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ABSTRACT
The successful establishment of a population into a new empty habitat outside of its initial
niche is a phenomenon akin to evolutionary rescue in the presence of immigration. It
underlies a wide range of processes, such as biological invasions by alien organisms, host
shifts in pathogens or the emergence of resistance to pesticides or antibiotics from untreated
areas.
In this study, we derive an analytically tractable framework to describe the coupled evolution-
ary and demographic dynamics of asexual populations in a source-sink system. In particular,
we analyze the influence of several factors— immigration rate, mutational parameters, and
harshness of the stress induced by the change of environment — on the establishment
success in the sink (i.e. the formation of a self-sufficient population in the sink), and on the
time until establishment. To this aim, we use a classic phenotype-fitness landscape (Fisher’s
geometrical model in n dimensions) where source and sink habitats determine distinct
phenotypic optima. The harshness of stress, in the sink, is determined by the distance
between the fitness optimum in the sink and that of the source. The dynamics of the full
distribution of fitness and of population size in the sink are analytically predicted under a
strong mutation strong immigration limit where the population is always polymorphic.
The resulting eco-evolutionary dynamics depend on mutation and immigration rates in a
non straightforward way. Below some mutation rate threshold, establishment always occurs
in the sink, following a typical four-phases trajectory of the mean fitness. The waiting time to
this establishment is independent of the immigration rate and decreases with the mutation
rate. Beyond the mutation rate threshold, lethal mutagenesis impedes establishment and
the sink population remains so, albeit with an equilibrium state that depends on the details
of the fitness landscape. We use these results to get some insight into possible effects of
several management strategies.
Keywords: Establishment time; evolutionary rescue; lethal mutagenesis; biological invasion; immigration; dispersion;
asexual; host shift; Fisher’s geometrical model; partial differential equations; cumulant generating function
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1 Introduction

Most natural populations are spread over a heterogeneous set of environments, to which

local subpopulations may be more or less adapted. When these local populations ex-

change migrants we can define “source” and “sink” populations. Source populations,

where the local genotypes have positive growth rate, are self-sustained and can send

migrants to the rest of the system. They may be connected to sink populations, where

local genotypes are so maladapted that they have negative growth rates (Pulliam, 1988).

A recent review (Furrer and Pasinelli, 2016) showed that empirical examples of sources

and sinks exist throughout the whole animal kingdom. In the absence of any plastic

or evolutionary change, source-sink systems are stable, with the sources being close to

their carrying capacity and the sinks being only maintained by incoming maladapted

migrants from source environments. In the literature, different source-sink systems have

been categorized by their pattern of immigration and emigration (for more detail on

these different categories see Fig. 1 in Sokurenko et al. (2006) and Table 1 in Loreau

et al. (2013)). One particular system, defined as “black-hole sink” (Gomulkiewicz et al.,

1999), corresponds to a demographic dead-end, from which emigration is negligible.

These black-hole sinks, and their demographic and evolutionary dynamics, are the

canonical model for studying the invasion of a new environment, outside of the initial

species “niche”, and thus initially almost empty (Holt et al., 2003, 2004). In this arti-

cle, we will only consider black-hole sinks: for compactness, we hereafter simply use the

term ’sink’, when in fact referring to a black-hole sink population. The demographic

and evolutionary process leading, or not, to the invasion of a sink is akin to evolu-

tionary rescue in the presence of immigration. It underlies a wide range of biological

processes: invasion of new habitats by alien organisms (Colautti et al., 2017), host shifts

in pathogens or the emergence of resistance to pesticides or antibiotics, within treated

areas or patients (discussed e.g. in Jansen et al. (2011) and Sokurenko et al. (2006)).

The issues under study in these situations are the likelihood and timescale of successful

invasions (or establishment) of sinks from neighboring source populations. “Establish-

ment” in a sink is generally considered successful when the population is self-sustaining

in this new environment, even if immigration was to stop (e.g., Blackburn et al., 2011,

for a definition of this concept in the framework of biological invasions).

A rich theoretical literature has considered the effects of demography and/or evolu-

tion in populations facing a heterogeneous environment connected by migration, both

in sexuals (e.g., Kirkpatrick and Barton, 1997) and asexuals (e.g., Débarre et al., 2013).

The source-sink model is a sub-case of this general problem, that has received partic-
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ular attention (for a review, see Holt et al., 2005): below, we quickly summarize the

relevance and key properties of source-sink models. The asymmetric migration (from

source to sink alone), characteristic of black-hole sinks, provides a key simplification,

while remaining fairly realistic over the early phase of invasion, where success or failure

is decided. For the same reason, some models further ignore density-dependent effects

in the sink, although both high (logistic growth) and/or low (Allee effect) densities

could further impact the results, when relevant (discussed in Holt, 2009).

Some source-sink models (e.g., Drury et al., 2007; Garnier et al., 2012), focus on de-

tailed demographic dynamics, in the absence of any evolutionary forces. Evolutionary

forces (selection, mutation, migration, drift and possibly recombination/segregation)

can greatly alter the outcome. These forces may yield both local adaptation or maladap-

tation, favoring or hindering (respectively) the ultimate invasion of the sink (“adaptive

colonization”, Gomulkiewicz et al., 2010), however harsh. In this context, mutation

and migration are double edged swords, both increasing the local variance available

for selection but generating mutation and migration loads, due to the adverse effects

of deleterious mutations and maladapted migrant inflow (resp.). For a review of the

ambivalent effects of mutation and migration see e.g., (Lenormand, 2002) and (Débarre

et al., 2013). Disentangling the complex interplay of these forces with demographic

dynamics is challenging, and modelling approaches have used various ecological simpli-

fications: e.g. no age or stage structure, constant stress, constant migration rate.

The associated evolutionary processes are also simplified. As for evolutionary rescue

models (discussed in Alexander et al., 2014), evolutionary source-sink models may be

divided into two classes, based on the presence or absence of context-dependence in the

genotype-fitness map they assume (Gomulkiewicz et al., 2010). In context-independent

models, fitness in the sink is additively determined by a single or a set of freely recombin-

ing loci, and adaptation occurs by directional selection on fitness itself (Gomulkiewicz

et al., 2010; Barton and Etheridge, 2017). In context-dependent models, which arguably

forms the vast majority of source-sink models, fitness is assumed to be a concave func-

tion (typically quadratic or Gaussian) of an underlying phenotype, with the source

and sink environments corresponding to alternative optima for this phenotype (e.g.,

Holt et al., 2003, 2004). Such nonlinear phenotype-fitness maps, with environment

dependent optima, generate context-dependent interactions for fitness (epistasis and

genotype x environment or “G x E” interactions): the effect of a given allele depends

on the genetic and environmental background in which it is found. These models repro-

duce observed empirical patterns of mutation fitness effects across backgrounds (Martin

et al., 2007; MacLean et al., 2010; Trindade et al., 2012), reviewed in (Tenaillon, 2014).
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However, their analysis is more involved. Most analytical treatments have thus relied on

stationarity assumptions: e.g. describing the ultimate (mutation-selection-migration)

equilibrium in asexuals (Débarre et al., 2013), or assuming a constant genetic variance

and Gaussian distribution for the underlying trait in sexuals (e.g., Gomulkiewicz et al.,

1999; Holt et al., 2004). While numerical explorations (by individual-based simula-

tions) often relax these stationarity assumptions, they are necessarily bound to study

a limited set of parameter value combinations.

In this paper, we explore a complementary scenario: a source-sink system, out

of equilibrium, in an asexual population. The focus on asexuals is intended to bet-

ter capture pathogenic microorganisms or microbial evolution experiments. We ignore

density-dependence by assuming that it is negligible (no Allee effects) before and dur-

ing the critical early phase of the sink invasion (far below the population reaches the

carrying capacity). Considering asexuals and density-independent populations implies

that several complex effects of migration (both genetic and demographic) can be ig-

nored. Because migrants do not hybridize/recombine with locally adapted genotypes

or use up limiting resources, the maladaptive effects of migration are limited. Mi-

gration meltdown and gene swamping (see Lenormand, 2002) are thus expected to be

absent. This simplification allows to analytically track out-of-equilibrium dynamics, in

a context-dependent model (with epistasis and G x E), without requiring stable variance

or Gaussian and moment-closure approximations for the phenotypic distribution.

More precisely, we study the transient dynamics of a sink under constant immigra-

tion from a source population at mutation-selection balance and a sink initially empty

(invasion process). We use the classic quadratic phenotype-fitness map with an isotropic

version of Fisher’s geometrical model (FGM) with mutation pleiotropically affecting n

phenotypic traits. To make analytical progress, we use a deterministic approxima-

tion (as in Martin and Roques, 2016) that neglects stochastic aspects of migration,

mutation and genetic drift, but tracks the full distribution of fitness and phenotypes.

Under a weak selection strong mutation (WSSM) regime, when mutation rates are

large compared to mutation effects, we further obtain an analytically tractable coupled

partial-ordinary differential equation (PDE-ODE) model describing the evolutionary

and demographic dynamics in the sink. This framework allows us to derive analytic

formulae for the demographic dynamics and the distribution of fitness, at all times,

which we test by exact stochastic simulations. We investigate the effect of demographic

and evolutionary parameters on the establishment success, on the establishment time,

and on the equilibrium mean fitness in the sink. In particular, we focus on the effects of

the immigration rate, the harshness of stress (distance between source and sink optima),
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and mutational parameters (rate, phenotypic effects and dimension n).

2 Methods

Throughout this paper, we follow the dynamics of the fitness distribution of the in-

dividuals in the sink environment, under the joint action of mutation, selection and

immigration from the source. The latter remains stable at mutation-selection balance,

as migration is asymmetric in this black-hole sink. We consider an asexual population

evolving in continuous time. Consistently, we focus on Malthusian fitness m (hereafter

’fitness’): the expected growth rate (over stochastic demographic events) of a given

genotypic class, per arbitrary time units. Absolute Malthusian fitnesses r are therefore

(expected) growth rates, and without loss of generality, m is measured relative to that

of the phenotype optimal in the sink, with growth rate rmax. We thus have m = r−rmax,

and the mean absolute fitness r(t) and mean relative fitness m(t), at time t, satisfy:

r(t) = rmax +m(t).

We use a deterministic approximation which neglects variations among replicate pop-

ulations. Under this approximation, r(t) (respectively m(t)), the mean absolute (resp.

relative) fitness within each population can be equated to their expected values (across

stochastic events). In general, the bar denotes averages taken over the sink population.

The main notations are summarized in Table 1.

2.1 Demographic model and establishment time t0

In our simple scenario without density-dependence, evolutionary and demographic dy-

namics are entirely coupled by the mean absolute Malthusian fitness (mean growth

rate). We consider a sink population with mean growth rate r(t) at time t, receiving

on average d individuals per unit time by immigration. Under the deterministic ap-

proximation, the population size dynamics in the sink environment are therefore given

by:

N ′(t) = r(t)N(t) + d, (1)

with N ′(t) the derivative of N with respect to t at time t.

