment of RSM for feeding ruminants.

Material and methods

- Tested material: fraction of milled RSM collected at the positive electrode of an electrostatic separator (Laguna, O., et al., 2018. Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Industrial Crops and Products. 118: 160-72)
- Treatment T4: RSM fraction:water mixture (1:10, w:w) incubated at pH 9.0 for >48h at 4°C
- Treatment T50: RSM fraction:water mixture (1:2, w:w) incubated for 48h at 50°C
- 24h fermentations in 72 mL culture tubes inoculated with rumen microbiota and maintained on nitrogen-free energy sources (60 mg cellulose + 40 mg starch per tube) and 50 mg of untreated, T4 or T50 RSM fractions (proteins: 0.59 g/g Delip.DM, Total phenolic compounds : 26 mg/g Delip.DM)
- \(\text{NH}_3 \) net production + acetate, propionate and butyrate productions per tube

<table>
<thead>
<tr>
<th>Source</th>
<th>HF μmoles</th>
<th>Acetate Moles/100 moles HF</th>
<th>Propionate</th>
<th>Butyrate</th>
<th>(\text{NH}_3) mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSM fraction</td>
<td>0.11</td>
<td>0.93</td>
<td>0.80</td>
<td>0.76</td>
<td>0.01</td>
</tr>
<tr>
<td>Inoculum</td>
<td>0.26</td>
<td>0.07</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>T4</td>
<td>446</td>
<td>91.5</td>
<td>63.3</td>
<td>22.6</td>
<td>-0.622 †</td>
</tr>
<tr>
<td>T50</td>
<td>517</td>
<td>90.7</td>
<td>65.8</td>
<td>21.8</td>
<td>-0.194</td>
</tr>
<tr>
<td>Untreated</td>
<td>499</td>
<td>91.4</td>
<td>65.6</td>
<td>21.5</td>
<td>-0.339</td>
</tr>
</tbody>
</table>

The RSM fractions did not alter the fermentation yield (HF: amount of fermented hexoses) nor its pattern (specific productions of short-chain fatty acids in moles /100 moles HF). The amount of ATP available for biomass synthesis was thus not significantly affected by the nature of RSM fraction. The net production of ammonia was the balance between RSM amino acids deamination and protein synthesis by microbes. It was significantly reduced by T4 († P<0,05).

T4 appeared to reduce the deamination of amino acids of RSM origin rather than increase the uptake of ammonia for microbial protein synthesis, saving about 8% of RSM digestible proteins in the rumen. Additional microscopic observation and electrophoresis will assess if that partial self-tanning stemmed from an aggregation of RSM proteins rather than coacervation.