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ABSTRACT

Matrix profile has been recently proposed as a promising tech-

nique to the problem of all-pairs-similarity search on time

series. Efficient algorithms have been proposed for comput-

ing it, e.g., STAMP [13], STOMP [15] and SCRIMP++ [10]. All

these algorithms use the z-normalized Euclidean distance to

measure the distance between subsequences. However, as we

observed, for some datasets other Euclidean measurements

are more useful for knowledge discovery from time series.

In this paper, we propose efficient algorithms for comput-

ing matrix profile for a general class of Euclidean distances.

We first propose a simple but efficient algorithm called AAMP

for computingmatrix profilewith the "pure" (non-normalized)

Euclidean distance. Then, we extend our algorithm for the p-

norm distance. We also propose an algorithm, called ACAMP,

that uses the same principle as AAMP, but for the case of

z-normalized Euclidean distance. We implemented our algo-

rithms, and evaluated their performance through experimen-

tation. The experiments show excellent performance results.

For example, they show that AAMP is very efficient for com-

puting matrix profile for non-normalized Euclidean distances.

The results also show that the ACAMP algorithm is signifi-

cantly faster than SCRIMP++ (the state of the art matrix pro-

file algorithm) for the case of z-normalized Euclidean distance.
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1 INTRODUCTION

Matrix profile has been recently proposed as en efficient tech-

nique to the problem of all-pairs-similarity search in time se-

ries [3, 6, 11, 12, 14]. Given a time series T and a subsequence

lengthm, the matrix profile returns for each subsequence in-

cluded in T its distance to the most similar subsequence in

the time series. The matrix profile is itself a time series very

useful for data analysis, e.g., detecting the motifs (represented

by low values), discords (represented by high values), etc.

One naive solution for computing a matrix profile is the

nested loop algorithm that for each subsequence computes

its distance to any other subsequence using the distance func-

tion. However, this solution is not efficient and can take too

much time for relatively big databases. Recently, efficient al-

gorithms have been proposed for matrix profile computation,

, ,
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e.g., STAMP [13], STOMP [15] and SCRIMP++ [10]. All these

algorithms use the z-normalized Euclidean distance to mea-

sure the distance between subsequences.

However, we observed that for some datasets, other dis-

tances such as pure (non-normalized) Euclidean distance are

more useful for knowledge discovery. For example, in the case

of time series containing long subsequences of the same val-

ues (that show some type of stability in the activities), the z-

normalized distance cannot be used because the standard de-

viation of these subsequences is zero, thus the z-normalized

distance becomes infinite. In addition, in some cases the nor-

malization can remove some rare information from the ma-

trix profile. As an example, consider Figure 1.a that shows

a time series T , and Figures 1.b and 1.c that depict the ma-

trix profiles generated from T using z-normalized and pure

Euclidean distances respectively. As seen, the matrix profile

that uses z-normalized distance looses the information about

the anomaly around 500 in the time series. But, the pure Eu-

clidean distance highlights it.

We believe that for knowledge extraction from different

datasets, we need to give to the users the possibility of com-

puting matrix profiles with different similarity distances. In

this paper, we propose matrix profile algorithms for different

types of Euclidean distance. Our contributions are as follows.

• We first propose a simple but efficient algorithm called

AAMP for computing matrix profile with the pure Eu-

clidean distance. AAMP is executed in a set of itera-

tions, such that in each iteration the distance of sub-

sequences is computed incrementally. The time com-

plexity of AAMP is O(n × (n − m)) with small con-

stants, where n is the time series length andm the sub-

sequence length.

• We extend AAMP to compute matrix profile for the p-

norm distance that is more general than Euclidean.

• Wepropose an extension ofAAMP, calledACAMP, that

uses the same principle as AAMP but for z-normalized

Euclidean distance. In ACAMP, we use an incremen-

tal formula for computing z-normalized distance that

is based on some variables computed incrementally in

a sliding window that moves over the subsequences of

the time series.