In the absence of adaptation, r is constant, leading to an equilibrium population size

N = d/(−r) when r < 0, as mentioned in the Introduction. When genetic adaptation

is taken into account, we need further assumptions to describe the dynamics of r(t) in

the sink.
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Notation Description

n number of pleiotropic phenotypes

x
(breeding value for) phenotype of a given

genotype

x∗ Optimal phenotype (source)

d Immigration rate

U Genomic mutation rate

λ Mutational variance per trait

µ
√
U λ

m
Malthusian fitness in the sink, relative to a

genotype optimal in the sink

mD

Harshness of stress (fitness distance

between source and sink optima)

rD
Decay rate, in the sink, of a genotype

optimal in the source rD = mD − rmax

msource Fitness of the migrants in the source

mmigr Fitness of the migrants in the sink

pmigr Probability density of mmigr

rmax Maximum absolute fitness (sink)

r
Absolute Malthusian fitness: genotypic

growth rate r = rmax +m

N(t) Population size at time t

m(t) Mean relative fitness

r(t)
Mean absolute fitness: mean growth rate

of the population r(t) = rmax +m(t)

t0 Establishment time

Ct(z)
Cumulant generating function of the

relative fitness distribution in the sink

Table 1: Main notations
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We always assume that the new environment is initially empty (N(0) = 0) and that

the individuals from the source are, on average, maladapted in the sink (r(0) < 0).

Following a classic definition (Blackburn et al., 2011), we define the establishment time

t0 as the first time when the growth rate of the sink becomes positive in the absence of

immigration:

t0 := inf{t > 0 s.t. r(t) > 0}.

This means that, from time t0, the sink population is self-sustaining in the absence

of immigration and further adaptation. By definition (assuming that r is continuous),

t0 satisfies r(t0) = 0. Depending on the behavior of r(t), t0 may therefore be finite

(successful establishment) or infinite (establishment failure).

2.2 Fisher’s geometric model

We use Fisher’s geometric model (FGM) to describe the relationships between geno-

types, phenotypes and fitnesses in each environment. This phenotype-fitness landscape

model has the advantage of yielding realistic distributions of mutation effects on fit-

nesses (Trindade et al., 2012; Hietpas et al., 2013; Tenaillon, 2014) and of generating

a coupling between stress levels, the distribution of fitnesses among migrants from the

source and that among de novo random mutants arising in the sink (Anciaux et al.,

2018).

Phenotype-fitness relationships in the two environments. The FGM assumes that

each genotype is characterized by a given breeding value for phenotype at n traits

(hereafter simply denoted ’phenotype’), namely a vector x ∈ Rn. Each environment (the

source and the sink) is characterized by a distinct phenotypic optimum. The distance

between these optima determines the stress induced by a change of the environment.

An optimal phenotype in the sink has maximal absolute fitness rmax (relative fitness

m = 0) and sets the origin of phenotype space (x = 0). Fitness decreases away from this

optimum. Following the classic version of the FGM, Malthusian fitness is a quadratic

function of the breeding value r(x) = rmax − ‖x‖2/2 and m(x) = −‖x‖2/2.

In the source, due to a different phenotype optimum x∗ ∈ Rn, the relative fitness is

m∗(x) = −‖x−x∗‖2/2. As the population size is kept constant in the source (see below),

only relative fitness matters in this environment. The harshness of stress mD > 0 is the

fitness distance between source and sink optima:

mD = −m(x∗) = ‖x∗‖2/2. (2)
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The decay rate, in the sink, of a population composed of individuals with the optimal

phenotype from the source, is thus rD = mD − rmax.

Mutations. In the two environments, mutations occur at rate U and create indepen-

dent and identically distributed (iid) random variations dx around the phenotype of

the parent, for each trait. We assume here a standard Gaussian distribution of the mu-

tation phenotypic effects (Kimura, 1965; Lande, 1980): dx ∼ N (0, λIn), where λ is the

mutational variance at each trait, and In is the identity matrix in n dimensions. These

assumptions induce a distribution of the mutation effects on fitness, given the relative

fitness mp ≤ 0 of the parent. This distribution has stochastic representation (Mar-

tin, 2014) s ∼ − mp − λ
2
χ2
n (− 2 mp/λ), where χ2

n (− 2 mp/λ) denotes the noncentral

chi-square distribution with n degrees of freedom and noncentrality −2 mp/λ. This dis-

tribution is detailed elsewhere (reviewed in Tenaillon, 2014), its mean is E[s] = −n λ/2.

Alternatively, it can be characterized by its moment generating function:

E[es z|mp] = M∗(z) eω(z)mp , (3)

with

M∗(z) =
1

(1 + λ z)n/2
and ω(z) =

−λ z2

1 + λ z
. (4)

Migration events. Migration sends randomly sampled individuals from the source

into the sink, at rate d > 0 per unit time. Their relative fitness in the sink is mmigr(x) =

−‖x‖2/2, with x randomly sampled from the source’s standing phenotype distribution.

2.3 Fitness distribution of the migrants

We assume that the distribution of phenotypes in the source is at mutation-selection bal-

ance. The resulting equilibrium distribution of phenotypes yields an equilibrium fitness

distribution in the source. Under a weak selection strong mutation (WSSM) regime, a

simple expression for this equilibrium fitness distribution is (Martin and Roques, 2016,

equation (10)): msource ∼ −Γ(n/2, µ), with µ :=
√
U λ, where Γ(a, b) denotes a gamma

deviate with shape a and scale b. This WSSM regime can be quantitatively defined by

the inequality U > Uc := n2 λ/4 (Martin and Roques, 2016, Appendix E).

To understand the dynamics of the fitness distribution in the sink, we need to

compute the distribution of the relative fitness of the migrants mmigr when they arrive

into the sink. In our case, a handy way to describe this distribution is to compute
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its moment generating function: eφ(z) := E[emmigr z], for any z ≥ 0. Computations in

Appendix A show that for any z ≥ 0:

φ(z) = −n
2

ln(1 + µz)−mD z +
mD µ z

2

1 + µ z
. (5)

The corresponding distribution of mmigr (see Appendix A) is:

pmigr(m) =

 1
µ

(
|m|
mD

) 1
2(n2−1)

e
m−mD

µ In
2
−1

[
2
√
mD|m|
µ

]
, if m < 0

0, if m ≥ 0

, (6)

where Iν is the modified Bessel function of the first kind. The accuracy of this formula

is illustrated in Fig. 1. We observe that the mean absolute fitness of the migrants,

which coincides with r(0) = lim r(t) as t→ 0, is given by

r(0) = rmax + φ′(0) = rmax −mD − µn/2 = −rD − µn/2, (7)

with φ defined by (5). This initial growth rate is negative and corresponds to the

decay rate (rD) of the mean phenotype from the source (which is optimal there) plus a

variance load (µn/2) due to the equilibrium variation around this mean.

The assumption that the individuals from the source are initially decaying (r(0) < 0)

can therefore be expressed by the inequality rmax − µn/2 < mD.

2.4 Trajectories of fitness in the sink: a PDE approach

At time t, the population in the sink consists of the phenotypes {xi(t)}i=1,...,N(t) (with

N(t) ∈ N), with the corresponding values of relative fitnesses {mi(t)}i=1,...,N(t). In the

absence of demography and immigration, the dynamics of the fitness distribution is

traditionally investigated by a moment closure approximation (Burger, 1991; Gerrish

and Sniegowski, 2012): the variations of the moment of order k depend on the moments

of order larger than (k + 1) through a linear ordinary differential equation, and the

resulting system is solved by assuming that the moments vanish for k larger than some

value. A way around this issue is the use of cumulant generating functions (CGFs),

which handle all moments in a single function. In a relatively wide class of evolutionary

models of mutation and selection, the CGF of the fitness distribution satisfies a partial

differential equation (PDE) that can be solved without requiring a moment closure

approximation (Martin and Roques, 2016, Appendix B). We follow this approach here.

The empirical CGF of the relative fitness in a population of N(t) individuals with
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Figure 1: Distribution of absolute fitness of the migrants in the sink. The dashed

line corresponds to the theoretical expected values of this distribution pmigr(· − rmax) given

by formula (6). The histogram corresponds to the distribution of migrants obtained in exact

stochastic simulations after reaching the mutation-selection balance in the source (see Sec-

tion 2.5). When the sink is empty, individuals are ’counter-selected’ if their fitness is below

the mean fitness r(0) given by (7), ’selected’ if their fitness is above r(0), and ’growing’ if

their fitness is positive. The parameter values are rmax = 0.1, U = 0.1, mD = 0.3, λ = 1/300,

n = 6 and N = 106.

fitnesses m1(t), . . . ,mN(t)(t) is defined by

Ct(z) = ln

 1

N(t)

N(t)∑
i=1

emi(t) z

 , (8)

for all z ≥ 0. The mean fitness and the variance in fitness in the sink can readily be

derived from derivatives, with respect to z, of the CGF, taken at z = 0: m(t) = ∂zCt(0)

(and r(t) = rmax + ∂zCt(0)), and V (t) = ∂zzCt(0) (the variance in fitness). In the

absence of demography and immigration, and under a weak selection strong muta-

tion (WSSM) regime, (Martin and Roques, 2016, Appendix A) derived a deterministic

nonlocal PDE for the dynamics of Ct. We extend this approach to take into account

immigration effects and varying population sizes. This leads to the following PDE

(derived in Appendix B):

∂tCt(z) = ∂zCt(z)− ∂zCt(0)︸ ︷︷ ︸
selection

−µ2
(
z2 ∂zCt(z) +

n

2
z
)

︸ ︷︷ ︸
mutation

+
d

N(t)

(
eφ(z)−Ct(z) − 1

)
︸ ︷︷ ︸
migration, demography

, z ≥ 0,
(9)
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where we recall that µ :=
√
U λ. The immigration term depends on φ(z), which is given

by (5), and on N(t), which satisfies the ODE (1), i.e. N ′(t) = (∂zCt(0)+rmax)N(t)+d.

This leads to a well-posed coupled system (1) & (9) which can be solved explicitly, as

shown in Appendix C.

The selection term in eq. (9) stems from the increase in frequency of each lineage

proportionally to its Malthusian fitness (frequency-independent selection). The second

term is the WSSM approximation (U > Uc) to a more complex term (Martin and

Roques, 2016, Appendix A) describing the effect of mutation: it depends on the current

background distribution (on Ct(z)) because of the fitness epistasis inherent in the FGM.

The last term describes the effect of the inflow of migrants on lineage frequencies. It

tends to equate Ct(z) with φ(z), the CGF of fitnesses among migrants, proportionally

to d/N(t), the dilution factor of migrants into the current sink population.

2.5 Individual-based stochastic simulations

To check the validity of our approach, we used as a benchmark an individual-based,

discrete time model of genetic drift, selection, mutation, reproduction and migration

with non-overlapping generations.

Source population. A standard Wright-Fisher model with constant population size was

used to compute the equilibrium distribution of phenotypes in the source. Our compu-

tations were carried out with N∗ = 106 individuals in the source. Each individual i =

1, . . . , N∗ has phenotype xi ∈ Rn and relative Malthusian fitness mi = −‖xi − x∗‖2/2,

with corresponding Darwinian fitness emi (discrete time counterpart of the Malthusian

fitness). At each generation, N∗ individuals are sampled with replacement proportion-

ally to their Darwinian fitness. Mutations are simulated by randomly drawing, every

generation and for each individual, a Poisson number of mutations, with rate U . Mu-

tation acts additively on phenotype, with individual effects dx drawn into an isotropic

multivariate Gaussian distribution with variance λ per trait (see Section 2.2). Simu-

lations were started with a homogeneous population (xi = x∗ for all i at initial time)

and ran for 20/
√
µ generations (the predicted time taken to reach a proportion q of the

final equilibrium mean fitness is atanh(q)/
√
µ, see Appendix E, Section “Characteris-

tic time” in Martin and Roques (2016); with atanh(q) = 20, one can consider that the

equilibrium has been reached). An example of the distribution of absolute fitness in the

resulting (equilibrium) source population, after migrating into the sink (distribution of

rmax − ‖xi‖2/2) is presented in Fig. 1.
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Sink population. We started with N(0) = 0 individuals in the sink. Then, the process

to go from generation t to generation (t+1) is divided into three steps: (i) migration: a

Poisson number of migrants, with rate d, was randomly sampled from the equilibrium

source population, and added to the population in the sink; (ii) reproduction, selection

and drift: each individual produced a Poisson number of offspring with rate exp(ri) =

exp(rmax + mi) (absolute Darwinian fitness in the sink); (iii) mutation followed the

same process as in the source population. The stopping criterion was reached when

N(t) > 1.5 · 106 individuals or t > 5 · 103 to limit computation times.

All the Matlabr codes to generate individual-based simulations are provided in

Supplementary File 1.

3 Results

3.1 Trajectories of mean fitness

Dynamics of r(t) and N(t). The system (1) & (9) leads to an expression for the

mean absolute fitness (Appendix C):

r(t) =
f(t)− 1∫ t
0
f(τ) dτ

, with f(t) = exp

[(
rmax − µ

n

2

)
t+

mD

2µ
(e−2µ t − 1)

]
. (10)

It also leads to an expression for the population size thanks to N ′(t) = r(t)N(t) + d.

(see eq. (16) in Appendix C).

The good accuracy of eq. (10) is illustrated in Figs. 2-4, by comparing it with

the results of individual-based stochastic simulations, under the WSSM assumption

(U > Uc := n2 λ/4). Both the individual-based simulations and the analytic expres-

sions show that sink invasion tends to follow four different phases, which are all the

more pronounced as the harshness of stress mD increases. Phase 1: During the first

generations, the mean fitness slightly increases; Phase 2: The mean fitness remains

stable. Phase 3: Rapid increase in mean fitness. Phase 4: The mean fitness stabilizes

at some asymptotic value. In the case of establishment failure (Fig. 4), the adaptation

process remains in Phase 2.

In all cases, formula (7) gives an accurate prediction of the mean fitness of the

migrants, as shown by the agreement between theoretical and simulated values of r(0).

Other trajectories, outside of the WSSM regime (U < Uc) are presented in Appendix D

(and discussed in Section 3.3).
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(a) mD = 0.2 (b) mD = 0.2

(c) mD = 0.3 (d) mD = 0.3

(e) mD = 0.4 (f) mD = 0.4

Figure 2: Trajectories of mean fitnesses and population sizes in a WSSM regime,

depending on the harshness of stress. Solid lines: analytical predictions given by formu-

lae (1) and (10) vs 100 trajectories obtained by individual-based simulations (blue curves for

r(t) and red curves for N(t); dashed lines: mean values averaged over the 100 populations).

Horizontal dashed-dotted lines: theoretical value of r(∞) = rmax − µn/2 (left panels) and

equilibrium population size −d/r(0) in the absence of adaptation (right panels). The four

phases of invasion (Phases 1-4, see main text) are illustrated by distinct shaded areas on

panel (e). The parameter values are U = 0.1 (thus, U > Uc = 0.03, which is consistent with

the WSSM regime), rmax = 0.1, λ = 1/300, n = 6 and d = 104. Due to the stopping criterion

N(t) = 1.5 · 106 was reached, the mean values could not be computed over the full time span.
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Phenotypic dynamics over the different phases of invasion. Obviously the

dichotomy into four phases could be deemed somewhat arbitrary, and it is clearly less

marked with milder stress (top panels of Fig. 2). However, it does convey the qualitative

chronology of the whole process in all cases. This can be further understood by exploring

the dynamics of the phenotypic distribution over time: a typical example for a single

simulation is given in Fig. 3, at four times corresponding to each of the four phases.

We show here the phenotypic distribution along the one meaningful dimension, that for

which the optimum is shifted between source and sink (the optimum in the sink is 0,

and the optimum in the source x∗ = (
√

2mD, 0, . . . , 0)). The corresponding trajectories

of fitness and population size are available in Appendix E (Fig. 9). A video file of the

phenotype distribution is also available as Supplementary File 2.

During Phases 1 and 2, the phenotypic distribution is fairly stable and slightly

shifted from the source distribution towards the sink optimum. The short Phase 1

merely witnesses an increase in population size from zero to the semi-stable Phase 2.

We suggest that this semi-stable state approximately corresponds to a macroscopic

“equilibrium” between migration and selection on the bulk of phenotypes. Here, we

conjecture a negligible impact of mutation on this bulk because simulations in the

absence of mutation in the sink yield a very similar phenotypic distribution during

Phase 2 (Appendix J, Fig. 12). However, over the course of Phase 2, a second mode

slowly appears closer to the sink optimum, due to the invasion of rare, better adapted,

phenotypes (generated by the combined effects of rare adapted migrants and de novo

mutation in the sink). When this second mode becomes significant in frequency, Phase

3 starts with a rapid increase of the second mode (and of mean fitness), because phe-

notypic and fitness variance are then maximized. The last Phase 4 corresponds to the

new equilibrium dominated by a mutation selection balance around the sink optimum.

In the present model without density limitations, migration becomes ultimately negligi-

ble as the sink population explodes, and its phenotypic distribution ultimately reaches

exactly a new mutation-selection balance.

Effect of the immigration rate. Unexpectedly, the value of r(t) in formula (10)

does not depend on the immigration rate d. Thus, only the population size dynamics are

influenced by the immigration rate, but not the evolutionary dynamics. To understand

this phenomenon, we may divide the equation N ′(t) = r(t)N(t) + d by d, leading to

P ′(t) = r(t)P (t) + 1 with P (t) = N(t)/d. Then, we observe that the main system

(1) & (9) can be written in terms of P (t), independently of N and d. This means that

the ratio N(t)/d is not influenced by d. This yields the independence of the evolutionary
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(a) Phase 1: t = 10 (b) Phase 2: t = 60

(c) Phase 3: t = 220 (d) Phase 4: t = 300

Figure 3: Phenotype distribution in the sink, along the direction x1. The vertical

dotted lines correspond to the sink (x1 = 0) and source (x1 =
√

2mD) optima. The black

dotted curve corresponds to the theoretical distribution of migrant’s phenotypes in the sink

(Gaussian distribution, centered at x1 =
√

2mD, and with variance µ =
√
U λ). In all cases,

the parameter values are mD = 0.4, U = 0.1, rmax = 0.1, λ = 1/300, n = 6 and d = 104.

dynamics of d, because the effect of migration on mean fitness in (9) only depends on

d/N(t).

A simple mathematical argument (Appendix F) shows that this property will apply

beyond the present model. The result arises for any model where (i) the evolutionary

and demographic dynamics in the sink are density-independent (apart from the impact

of migration) and (ii) the sink is initially empty (or at least d� N(0)). This means that

it should apply for a broad class of models of asexual evolution in black-hole sinks. Note

however, that sex and recombination, for example, necessarily create density-dependent
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evolution as recombination with migrants affects the genotype frequencies beyond the

pure demographic impact of migration.

An intuition for the independence of r(t) on d might be framed as follows: if d is

increased (resp. decreased), the sink fills in more (resp. less) rapidly, from N(0) = 0,

proportionally to the increase (resp. decrease) in d, at all times. Therefore things cancel

out in the migration contribution on frequencies (d/N(t) is unaffected), and this con-

tribution is the only one where d enters the dynamics. Overall increasing or decreasing

d thus has no effect on genotype frequency dynamics, although it does affect popula-

tion sizes. This balanced effect likely exists qualitatively in even more general condi-

tions, but the exact cancelling out only happens with exponential (density-independent)

growth/decay, density independent mutation and selection, and an initially empty sink.

Large time behavior. As seen in Fig. 2, r(t) converges towards an asymptotic value

r(∞) at large times. The expression (10) shows that this value depends on rmax, µ and

n. Interestingly, it becomes dependent on the harshness of stress mD, only in the case

of establishment failure. More precisely, we get:

if rmax − µn/2 ≥ 0 then r(∞) = rmax − µn/2, and N(∞) =∞
if rmax − µn/2 < 0 then r(∞) = rmax − µn/2− δ(mD), and N(∞) = −d/r(∞),

(11)

for some function δ(mD) such that mD > δ(mD) > mD/8 for µ large enough (the

inequality δ(mD) > mD/8 is true whatever the phenotype dimension n). When n is

large enough, sharper lower bounds can be obtained, e.g. δ(mD) > 3mD/8 for n ≥ 6),

see Appendix G.

These asymptotic results can be interpreted as follows. Below some threshold (U <

Ulethal := 4r2max/(λn
2), or equivalently µ < µlethal := 2rmax/n), establishment is always

successful and the sink population ultimately explodes (as we ignore density-dependence

in the sink). As d/N(∞) = 0, the demographic and evolutionary effects of migrants

thus become negligible (being diluted in an effectively infinite population). The sink

population thus reaches mutation-selection balance, with a mutation load µn/2, as if

it was isolated. It ultimately grows exponentially at rate rmax − µn/2 as illustrated in

Fig. 2.

On the contrary, large mutation rates (U ≥ Ulethal or equivalently µ ≥ µlethal) lead

to establishment failure, which is a form of lethal mutagenesis (see Bull et al. (2007)

for viruses and Bull and Wilke (2008) for bacteria) illustrated in Fig. 4. In this regime,

the mutation load µn/2 is larger than the absolute maximal fitness rmax in the sink.