We precise that these new algorithms are exact, anytime

and incrementally maintainable. They take a deterministic ex-

ecution time that only depends on the time series and subse-

quence length.

We implemented our algorithms and compared them with

the state of the art algorithm onmatrix profile, i.e., SCRIMP++

http://arxiv.org/abs/1901.05708v1
https://doi.org/00
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Figure 1: a) Example of a time seriesT ; b) matrix profile

of T generated using z-normalized Euclidean distance;

c) matrix profile of T generated using pure Euclidean

distance

[10]. The results show excellent performance gains. For ex-

ample, they show that the execution time of AAMP for pure

Euclidean and p-norm distances is several times smaller than

that of SCRIMP++. Also, they show that the ACAMP algo-

rithm can outperform SCRIMP++ with a factor of more than

50%.

The rest of this paper is organized as follows. In Section

2, we give the problem definition. In Section 3, we describe

our AAMP algorithm for computing matrix profile with pure

Euclidean and p-norm distances. In Section 4, we propose

the ACAMP algorithm for z-normalized distance. Section 5

presents the experimental results. Section 6 discusses related

work, and Section 7 concludes.

2 PROBLEM DEFINITION

In this section, we give the formal definition of the matrix

profile, and describe the problem we address.

Definition 2.1. A time series T is a sequence of real-valued

numbers T = 〈t1, . . . , tn〉 where n is the length ofT .

A subsequence of a time series is defined as follows.

Definition 2.2. Letm be a given integer value such that 1 ≤

m ≤ n. A subsequence Ti,m of a time series T is a continuous

sequence of values in T of length m starting from position i .

Formally, Ti,m = 〈ti , . . . , ti+m−1〉 where 1 ≤ i ≤ n −m + 1.

We call i the start position of Ti,m .

For each subsequence of a time series we can compute its

distance to all subsequences of the same length in the same

time series. We call this a distance profile.

Definition 2.3. Given a query subsequence Ti,m , a distance

profile Di of Ti,m in the time series T is a vector of the dis-

tances between Ti,m and each subsequence of length m in

time seriesT . Formally,Di = 〈di,1, . . . ,di,n−m+1〉, where di, j
is the distance between Ti,m and Tj,m .

Note that the term distance in Definition 2.3 does not re-

fer to the mathematical definition of a distance. It only gives

a measure on the difference between two subsequences. For

instance the z-normalized Euclidean distance does not satisfy

the (mathematical) axioms of a distance.

A matrix profile is a vector that represents the minimum

distance of each subsequence of T to other subsequences of

T .

Definition 2.4. Given a length m, the matrix profile of a

time series T is a vector P = 〈p1, . . . ,pn−m+1〉 such that pi is

the minimum distance of the subsequence Ti,m to any other

subsequence of T , for 1 < i < n − m + 1. In other words,

pi = min(Di), i.e., pi is the minimum value in the distance

profile ofTi,m .

In this paper, we are interested in efficient computation of

matrix profile using three different distance measures: 1) Eu-

clidean distance; 2) p-norm distance that is a generalization of

Euclidean distance; 3) z-normalized Euclidean distance. These

distances are defined as follows.

Definition 2.5. The Euclidean distance between two subse-

quences Ti,m and Tj,m is defined as:

Di, j =

√√√m−1∑
l=0

(ti+l − tj+l )
2 (1)

In this paper, sometimes we call the Euclidean distance as

pure Euclidean distance.

Definition 2.6. Let p > 1 be a positive integer, then the p-

norm distance between two subsequencesTi,m andTj,m is de-

fined as:

DPi, j =
p

√√√m−1∑
l=0

(ti+l − tj+l )
p (2)

The z-normalized Euclidean distance is defined as follows.