Therefore, at mutation-selection balance and even in the absence of any migration,
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(a) U = 0.44 > Ulethal (b) U = 0.44 > Ulethal

Figure 4: Trajectories of mean fitnesses and population sizes, lethal mutagenesis

regime. Same legend as in Fig. 2. Other parameter values are mD = 0.2, rmax = 0.1,

λ = 1/300, n = 6 and d = 104, leading to a theoretical threshold value for lethal mutagenesis

Ulethal = 4r2max/(λn
2) = 0.33. The panel (a) illustrates the bifurcation in the behavior of the

equilibrium mean fitness as rmax − µn/2 becomes negative.

the population could never show positive growth: establishment is impossible because

the fitness peak is too low, given the mutation rate and effect. We further identify a

“jump” of amplitude δ(mD) in the equilibrium mean fitness, as µ increases beyond the

lethal mutagenesis threshold (illustrated in Fig. 5). Then, the population ultimately

reaches a stable size determined by an immigration - decay equilibrium: a migration

load can build up at equilibrium (δ(mD)) together with the mutation load (µn/2). This

migration load is produced by the constant inflow of maladapted genotypes from the

source and does depend on the harshness of stress mD. It is this migration load that

creates the “phase transition” in equilibrium fitness as µ crosses beyond µlethal, the

lethal mutagenesis threshold (Fig. 5). Note, however, that contrary to what happens

with sexuals, migrants entering an asexual population do not interbreed with locally

adapted genotypes, which simplifies the effect of migration. Note also that, in this

lethal mutagenesis regime, the sink population does establish to a stable size, that may

be higher than that expected in the absence of mutation and adaptation. However, this

is not an establishment in that the population would still get extinct if migration was

to be stopped.
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Figure 5: Mean fitness at large times, dependence with µ and mD. The solid lines

are the values given by formula (11). The crosses correspond to the result of individual-based

simulations. The dashed-dot line corresponds to rmax − µn/2; the gap between the dashed-

dot line and the solid lines represents the amplitude of the jump δ(mD). Parameter values:

rmax = 0.1, n = 6.

3.2 Establishment time t0

Of critical importance is the waiting time until the sink becomes a source, when this

happens, namely the time t0 at which r(t) becomes positive. This section is devoted to

the analysis of this time.

Derivation of an analytical expression. Using the expression (10), we can solve

the equation r(t0) = 0. We recall that, due to our assumptions, t0 > 0, i.e. r(0) =

rmax − µn/2−mD < 0.

The result in (11) shows that t0 = ∞ if rmax − µn/2 ≤ 0 (establishment failure).

In the case of successful establishment (mD > r(∞) = rmax − µn/2 > 0), the waiting

time to this establishment is:

t0 =
1

2µ

[
c+W0

(
−c e−c

)]
, c =

mD

rmax − µn/2
, (12)

with W0 the principal branch of the Lambert-W function (see Appendix H).

First of all, eq. (12) shows that the waiting time is independent of the dispersal

rate d. This was further supported by individual-based simulations (Fig. 6a) as t0

was found to drop rapidly to its predicted value as d increases (as the deterministic

approximation becomes accurate), to then become independent of d. The waiting time

shows a transition (around c = 1) from t0 ≈ c/2µ for small c to t0 ≈ c/µ for large c,
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so the establishment time always increases close to linearly with the harshness of stress

mD. This was also the case in individual-based simulations (Fig. 6c), at least until

stress becomes too strong, compared to mutation and migration. In that case, the sink

population remains fairly small for a long time and our deterministic approximation

no longer applies, at least in the early phases (1 and 2) of invasion (see Section 3.3).

Eq. (12) also implies that the establishment time t0 decreases with rmax and increases

with n. The dependence with respect to the mutational parameter µ is more subtle:

as µ is increased, t0(µ) first decreases until µ reaches an ’optimal value’ (minimizing

invasion time), then t0(µ) increases until µ reaches the lethal mutagenesis threshold

(µlethal = 2 rmax/n). This behaviour always holds, as proven analytically in Appendix H.

This non-monotonous variation of t0 with mutation rate (here with µ =
√
Uλ) was also

found in individual-based simulations (Fig. 6b).

Most of these effects are fairly intuitive: it takes more time to establish from a

more maladapted source (mD), with a smaller mutational variance (Uλ), although their

particularly simple quantitative effect on t0 was somewhat unexpected. The effect of

rmax, although quantitatively simple, has multiple aspects. Indeed, rmax affects various

parameters of the establishment process, all else being equal: it decreases the initial rate

of decay (r̄(0) = rmax −mD − µn/2) and increases the proportion of migrants that are

resistant to the sink environment (fitness peak height) which both speed adaptation. It

also increases the ultimate exponential growth rate of the population (r̄(∞) = rmax −
µn/2). The latter effect is likely irrelevant to t0, however, as this growth phase occurs

after the establishment time.

Effect of an intermediate sink. The simulations identify a sharp transition, in the

harshness of stress, beyond which establishment does not occur (or occurs at very large

times), see Appendix I. We see in Fig. 6 that as mD gets close to this threshold, the

dependence between t0 and mD shifts from linear to superlinear (convex). Based on

previous results on evolutionary rescue in the FGM (Anciaux et al., 2018), we conjecture

that this pattern is inherent to the phenotype fitness landscape model. In the FGM,

increased stress (higher mD) is caused by a larger shift in optimum from source to sink.

This has two effects, (i) a demographic effect (faster decay of new migrants, on average)

and (ii) an evolutionary effect. This latter effect is simply due to the geometry of the

landscape. Indeed, when the shift in optimum from source to sink is larger, there are

fewer genotypes, in the migrant pool, that can grow in the sink and they tend to grow

more slowly. This effect is highly non-linear with stress, showing a sharp transition in

the proportion of resistant genotypes beyond some threshold stress (for more details
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(a) (b)

(c)

Figure 6: Establishment time t0, dependence with the immigration rate d, the

mutational parameter µ and the harshness of stress mD. Theoretical value of

t0 (black curve) vs value obtained with individual-based simulations (red crosses) and 95%

confidence intervals, with fixed mD = 0.2, U = 0.1 (panel a), mD = 0.2, d = 103 (panel b)

and fixed d = 103, U = 0.1 (panel c). The vertical dotted lines correspond to the values

of d, µ and mD such that −dU/r(0) = 500 (panels a and c; this corresponds to a mutant

input N(t)U ≈ 500 at small times, ensuring that criterion (ii) in Section 3.3 is fulfilled)

and U = Uc (panel b). The blue crosses in panel (c) correspond to the establishment time

tI0(mD), obtained by individual-based simulations, in the presence of an intermediate habitat

with phenotype optimum xI such that ‖x∗ − xI‖2/2 = ‖xI‖2/2 = mD/2. In all cases, the

parameter values are rmax = 0.1, λ = 1/300, n = 6.
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see Anciaux et al., 2018).

We argue that this type of dependence has important implications for the potential

effect of an intermediate milder sink, with phenotype optimum xI in between x∗ (opti-

mum in the source) and 0 (optimum in the sink), connected by a stepping-stone model

of migration. A natural question is then whether the presence of this intermediate sink

affects the waiting time to establish in the harsher sink. In that respect, assume that

the overall harshness of stress (fitness distance between optima) is the same with and

without the intermediate habitat I: schematically, mD = mD(x∗ → 0) = mD(x∗ →
xI) +mD(xI → 0). When mD is low, t0 is roughly linear with mD so that it may take a

similar time to establish in two step and in one (the sum of intermediate establishment

times would be the same as that to establish in a single jump). However, for harsher

stress levels where t0 is superlinear with mD, the intermediate habitat could provide a

springboard to invade the final sink, if both intermediate jumps are much faster than

the leap from source to final sink.

To check this theory, we considered a new individual-based model with an interme-

diate habitat with phenotype optimum xI such that ‖x∗ − xI‖2/2 = ‖xI‖2/2 = mD/2.

The dynamics between the source and the sink are the same as those described in

Section 2.5. In addition, we assume that (1) the source also sends migrants to the

intermediate habitat at a rate d; (2) reproduction, selection and drift occur in the in-

termediate habitat following the same rules as in the sink, until the population NI(t)

in the intermediate habitat reaches the carrying capacity K = N∗ (same population

size as in the source); (3) the intermediate habitat sends migrants to the ultimate sink,

at rate dNI(t)/N
∗. Then, we computed the time tI0(mD) needed to establish in the

final sink, in the presence of the intermediate habitat (value averaged over 100 replicate

simulations).

The results presented in Fig. 6c (blue crosses) confirm that for small mD, the pres-

ence of an intermediate habitat has almost no effect (tI0(mD) ≈ t0(mD)). However, when

mD becomes larger and t0(mD) becomes superlinear, the establishment time in the sink

is dramatically reduced by the presence of the intermediate sink (tI0(mD) � t0(mD);

e.g., for mD = 0.5, 5 · 103 ≈ t0(mD)� tI0(mD) ≈ 364).

Effect of mutation in the sink on the establishment time. We have seen in

Fig 6b that mutation has a non-monotonous impact on establishment time. However,

a higher mutation rate affects both the source equilibrium state and the sink dynamics.

A natural question to ask is thus whether local mutation in the sink helps or hinders

invasion. Indeed, mutation in the FGM (and other models with both deleterious and
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beneficial mutations) can have antagonistic effects: it generates fitness variance to fuel

adaptation but lowers the mean fitness by creating a mutation load. This is of course

also true for mutation in the source, but the interaction with migration in the sink

makes the outcome less straightforward to grasp.

To tell apart the influences of local mutation on invasion speed, we analyzed (Ap-

pendix J) a scenario where mutation is absent in the sink, but still active in the source,

so that the latter is unchanged. An expression equivalent to eq. (10) is obtained in this

case for the mean fitness trajectory. We compared the corresponding time to establish-

ment, noted t00, with the establishment time t0 to check whether local mutation (in the

sink) speeds or slows invasion.

The results in Fig. 7 show that local mutation can either slow down or accelerate

invasion, depending on the mutational variance (µ) and stress level (mD). For a given

level of stress (mD), local mutation tends to speed invasion as long as mutational

variance (µ) is limited (left part of the graph) but hinders it when it becomes larger

(right part of the graph). The transition from helping to hindering invasion happens

at larger µ values when the stress is harsher (higher mD). It thus appears that the

beneficial effect of local mutation in producing variance dominates when mutation is

limited while its negative effect in load buildup takes over as µ is increased. The

transition occurs at higher µ under harsher stress because the former effect is more

critical then, while the latter is roughly independent of stress. This pattern illustrates

quite strikingly the complex implications, for adaptation dynamics, of the ambivalent

nature of mutation in the FGM.