Definition 2.7. Let µi and µ j be the mean of the values in

two subsequencesTi,m andTj,m respectively. Also, let σi and

σj be the standard deviation of the values inTi,m andTj,m re-

spectively. Then, the z-normalizedEuclidean distance between

Ti,m and Tj,m is defined as:

DZi, j =

√√√m−1∑
l=0

(
ti+l − µi

σi
−
tj+l − µ j

σj

)2
(3)

3 AAMP

In this section, we propose AAMP an efficient algorithm for

computing matrix profile using the Euclidean distance. We

first present a formula for incremental computation of the Eu-

clidean distance in O(1), and then we detail our AAMP algo-

rithm that uses this formula for computing matrix profile.
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Figure 2: Example of AAMP execution on a time series of length n =8, and with subsequence length m=3. In each

iteration k , in a sliding window subsequences are compared with those that are k positions far from them

3.1 Incremental Computation of Euclidean
Distance

Here, we present a formula that allows us to compute the

Euclidean distance between two subsequences Ti,m and Tj,m
based on the Euclidean distance of subsequences Ti−1,m and

Tj−1,m . The formula is presented by the following lemma.

Lemma 1. Let Di, j be the Euclidean distance between two

subsequences Ti,m and Tj,m . Let Di−1, j−1 be the Euclidean

distance between two subsequencesTi−1,m andTj−1,m . Then

Di, j can be computed as:

Di, j =

√
D2
i−1, j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2 (4)

Proof. LetTi,m = 〈ti , ti+1, . . . , ti+m−1〉 andTj,m = 〈tj , tj+1,

. . . , tj+m−1〉. Then the square of the Euclidean distance be-

tween Ti,m and Tj,m is computed as:

D2
i, j =

m−1∑
l=0

(ti+l − tj+l )
2 (5)

And the square of the Euclidean distance between Ti−1,m
and Tj−1,m is:

D2
i−1, j−1 =

m−1∑
l=0

(ti−1+l − tj−1+l )
2 (6)

By comparing Equations (5) and (6), we have:

D2
i, j = D2

i−1, j−1 − (ti−1 − tj−1)
2
+ (ti+m−1− tj+m−1)

2. Thus,

we have:

Di, j =

√
D2
i−1, j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2.

�

By using the above equation,we can compute the Euclidean

distance Di, j by using the distance Di−1, j−1 in O(1).

3.2 Algorithm

The main idea behind AAMP is that for computing the dis-

tance between subsequences it uses diagonal sliding windows,

such that in each sliding window, the Euclidean distance is

computed only between the subsequences that have a precise

difference in their start position. These sliding windows allow

us to use Equation (4) for efficient distance computation.

Algorithm 1 shows the pseudo-code of AAMP. Initially, the

algorithm sets all values of the matrix profile to infinity (i.e.,

maximum distance). Then, it performs n −m − 1 iterations

using a variable k (1 ≤ k ≤ n − m − 1). In each iteration

k , the algorithm compares each subsequence Ti,m with the

subsequence that is k positions far from it, i.e., Ti,m+k . To do

this, AAMPfirstly computes the Euclidean distance of the first

subsequence of the time series, i.e., T1,m , with the one that

stars at position k , i.e., Tk,m . This first distance computation

is done using the normal formula of Euclidean distance, i.e.,

that of Equation (1). Then, in a sliding window, the algorithm

incrementally computes the distance of other subsequences

with the subsequences that are k position far from them, and

this is done by using Equation (4) in O(1). If the computed

distance is smaller than the previous minimum distance that

is kept in the matrix profile P , then the smaller distance is

saved in the matrix profile.