3.3 Range of validity of the model

We explored the range of validity of the analytical model by comparing theory and

simulations over a wide range of parameter values. The raw results are given in Ap-

pendix I. Overall, the model is more accurate as U and d increase and mD (equivalently,

rD = mD − rmax), n and λ decrease. More precisely, theoretical and numerical analysis

yield two (a priori conservative) conditions that should lead to the model being accu-

rate: (i) U ≥ Uc = n2λ/4, for the WSSM to apply; (ii) dU/rD � 1, for the large d

approximation to apply.

Below we detail each criterion, their robustness and possible empirical insight on their

realism.

Criterion (i): it is formally derived in Appendix E of (Martin and Roques, 2016)

and guarantees that the mutation term associated with the FGM linearizes to produce
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Figure 7: Comparison between the establishment times t0 (with mutation in the

sink) and t00 (without mutation in the sink). The heat map corresponds to sign(t0 −
t00) log10(1+|t0−t00|): negative values indicate that t00 > t0 (faster establishment with mutation

in the sink) and positive values indicate that t0 > t00 (faster establishment without mutation

in the sink).

an analytically tractable PDE. While the model is indeed accurate whenever U > Uc, it

remains reasonably so even at fairly lower mutation rates. Even for mutation rates U =

Uc/30 (but keeping a large d), r(t) and N(t) from eq. (10) still accurately capture the

average trajectories (Fig. 8), although the length of Phase 2 in the numerical simulations

becomes more variable, around this average, as U is decreased. Consistently, Fig. 6b

shows that the invasion time in eq. (12) accurately captures the average of simulations

far below U = Uc, with larger variability around this mean as U decreases.

As an example, empirical estimates in E. coli, based on a recent mutation accumu-

lation experiment (Trindade et al., 2010) suggest U ∈ [0.004, 0.006] and E[s] = nλ/2 ∈
[0.02, 0.04] (mean effect of mutations on fitness), which yields U/Uc ∈ [0.2, 0.6] for n = 1

and U/Uc ∈ [0.033, 0.1] for n = 6. This suggests that E. coli may lie somewhere below

the critical mutation rate, at a similar order. Note however that estimates of these

quantities are fairly scarce (even in this well studied biological model) and seem to

vary substantially across experiments (medium, strain, growth conditions). We suspect

that viruses (especially RNA viruses) may lie well within U ≥ Uc, while bacteria may

vary widely around U = Uc. Obviously any proper statement on this issue would re-

quire a full review of empirical estimates (appropriately scaled in consistent time units),

wherever available.

Criterion (ii): this criterion, which is confirmed by the simulations in Appendix I

and Fig. 6 panels (a) and (c), stems from the following argument: the early population
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size in the sink is of order N(t) ≈ d/|r(0)| (no evolution), with |r(0)| = |rD+µn/2| ≈ rD

(when µ � rD). Thus whenever d � rD/U , the mutant input N(t)U in the sink

population quickly reaches a large value N(t) U ≈ d U/rD � 1 and only increases later

on. Adaptive evolution can then take place within the sink, in a way that is accurately

captured by a deterministic approximation (see the dotted lines in Fig. 6). Conversely,

when d is smaller and/or rD is larger, the early population size in the sink is small, so

that the deterministic approximation does not apply anymore. In this case, we see that

the time t0 is much more variable, and increases on average with smaller d and larger

rD (or equivalently mD), see Fig. 6.

Empirically evaluating the criterion (ii) requires estimates of d, U, rD on the same

timescale (hours, days, generations) in a well defined sink. Such estimates should be

possible from dedicated experiments controlling the immigration rate, in strains with

known mutational parameters, and environmental stresses with well characterized de-

mographic effect. They would greatly help our understanding of source-sink dynamics.

However, to the best of our knowledge, they are not available to date.

4 Discussion

We derived an analytically tractable PDE-ODE framework describing evolutionary and

demographic dynamics of asexuals in a source-sink system. Comparison with individual-

based stochastic simulations shows that the approach is accurate in the WSSM regime

(large mutation rates compared to mutation effects) and with a large migration rate,

and seems robust to mild deviations from this regime. This approach reveals the typical

shape of the trajectories of mean fitness and population sizes in a sink: (1) in the case

of establishment failure, after a brief increase, the mean fitness remains stable at some

negative level which depends on the harshness of stress; (2) in the case of successful

establishment, this “plateau” is followed by a sudden increase in mean fitness up to

the point where it becomes positive and the sink becomes a source. Note that here, we

ignored density dependent effects in the sink, so that mean fitness ultimately converges

towards an equilibrium that is independent of any migration effect, the latter being

diluted into an exploding population.

The three first phases predicted by the model, for the case of successful estab-

lishment, are qualitatively observed in (Dennehy et al., 2010), an experimental study

of invasion of a black-hole sink (an asexual bacteriophage shifting to a new bacterial

host). The “host shift” scenario in their Fig. 3 corresponds roughly to our scenario

with a population evolved on the native host sending migrants to a new host. The
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conditions may differ however as the population may not be initially at equilibrium in

the native host at the onset of migration. Yet, the dynamics are qualitatively simi-

lar to those in our Fig. 2, although the time resolution in the data is too limited to

claim or test any quantitative agreement. An extension of the present work could be

to allow for non-equilibrium source populations, which can readily be handled by the

PDE (9) (reformulating φ(z) = φ(z, t)). However, our analytical result on t0 does rely

on an equilibrium source population. Note also that the four phases identified here

are observed, in simulations, even in the low d or low U regimes where our analytical

derivations can break down quantitatively. Therefore, while the model may provide

qualitatively robust insight, quantitative analyses are necessary to really test its pre-

dictions. This would ideally include associated measures of decay rates rD, mutation

rate U and ideally maximal possible growth rate rmax, with a known immigration rate

d.

Quite unexpectedly, the evolutionary dynamics (especially the waiting time t0 to

establishment) do not depend on the immigration rate. This emerges mathemati-

cally from the fact that the evolutionary dynamics only depend on the population

size through the ratio N(t)/d between the current population size and the immigra-

tion rate, this ratio itself remaining independent of d. This is confirmed by stochastic

individual-based simulations (Fig. 6a): establishment time roughly decreases as 1/d

when d is small but indeed stabilizes as d becomes larger. More precisely, the result

on the independence of t0 with respect to d should always hold with an initially empty

sink and when dU/rD � 1 (see Section 3.3). In this case, the mutant input in the sink

population is always large enough to enable our deterministic framework to accurately

capture the evolution in the sink. This result a priori extends to any model where

evolution and demography are density-independent. However density dependent effects

on demography or evolution (including sexual reproduction) might alter this outcome.

Yet, we argue that purely demographic effects due to a finite carrying capacity in the

sink environment should have limited impact on the conclusions of our model, up until

establishment time (as long as K is large enough).

In a black-hole sink experiment Perron et al. (2007) studied the evolution of re-

sistance to two lethal doses of antibiotics and their combinations in the bacterium

Pseudomonas aeruginosa (also asexual). Their experiment differs from our scenario in

that the sink populations were initially filled with many “naive” individuals (N0 � 1,

amounting to an initial large single immigration event). The authors did notice that

immigration rate d affected population densities, but this is not directly a test of our

model: our deterministic model also predicts that N(t) should depend on d, only the
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mean fitness and time to establishment do not.

The independence between t0 and d is counter-intuitive if we consider sink invasion

as a repeated evolutionary rescue ’experiment’. Indeed, the immigration process in the

sink could also be seen as a Poisson process of incoming new lineages (from the source),

each having a given probability pR to yield a rescue in the future (in the absence of

new immigration), hence to ultimately turn the sink into a source. This probability

pR can be computed from evolutionary rescue theory, with various flavours: see (Orr

and Unckless, 2014) for a context-independent single allele rescue model or, in the case

of the FGM, using results in (Anciaux et al., 2018). By basic properties of Poisson

processes, the waiting time t1 to the first arrival, in the sink, of such a future rescue

lineage should be exponential with mean 1/(d pR), thus decreasing as 1/d.

However, this waiting time is different from the one computed here. Our t0 denotes

the time at which the mean fitness of the sink population becomes positive in the

absence of immigration, hence the time at which the sink has truly become a source. The

evolutionary rescue approach above computes the time t1 at which a lineage ultimately

destined to produce a resistant genotype, enters the sink. This lineage may be very

rare by t = t1, it may even not be resistant itself but only destined to produce a mutant

offspring that will be. The time at which the sink will de facto be a positively growing

source can thus be far later. A study and comparison of both waiting times is interesting

and feasible, but beyond the scope of the present paper. This remark, however, has

one key implication: migration may be stopped long before t0 and the sink may still

ultimately become a source, with some probability (even if this will be ’visible’ much

later).

Some insight into the possible effects of management strategies, e.g. quarantine (d),

lethal mutagenesis (U), prophylaxis (mD and rmax), can be developed from the results

presented here.

Migration (propagule pressure) is considered an important determinant of the suc-

cess of biological invasions in ecology (Von Holle and Simberloff, 2005; Lockwood et al.,

2005). Consistently, it has been shown that the factors increasing potential contacts

between human populations and an established animal pathogen or its host tend to

increase the risk of emergence of infectious diseases (Morse, 2001). Under the ’repeated

rescue approach’ above, it is indeed expected that emergence risk should increase as

1/contact rate. However, the present work shows that the time at which this emergence

will be de facto effective (visible) may be unaffected by this contact rate. This means

that care must be taken in the criteria chosen to evaluate strategies, and between the

minimization of emergence risk vs. emergence time.
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The use of a chemical mutagen to avoid the adaptation of a microbial pathogen

and the breakdown of drugs is grounded in lethal mutagenesis theory (Bull et al.,

2007; Bull and Wilke, 2008). Our approach successfully captures the occurrence of

this phenomenon: the establishment fails when the mutation rate U exceeds a certain

threshold, which depends on rmax, on the mutational variance λ and on the dimension

of the phenotypic space. Additionally, once this threshold is reached, the equilibrium

mean fitness ceases to depend linearly on the mutational parameter (µ =
√
U λ), but

rapidly decays (see Fig. 5). The existence of this negative “jump” in the equilibrium

mean fitness, whose magnitude depends on the harshness of stress, leaves no room

for evolutionary rescue. Conversely, our approach also reveals that below the lethal

mutagenesis threshold, increasing the mutation rate decreases the establishment time

as 1/
√
U . Hence, the use of a mutagen may be a double-edged sword since it can both

hamper or increase the potential for adaptation in the sink.

As expected, the establishment time t0 increases with the harshness of stress mD;

the population simply needs more time to adapt to more stressful environmental condi-

tions. Increasing mD or decreasing rmax, whenever possible, are probably the safest ways

to reduce the risks of biological invasions through adaptive processes or cross-species

transmissions of pathogens (in both low and high d regimes). The precise dependence

of t0 with respect to mD brings us further valuable information. As long as our ap-

proach is valid (not too large stresses, leading to finite establishment times), a linear

dependence emerges. It suggests that, in a more complex environment with a source

and several neighbouring sinks connected by a stepping stone model of migrations, the

exact pathway before establishment occurs in a given sink does not really matter. Only

the sum of the stresses due to habitat shifts has an effect on the overall time needed

to establish in the whole system. Conversely, for larger stress values our analytical

approach is not valid, and the numerical simulations indicate a convex (surlinear) de-

pendence of t0 with respect to mD. In such case, for a fixed value of the cumulated

stress, the establishment time in the sink could be drastically reduced by the presence

of intermediate sink habitats.

This result, which needs to be confirmed by more realistic modelling approaches

and empirical testing, might have applications in understanding the role of so-called

“preadaptation” in biological invasions. Recent adaptation to one or more facets of

the environment within the native range has been proposed as a factor facilitating

invasions to similar environments (e.g. Hufbauer et al., 2012, anthropogenically induced

adaptation to invade). Our results suggest that preadaptation might only reduces the

overall time to invasion (i.e., taking the preadapation period into account) only when
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invading highly stressful habitats.

The effect of a given environmental challenge, and thus their joint effects when

combined (Rex Consortium, 2013), might be modelled in various ways in a fitness

landscape framework (see also discussions in Harmand et al., 2017; Anciaux et al.,

2018). The first natural option is to consider that multiple stresses tend to pull the

optimum further away, and possibly lower the fitness peak rmax. In the simplified

isotropic model studied here, a larger shift in optimum amounts to increasing mD.

However, a possibly more realistic anisotropic version, with some directions favored

by mutation or selection, might lead to directional effects (where two optima at the

same distance are not equally easy to reach) and be particularly relevant to multiple

stress scenarios. Such a more complex model could be handled by focusing on a single

dominant direction (discussed in Anciaux et al., 2018), or by following multiple fitness

components (one per direction, Hamel et al. in prep).

Clearly, many developments are possible and could prove useful to understand how

qualitative and quantitative aspects of environmental stresses may affect rescue and

invasion. The present isotropic approach provides a simple, tractable null model for

the latter, where all environmental effects are summarized by their measurable effects

on mD, U λ and rmax. We hope it will foster the empirical study of source-sinks with

associated measurements of these key parameters.
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Débarre, F., O. Ronce, and S. Gandon (2013). Quantifying the effects of migration and

mutation on adaptation and demography in spatially heterogeneous environments.

Journal of Evolutionary Biology 26 (6), 1185–1202.

Dennehy, J. J., N. A. Friedenberg, R. C. McBride, R. D. Holt, and P. E. Turner (2010).

Experimental evidence that source genetic variation drives pathogen emergence. Pro-

ceedings of the Royal Society B: Biological Sciences 277 (1697), 3113–3121.

Drury, K. L. S., J. M. Drake, D. M. Lodge, and G. Dwyer (2007). Immigration events

dispersed in space and time: Factors affecting invasion success. Ecological Mod-

elling 206, 63–78.

Furrer, R. D. and G. Pasinelli (2016). Empirical evidence for source–sink populations:

a review on occurrence, assessments and implications. Biological Reviews 91 (3),

782–795.

Peer Community In Evolutionary Biology — DOI: 10.1101/433235 30 of 52

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/433235doi: bioRxiv preprint first posted online Oct. 3, 2018; 

http://dx.doi.org/10.1101/433235


Garnier, J., L. Roques, and F. Hamel (2012). Success rate of a biological invasion in

terms of the spatial distribution of the founding population. Bulletin of Mathematical

Biology 74, 453–473.

Gerrish, P. J. and P. D. Sniegowski (2012). Real time forecasting of near-future evolu-

tion. Journal of the Royal Society Interface 9 (74), 2268–2278.

Gomulkiewicz, R., R. D. Holt, and M. Barfield (1999). The effects of density depen-

dence and immigration on local adaptation and niche evolution in a black-hole sink

environment. Theoretical Population Biology 55 (3), 283–296.

Gomulkiewicz, R., R. D. Holt, M. Barfield, and S. L. Nuismer (2010). Genetics, adap-

tation, and invasion in harsh environments. Evolutionary Applications 3 (2), 97–108.

Harmand, N., R. Gallet, R. Jabbour-Zahab, G. Martin, and T. Lenormand (2017).

Fisher’s geometrical model and the mutational patterns of antibiotic resistance across

dose gradients. Evolution 71 (1), 23–37.

Hietpas, R. T., C. Bank, J. D. Jensen, and D. N. Bolon (2013). Shifting fitness land-

scapes in response to altered environments. Evolution 67 (12), 3512–3522.

Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: eco-

logical and evolutionary perspectives. Proceedings of the National Academy of Sci-

ences 106 (Supplement 2), 19659–19665.

Holt, R. D., M. Barfield, and R. Gomulkiewicz (2004). Temporal variation can facilitate

niche evolution in harsh sink environments. The American Naturalist 164 (2), 187–

200.

Holt, R. D., M. Barfield, and R. Gomulkiewicz (2005). Theories of niche conservatism

and evolution: could exotic species be potential tests, pp. 259–290. Sinauer Associates

Sunderland, MA.

Holt, R. D., R. Gomulkiewicz, and M. Barfield (2003). The phenomenology of niche

evolution via quantitative traits in a “black-hole” sink. Proceedings of the Royal

Society of London B: Biological Sciences 270 (1511), 215–224.
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A Fitness distribution of the migrants: derivation

of formulae (5) and (6)

Consider an individual with phenotype x. Its fitness in the source is

msource = −‖x− x?‖2/2,

where x? is the optimal phenotype in the source, whereas its fitness in the sink is

mmigr = −‖x‖2/2. We observe that

mmigr = − ‖x− x? + x?‖2

2

= − ‖x− x?‖2 + ‖x?‖2 + 2(x− x?) · x?

2

= msource −
‖x?‖2

2
− ‖x− x?‖ ‖x?‖u

= msource −mD − 2
√
mD|msource|u, (13)

with mD = ‖x?‖2/2 and a constant u ∈ [−1, 1]. As the source is assumed to be at

the mutation-selection equilibrium, the distribution of fitness in the source satisfies

msource ∼ −Γ(n/2, µ) (Martin and Roques, 2016, equation (10)) and the corresponding

moment generating function is Mmsource(z) = (1 + µz)−n/2. The results in (Martin and

Lenormand, 2015) show that u is a random variable with moment generating function:

Mu(z) := E[euz] = 0F1(n/2, z
2/4),

with 0F1 the hypergeometric function, defined by 0F1(θ, z) =
∑∞

k=0
1

θ(θ+1)···(θ+k−1)
zk

k!
.

Let us first compute the moment generating function Mmigr(z) := E[emmigrz]. We have

Mmigr(z) = E[E[emmigrz|msource]],

and using (13),

Mmigr(z) = E
[
emsourcezMu

(
−2
√
mD|msource|z

)]
e−mDz

= E
[
emsourcez 0F1

(
n/2, −mDmsourcez

2
)]
e−mDz.

Thanks to the definition of the hypergeometric function 0F1(n/2, z), we get:

Mmigr(z) =
∞∑
k=0

(−mD)k

n/2(n/2 + 1) · · · (n/2 + k − 1)

z2k

k!
E[emsourcezmk

source]e
−mDz

=
∞∑
k=0

(−mD)k

n/2(n/2 + 1) · · · (n/2 + k − 1)

z2k

k!
M (k)

msource(z)e−mDz,
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with M
(k)
msource(z) the kth derivative of Mmsource(z) with respect to z. Thus,

Mmigr(z) =
∞∑
k=0

1

k!

(
mDµz

2

1 + µz

)k
(1 + µz)−n/2e−mDz

=
1

(1 + µz)n/2
· exp

[
−mDz +

mDµz
2

1 + µz

]
.

Setting φ(z) = ln (Mmigr(z)) , we obtain formula (5).

Let us now show that the distribution of the migrants in the sink satisfies (6). Let

pmigr be defined by (6). We just have to check that the moment generating function of

pmigr is Mmigr:∫ 0

−∞
ezxpmigr(x)dx =

∫ 0

−∞
ezx

1

µ

(
|x|
mD

)n/2−1
2

e
x−mD
µ In

2
−1

[
2
√
mD|x|
µ

]
dx

= e−mD/µ
∫ 0

−∞

∞∑
p=0

e(z+1/µ)x mp
D

µ2p+n/2
· 1

p!
· |x|

p+n/2−1

Γ(p+ n/2)
dx

= e−mD/µ
∞∑
p=0

mp
D

µ2p+n/2
· 1

p!
· 1

Γ(p+ n/2)

∫ 0

−∞
e(z+1/µ)x|x|p+n/2−1dx,

where Iν is the modified Bessel function of the first kind and Γ the gamma function.

Now, for all positive numbers a and b, we have:∫ 0

−∞
eax|x|b−1dx =

1

ab

∫ ∞
0

e−x|x|b−1dx =
Γ(b)

ab
.

Therefore, we get, for z > −1/µ:∫ 0

−∞
ezxpmigr(x)dx = e−mD/µ

∞∑
p=0

mp
D

µ2p+n/2
· 1

p!
· 1

Γ(p+ n/2)

Γ(p+ n/2)

(z + 1/µ)p+n/2

=
e−mD/µ

(1 + µz)n/2

∞∑
p=0

(
mD/µ

1 + µz

)p
· 1

p!

=
e−mD/µ

(1 + µz)n/2
exp

(
mD/µ

1 + µz

)
=

1

(1 + µz)n/2
exp

(
− mDz

1 + µz

)
.

This is consistent with formula (5), which proves that the expression (6) is correct.
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B PDE satisfied by the CGF of the fitness distri-

bution

In the WSSM regime, and in the absence of immigration, Martin and Roques (2016)

(see Appendix E, equation (E5)) have shown that the CGF of the fitness distribution

satisfies the following equation:

∂tCt(z) = ∂zCt(z)− ∂zCt(0)− µ2
(
z2 ∂zCt(z) +

n

2
z
)
, z ≥ 0.

We derive here the additional term in (9), which describes the effect of immigration on

the CGF.

In that respect, we consider a discrete population of size N(t) ∈ N at time t, and

the corresponding fitnesses (m1(t), . . . ,mN(t)(t)). We define the “empirical” moment

generating function

Mt(z) :=
1

N(t)

N(t)∑
i=1

emi(t) z.