Example 1. Figure 2 shows an example of executing AAMP

over a time series of length n = 8, and for subsequences of

length m = 3. In this example, the algorithm proceeds in 4

iterations (n −m − 1 = 4). In Iteration 1, firstly the Euclidean

distance between T1,m and T2,m is calculated using the nor-

mal Euclidean distance formula. Then the sliding window sw1

moves to the next subsequences, and computes the distance

of T2,m and T3,m using Equation (4). Then, the sliding win-

dow moves to the next subsequences and computes their dis-

tances, i.e.,T3,m andT4,m . This continues until computing the

distance of subsequences that have one point of difference in

3



their start position. In the second iteration, in the sliding win-

dow sw2, the Euclidean distance is computed between each

subsequence and the one that is "two" positions far from it.

This continues until Iteration 4. Note that in each iteration

the first distance is computed using the normal formula of Eu-

clidean distance, and the other distances are computed using

the incremental formula, i.e., Equation (4).

As an optimization of AAMP, we can use the square of

the Euclidean distance for comparing the distance of differ-

ent subsequences, and at the end of the algorithm replace the

square of the distance by the real distance in the matrix pro-

file. This optimization reduces the number of sqrt operations

done during the algorithm execution.

Algorithm 1: AAMP algorithm: matrix profile with Eu-

clidean distance

Input: T : time series; n: length of time series;m:

subsequence length

Output: P : Matrix profile;

1 begin

2 for i=1 to n do

3 P[i] = ∞ ; // initialize the matrix profile

4 for k=1 to n-m-1 do

5 dist = Euc_Distance(T1,m,Tk,m ) // compute the

distance between T1,m , Tk,m
6 if dist < P[1] then

7 P[1] = dist;

8 if dist < P[k] then

9 P[k] = dist;

10 for i=2 to n - m + 1 - k do

11 dist =√
(dist2 − (ti−1 − ti−1+k )

2
+ (ti+m−1 − ti+m+k−1)

2

12 if dist < P[i] then

13 P[i] = dist;

14 if dist < P[i+k] then

15 P[i+k] = dist;

3.3 Complexity Analysis

Here, we analyze the time and space complexity of AAMP.

The algorithm contains two loops. In the first loop, in Line

5 the distance between T1,m and Tk,m is computed using the

normal Euclidean distance function inO(m), thus in total Line

5 is executed in O(m × (n −m)). In the nested loop (Lines 10-

15), all operations are done inO(1), so in total these operations

are done in O((n −m)2). Thus, the time complexity of the al-

gorithm is O((n −m)2) +m × (n −m)) that is equivalent of

O(n × (n −m)). Ifm is small compared to n, i.e., n >>m, then

the time complexity of AAMP can be written asO(n2). But, if

m is very close to n, i.e.,m = n − c for a small constant c , then

the time complexity is O(n).

The space needed for executing our algorithm is only the

array of matrix profile and some simple variables. Thus, the

space complexity of AAMP is O(n).

3.4 Extension of AAMP to p-Norm Distance

In this section, we extend the AAMP algorithm to the p-norm

distance that is a more general distance than Euclidean. The

p-norm functions are used in Lebesgue spaces (LP ), which are

useful in data analysis in physics, statistics, finance, engineer-

ing, etc.

Let Ti,m and Tj,m be two time series subsequences, then

their p-norm distance (for p ≥ 1) is defined as:

DPi, j =
p

√√√m−1∑
l=0

(ti+l − tj+l )
p (7)

Notice that the Euclidean distance is a special case of p-

norm with p = 2.

The following lemma gives an incremental formula for com-

puting PNORMi, j .

Lemma 2. Let DPi, j be the p-norm distance of subsequences

Ti,m and Tj,m . Then, DPi, j can be computed by using the p-

norm distance of subsequences Ti−1,m and Tj−1,m , denoted

by DPi−1, j−1, as following:

DPi, j =
p
√
(DPi−1, j−1)p − (ti−1 − tj−1)p + (ti+m−1 − tj+m−1)p

Proof. The proof can be easily done in a similar way as

that of Lemma 1. �

Using Lemma 2, we can modify the AAMP algorithm to

compute the matrix profile with the p-norm distance. This

can be done just by modifying two lines in Algorithm 1: 1)

Line 5 : by replacing the Euclidean distance with the p-norm

distance of subsequencesT1,m andTk,m ; 2) Line 11: incremen-

tally computing the p-norm distance using the equation of

Lemma 2.