Assuming a Poisson number of immigration events, with rate d per unit time (see

Section 2.5), for ∆t small enough, the probability that a single immigration events

occurs during (t, t+∆t) is approximately d∆t. The probability that several immigration

events occur during this time interval is close to 0. Therefore, the expected change in

the moment generating function during ∆t, conditionally on the fitness mmigr of the

unique migrant, is:

∆Mt(z|mmigr) = d ∆t

 1

N(t) + 1

N(t)∑
i=1

emi(t) z + emmigr z

− 1

N(t)

N(t)∑
i=1

emi(t) z


= d ∆t

[
emmigr z

N(t) + 1
− Mt(z)

N(t) + 1

]
.

Taking expectation over the distribution of mmigr (see Appendix A for more details on

the distribution of mmigr), we get

∆Mt(z) =
d ∆t

N(t) + 1

(
eφ(z) −Mt(z)

)
,

with φ(z) = ln (E [emmigr z]) . The corresponding change in the CGF Ct(z) = lnMt(z)

is ∆Ct(z) ≈ ∆Mt(z)/Mt(z). Thus,

∆Ct(z) ≈ d ∆t

N(t)

(
eφ(z)−Ct(z) − 1

)
.
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Finally, dividing the above expression by ∆t and passing to the limit ∆t→ 0, we obtain

the last term in (9), which describes the effect of immigration on the CGF:

d

N(t)

(
eφ(z)−Ct(z) − 1

)
. (14)
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C Solution of the system (1) & (9)

This section is devoted to the mathematical study of the system (1) & (9). We rewrite

it in the following form:
∂tCt(z) = α(z)∂zCt(z)−m(t) + β(z) + d

N(t)

(
eφ(z)−Ct(z) − 1

)
,

N ′(t) = N(t) (rmax +m(t)) + d,

Ct(0) = 0,

N(0) = 0,

(15)

with t > 0 and z ≥ 0, and where m(t) = ∂zCt(0), d ≥ 0, α(z) := 1 − µ2 z2, β(z) :=

−µn z/2.

We can easily check that the sink is not empty at each time t > 0:

Lemma 1. Assume that m is continuous over [0,∞). Then, at all time t > 0, we have

N(t) > 0.

Proof. For ε > 0 small enough, as N ′(0) = d > 0, we have N(t) > 0 for all t ∈ (0, ε].

Additionally, for all t ≥ ε,

N(t) = e
∫ t
ε (rmax+m(s)) ds

(
N(ε) + d

∫ t

ε

e−
∫ v
ε (rmax+m(s)) ds dv

)
> 0. (16)

Let N(t), Ct(z) be a solution of (15), such that m is continuous over [0,∞). Set

Dt(z) = Ct(y(z)), with y(z) = tanh(µz)/µ which satisfies:{
y′(z) = α(y(z)),

y(0) = 0,

so that

∂tDt(z) = ∂tCt(y(z)) and ∂zDt(z) = α(y(z))∂zCt(y(z)).

Thus, Dt(z) satisfies the simpler equation

∂tDt(z) = ∂zDt(z)−m(t) + β(y(z)) +
d

N(t)

(
eφ(y(z))−Dt(z) − 1

)
,

with m(t) = ∂zDt(0).

Using the method of characteristics, we derive an analytic expression for Dt(z). Fix

z ≥ 0 and denote for all z ≥ t > 0:

v(t) = exp(Dt(z − t)).
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The function v ∈ C1((0, z]) satisfies for all t ∈ (0, z):

v′(t) = (∂tDt(z − t)− ∂zDt(z − t)) v(t),

=

[
β(y(z − t))−m(t)− d

N(t)

]
v(t) +

d

N(t)
eφ(y(z−t)),

=

[
β(y(z − t))− N ′(t)

N(t)
+ rmax

]
v(t) +

d

N(t)
eφ(y(z−t)),

thanks to N ′(t) = (rmax +m(t))N(t) + d. Let us fix times 0 < ε < t. By Lemma 1, we

know that N(s) > 0, for all s ∈ [ε, t] and so v(t) is given by:

v(t) = exp

[∫ t

ε

(
β(y(z − τ))− N ′(τ)

N(τ)
+ rmax

)
dτ

]
[
eC(ε,y(z)) +

∫ t

ε

d eφ(y(z−τ))

N(τ)
exp

(
−
∫ τ

ε

(
β(y(z − s))− N ′(s)

N(s)
+ rmax

)
ds

)
dτ

]
.

As
∫ t
ε
N ′(s)
N(s)

ds = lnN(t)− lnN(ε), we can simplify the last expression to:

v(t) = exp

[
− lnN(t) +

∫ t

ε

(β(y(z − τ)) + rmax) dτ

]
[
N(ε) ln eC(ε,y(z)) +

∫ t

ε

d eφ(y(z−τ)) exp

(
−
∫ τ

ε

(β(y(z − s)) + rmax) ds

)
dτ

]
.

Taking the limit as ε tends to 0 and using the fact that the initial population in the

sink is N(0) = 0, the above expression can be simplified to:

v(t) = d

∫ t

0

eφ(y(z−τ))−
∫ τ
0 (β(y(z−s))+rmax)dsdτ · exp

[
− lnN(t) +

∫ t

0

(β(y(z − τ)) + rmax) dτ

]
.

Hence, by reversing the characteristics, we get:

Dt(z) =

∫ t

0

β(y(z + τ))dτ − ln (N(t)) + rmaxt

+ ln

[
d

∫ t

0

eφ(y(z+τ))−rmax(t−τ)−
∫ t
τ β(y(z+s))dsdτ

]
.

This leads to an explicit but complex formula for Ct(z) thanks to the relation

Ct(z) = Dt

(
1

µ
atanh(µz)

)
. (17)

Additionally, we have:

∂zDt(z) = β(y(z + t))− β(y(z)) +

∫ t
0
∂z g(t, z, τ) dτ∫ t
0
g(t, z, τ) dτ

,
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with g(t, z, τ) = exp
[
φ(y(z + τ)) + rmax(τ − t)−

∫ t
τ
β(y(z + s))ds

]
. Using the fact that

m(t) = ∂zDt(0), y(0) = 0 and β(0) = 0, we get:

m(t) =β(y(t)) +

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ))− β(y(t))] dτ∫ t

0
g(t, 0, τ) dτ

,

=

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ))] dτ∫ t

0
g(t, 0, τ) dτ

,

=

∫ t
0
g(t, 0, τ) [y′(τ)φ′(y(τ)) + β(y(τ)) + rmax] dτ∫ t

0
g(t, 0, τ) dτ

− rmax,

=

∫ t
0
g(t, 0, τ) ∂τg(t, 0, τ) dτ∫ t

0
g(t, 0, τ) dτ

− rmax,

=
g(t, 0, t)− g(t, 0, 0)∫ t

0
g(t, 0, τ) dτ

− rmax.

Using the expression g(t, 0, τ) = exp
[
φ(y(τ)) + rmax(τ − t)−

∫ t
τ
β(y(s))ds

]
, the for-

mula (5) for φ and y(z) = tanh(µz)/µ, we finally get:

m(t) =
exp

[
(rmax − µ n

2
)t+ mD

2µ
(e−2µt − 1)

]
− 1∫ t

0
exp

[
(rmax − n

2
µ)τ + mD

2µ
(e−2µτ − 1)

]
dτ
− rmax. (18)

As we have an explicit formula for m(t), we can also solve the ODE N ′(t) = N(t) (rmax+

m(t)) + d (formula (16), with ε = 0 and N(ε) = 0). Finally, we can check that

N(t), Ct(z) (defined by (17)) is a solution of (15) such that m (given by (18)) is

continuous over [0,∞). Using the expression (18) with r(t) = rmax + m(t), we obtain

the formula (10) in the main text.
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D Trajectories of mean fitness: U < Uc

(a) U = 10−2 = Uc/3 (b) U = 10−2 = Uc/3

(c) U = 10−3 = Uc/30 (d) U = 10−3 = Uc/30

(e) U = 10−4 = Uc/300 (f) U = 10−4 = Uc/300

Figure 8: Trajectories of mean fitnesses and population sizes, low mutation rates.

Same legend as in Fig. 2. Other parameter values are mD = 0.2, rmax = 0.1, λ = 1/300,

n = 6 and d = 104, leading to Uc = 0.03.
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E Phenotype distribution in the sink: dynamics of

r(t) and N(t)

The dynamics of mean fitness and population size corresponding to Fig. 3 are plotted

in Fig. 9, to illustrate the occurrence of the four phases in this particular simulation.

(a) (b)

Figure 9: Trajectory of mean fitness and population size in the sink corresponding

to the phenotype distribution in Fig. 3. Same legend as in Fig. 2.
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F Independence of the evolutionary dynamics with

respect to the immigration rate

The value of r(t) in formula (10) does not depend on d. Thus, only the population

size dynamics are influenced by the immigration rate, but not the dynamics of adap-

tation. Actually, this phenomenon appears for a more general deterministic black-hole

sink model, with a stable source and a constant immigration rate d ≥ 0. In the sink,

we have just to assume that the environment is initially empty (N(0) = 0), that both

demography and evolution are density-independent (so that density dependence only

arises in the migration effect). Apart from that, the proposed generalization may ac-

commodate arbitrary forms of mutation and selection effects (possibly with changes in

stress over time). The model then takes the following general form:
∂tCt(z) = Selection(t, z, Ct(z)) + Mutation(t, z, Ct(z)) + d

N(t)

(
eφ(z)−Ct(z) − 1

)
,

N ′(t) = N(t) r(t) + d,

Ct(0) = 0,

N(0) = 0,

with r(t) = ∂zCt(0) the coefficient of the exponential growth. Setting P (t) = N(t)/d,

we observe that the above system can be written in the form:
∂tCt(z) = Adaptation(t, z, Ct(z)) + Mutation(t, z, Ct(z)) + 1

P (t)

(
eφ(z)−Ct(z) − 1

)
,

P ′(t) = P (t) r(t) + 1,

Ct(0) = 0,

P (0) = 0,

with r(t) = ∂zCt(0). As this system does not depend on d, this implies that the

dynamics of P (t), of mean fitness r(t), and even of the full fitness distribution (Ct(z))

are all independent of d.
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G Large time behavior of r(t)

We recall that, according to formula (10),

r(t) =
f(t)− 1∫ t
0
f(τ) dτ

,

with f(t) = exp

[(
rmax − µ

n

2

)
t+

mD

2µ
(e−2µ t − 1)

]
.

We first show that r(t) is an increasing function of t. First, we can check that

f ′(t) = f(t)
(
rmax −

µn

2
−mDe

−2µt
)
.

Second, we have

r′(t) =
f ′(t)∫ t

0
f(τ)dτ

− f(t)− 1(∫ t
0
f(τ)dτ

)2 f(t)

=
f(t)(∫ t

0
f(τ)dτ

)2 [(rmax −
µn

2
−mDe

−2µt
)∫ t

0

f(τ)dτ − (f(t)− 1)

]
.

Let h(t) =
(
rmax − µn

2
−mDe

−2µt) ∫ t
0
f(τ)dτ − (f(t)− 1). Thus we see that

h′(t) = 2µmD e
−2µt

∫ t

0

f(τ)dτ ≥ 0.

Therefore for all t > 0, h(t) > h(0) = 0, which shows that r is increasing.

Since r(0) = rmax − µn/2−mD, this implies that r(t) > rmax − µn/2−mD for all

t > 0. In particular, r(∞) ≥ rmax − µn/2 − mD which implies that δ(mD) < mD in

(11).

Next, we compute the limit of r(t) as t→∞.

Case (i): we assume that rmax − µn/2 > 0. Then, f(t) ∼ e−
mD
2µ e(rmax−µn/2)t and∫ t

0

f(τ) dτ ∼ e−
mD
2µ

e(rmax−µn/2)t

rmax − µn/2
, as t→∞.

Thus,

r(t)→ rmax − µn/2 as t→∞.
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Case (ii): we assume that rmax − µn/2 = 0. Then f(t) = exp
[
mD
2µ

(e−2µt − 1)
]

and∫ t
0
f(τ) dτ ∼ t e−mD/(2µ) as t→∞. Thus,

r(t) ∼ e−mD/(2µ) − 1

e−mD/(2µ)t
→ 0 as t→∞.

Case (iii): we assume that rmax − µn/2 < 0. Consider an arbitrary constant α ∈ (0, 2).

We can check that, for all t < Tα := 1
2µ

ln 2
α

, we have:

e−2µt < 1− αµt.

In the sequel, we denote X := rmax − µn/2. We get:∫ ∞
0

f(t)dt =

∫ Tα

0

f(t)dt+

∫ ∞
Tα

f(t)dt

≤
∫ Tα

0

exp ((X −mDα/2)t) dt

+

∫ ∞
Tα

exp

[
Xt+

mD

2µ

(
e−2µTα − 1

)]
dt.

Using the assumption X = rmax − µn/2 < 0, we obtain:∫ ∞
0

f(t)dt ≤ e(X−mDα/2)Tα − 1

X −mD α/2
− exp

[
mD

2µ

(
e−2µTα − 1

)] eXTα

X
,

and using the definition of Tα = 1
2µ

ln 2
α

, we obtain∫ ∞
0

f(t)dt ≤ −
(α

2

)−X
2µ

[
γ

X − αmD/2
+

ρ

X

]
,

with γ :=
(
α
2

) X
2µ −

(
α
2

)αmD/(4µ) and ρ = exp
[
mD
2µ

(
α
2
− 1
)]

. This leads to the following

inequality:

r(∞) = − 1∫∞
0
f(t)dt

≤
(α

2

) X
2µ X − αmD/2

γ + ρ
(
1− αmD

2X

) ,
which can be rewritten:

r(∞) ≤ X − αmD/2

1 + ε
,

with

ε :=
(

1− αmD

2X

)
ρ
(α

2

)− X
2µ −

(α
2

)αmD
4µ
− X

2µ
.
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Next, to show that r(∞) < X−αmD/2, we only need to check that ε < 0. This is true

for certain values of α. As ρ = exp
[
mD
2µ

(
α
2
− 1
)]

, we observe that ε has the same sign

as:

ε′ =
(

1− αmD

2X

)
exp

[
mD

4µ
(α− 2)

]
− exp

[
mD

4µ
α ln(α/2)

]
.

Since X = rmax − µn/2, we get:

ε′ =
mD

4µ
[−α ln(α/2) + α (1 + 4/n)− 2] + o

(
1

µ

)
,

as µ→∞. Thus, ε < 0 for µ large enough, if and only if:

n >
4

ln(α/2)− 1 + 2/α
. (19)

For α small enough, this inequality is true for any n ≥ 1. However, higher values of α

lead to sharper estimates of δ(mD) in (11). With α = 1/4 for instance, the inequality

(19) is always satisfied (as n ≥ 1). We obtain that r(∞) ≤ X − mD
8

and δ(mD) ≥ mD
8

for µ large enough. If α is increased, e.g., α = 1/2, the inequality (19) is true for all

n ≥ 3, and consequently, r(∞) ≤ X− mD
4

for µ large enough (δ(mD) ≥ mD
4

, for µ large

enough). In our numerical computations (n = 6), we can use α = 3/4, which leads to

r(∞) ≤ X − 3mD
8

and δ(mD) ≥ 3mD
8

for large µ.
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H Establishment time t0: formula (12)

We recall that t0 is defined as the first zero of r(t). We note that, since r(t) is increasing,

it admits at most one zero.

First, if rmax − µn/2 ≤ 0, as r(t) is increasing and r(∞) < rmax − µn/2 (see (11)

and Appendix G), we have r(t) < 0 for all t ≥ 0. This implies that t0 =∞.

Second we assume that rmax − µn/2 > 0. In this case, r(∞) = rmax − µn/2 > 0

and the time t0 is finite (and positive). Therefore, we can solve the equation r(t) = 0,

which is equivalent to:

(rmax − µn/2)t+
mD

2µ

(
e−2µt − 1

)
= 0. (20)

Let us set c := mD/(rmax − µn/2). Since r(0) = rmax − µn/2 −mD < 0, we observe

that c > 1. The equation (20) is equivalent to:

2µ t− c = −c e−2µ t.

Multiplying this expression by e2µ t−c, we get:

(2µ t− c)e2µ t−c = −c e−c.

Setting X := 2µ t− c, we obtain:

X eX = −c e−c. (21)

As c > 1, −ce−c ∈ (−e−1, 0), thus the equation (21) admits two solutions, X0 =

W0(−c e−c) and X−1 = W−1(−c e−c) < X0, with W0 and W−1 respectively the principal

branch and the lower branch of the Lambert-W function. Thus, the equation (20)

admits two solutions, (c + X0)/(2µ) and (c + X−1)/(2µ) = 0, but only the first one is

positive. Finally, we obtain that

t0 =
1

2µ

(
c+W0(−ce−c)

)
. (22)

As t0 is an increasing function of c, we obtain that t0 decreases as rmax is increased,

and t0 increases as mD and n are increased. The dependence with respect to µ is more

subtle. Differentiating the expression (22) with respect to µ, we observe that t′0(µ) has

the same sign as:(
µn

2 rmax − µn
− 1−W0(−ce−c)

)(
c+W0(−ce−c)

)
.
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As the second factor in the above expression is always positive (since c > 1), we get

that t′0(µ) has the same sign as the function:

g(µ) :=
µn

2 rmax − µn
− 1−W0(−ce−c).

Differentiating g with respect to µ, we observe that g′(µ) has the same sign as rmax +

(µn/2 + mD)W0(−ce−c) = rmax − µn/2 + µn (1 − W0(−ce−c))/2 + mDW0(−ce−c).
Thus g′(µ) has the same sign as mD (1/c + W0(−ce−c)) + µn(1 −W0(−ce−c))/2 > 0,

as 1/c+W0(−ce−c) > 0 (since c > 1) and 1−W0(−ce−c) > 0. Finally, g is increasing,

with:

g(0) = −1−W0

(
−mD

rmax

e−
mD
rmax

)
≤ 0,

(and the sign is strict unless mD = rmax). Additionally, we have g(2rmax/n) = +∞
(corresponding to µlethal). This means that, unless mD = rmax, t0(µ) first decreases

until µ reaches an optimal value, and then increases as µ is increased.
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I Establishment time t0: dependence with the harsh-

ness of stress mD and the immigration rate d

Using the stochastic individual-based model of Section 2.5, we analysed the dependence

of the establishment time t0 with respect to mD and d for a wide range of parameter

values. Namely, taking U = 0.1, rmax = 0.1, λ = 1/300 and n = 6 as in Fig. 6, mD

was varied between 0.1 and 0.5. The results are presented in Fig. 10a. It shows that,

for each value of mD, there is a threshold value of the immigration rate above which

the establishment time t0 becomes almost independent of d. This threshold tends to

increase as the harshness of stress mD takes higher values. Additionally, we measured

the relative error between the theoretical value of t0 given by formula (12) and the value

given by individual-based simulations; see Fig. 10b. As soon as the parameters are far

from the black region in Fig. 10, (a,b), the approximation is accurate (relative error

< 0.1). This black region corresponds to values of t0 > 5000, for which individual-based

simulations were stopped before establishment, and where we can expect that the final

outcome is establishment failure. This means that there is only a narrow region where

formula (12) is not accurate; it is located close to the region where establishment fails,

and describes a rapid increase in t0 which is not captured by our analytical approach.

Fig. 10 (c,d) depicts comparable simulations, with U = Uc/3 = 0.01, i.e., outside of

the WSSM regime. The conclusions are similar to the case U = 0.1, but with a larger

region corresponding to establishment failure, and a lower accuracy (panel d).
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Figure 10: Establishment time t0, dependence with the harshness of stress mD and

the immigration rate d. (a,c): Average value of t0 over 100 individual-based simulations.

The color legend corresponds to log10(1+t0). (b,d): relative error between the theoretical value

of t0 given by formula (12) and the average value obtained by individual-based simulations.

The black regions correspond to parameter values for which at least one simulation led to

t0 > 5000; in that case, the average value of t0 was not computed numerically. In all cases,

the parameter values are rmax = 0.1, λ = 1/300, n = 6.
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J Dynamics in the absence of mutation in the sink

To get a better understanding of the four phases described in Section 3.1, we considered

the case where the mutation rate U = 0 in the sink (while it remains positive in the

source).

First, using the same arguments as in Appendix C, we can derive a formula for r(t)

in that case. The formula can be expressed in the same form as (10), with:

f(t) = exp [φ(t) + rmax t] ,

with φ given by (5).

An example of trajectory of fitness is given in Fig. 11, where we observe that the

four phases are still present. The corresponding phenotype distribution is presented in

Fig. 12. A video file of the phenotype distribution is also available as Supplementary

File 3.

Figure 11: Dynamics of r(t) in the absence of mutation in the sink. The blue curve

corresponds to the trajectory of r(t) given by a single individual-based simulation, in the

absence of mutation in the sink. The parameter values are mD = 0.4, U = 0.1, rmax = 0.1,

λ = 1/300, n = 6 and d = 104.
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(a) Phase 1: t = 10 (b) Phase 2: t = 50

(c) Phase 3: t = 115 (d) Phase 4: t = 190

Figure 12: Phenotype distribution in the sink, along the direction x1, in the ab-

sence of mutation. The vertical dotted lines correspond to the sink (x1 = 0) and source

(x1 =
√

2mD) optima. The black dotted curve corresponds to the theoretical distribution of

migrant’s phenotypes in the sink (Gaussian distribution, centered at x1 =
√

2mD, and with

variance µ =
√
U λ). The parameter values are mD = 0.4, U = 0.1, rmax = 0.1, λ = 1/300,

n = 6 and d = 104.
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