The pseudo-code of AAMP algorithm for the p-norm dis-

tance is shown in Appendix. The time and space complexity

of the AAMP algorithm for p-norm is the same as that of

AAMP with the Euclidean distance.

4 ACAMP: MATRIX PROFILE FOR
Z-NORMALIZED EUCLIDEAN
DISTANCE

In this section, we propose an algorithm, called ACAMP, that

computes matrix profile based on the z-normalized euclidean

distance and using the same principle asAAMP, i.e., incremen-

tal distance computation in diagonal sliding windows. How-

ever, the incremental computation of the distance in ACAMP

is different than that of AAMP.

4.1 Incremental Computation of
Z-Normalized Euclidean Distance

Let us now explain how ACAMP computes the z-normalized

Euclidean distance incrementally. LetTi,m = 〈ti , . . . , ti+m−1〉

and Tj,m = 〈tj , . . . , tj+m−1〉 be two subsequences of a time

seriesT . In ACAMP, we compute the z-normalized Euclidean

distance betweenTi,m andTj,m using the following five vari-

ables:

• Ai =
∑m−1
l=0

ti+l : the sum of the values in Ti,m ;
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• B j =
∑m−1
l=0

tj+l : the sum of the values in Tj,m ;

• Ai =
∑m−1
l=0

t2
i+l

: the sum of the square of values in

Ti,m ;

• Bj =
∑m−1
l=0

t2
j+l

: the sum of the square of values in

Tj,m ;

• Ci, j =
∑m−1
l=0

ti+l × tj+l : the product of values of Ti,m
and Tj,m .

Note that all above variables can be computed incremen-

tally, when moving a sliding window from Ti,m to Ti+1,m.

Given these variables, then the z-normalized Euclidean dis-

tance between two subsequences Ti,m and Tj,m can be com-

puted using the formula given by the following lemma.

Lemma 3. Let DZi, j be the z-normalized distance of subse-

quences Ti,m and Tj,m . Then, DZi, j can be computed as:

DZi, j =

√√√√√√√√√√√2m

©«
1 −

Ci, j −
1
mAiB j√(

Ai −
1
mA2

i

) (
Bj −

1
mB2j

)
ª®®®®
¬

(8)

Proof. The proof can be seen in Appendix.

4.2 Algorithm

The pseudo-code of ACAMP is shown in Algorithm 2. After

initializing the matrix profile, ACAMP performsn−m−1 iter-

ations, such that in iteration k it compares the z-normalized

Euclidean distance of subsequences that are k points far from

each other in the time series (Lines 4 to 13). In each iteration,

the distances are computed using the formula of Equation 8

using the five variables which are used in the equation, i.e.,

Ai , B j , Ai , Bj and Ci, j. For the first subsequences of the iter-

ation, i.e., T1,m and T1+k,m , the variables are computed using

their normal formula in O(m) (see Lines 5 to 9). For the other

subsequences of the iterations, these variables are computed

incrementally, i.e., in O(1).

Note that in the algorithm, for performance reasons we

compare the square of the z-normalized Euclidean distance

of the subsequences (Line 10 and 21). By this, we avoid per-

forming O(n2) sqrt operations in our nested loop. At the end

of the algorithm (Lines 26 to 27), in a loop we convert the

square distances to the real distances, using O(n) sqrt opera-

tions.

4.3 Complexity Analysis

Let us now analyze the time and space complexity of ACAMP.

The algorithm proceeds in two loops. In the first loop the vari-

ables needed for computing the distance (Lines 5 to 9) are com-

puted in O(m), thus in total this part of the algorithm is exe-

cuted in O(m × (n −m)). In the nested loop, the variables are

computed in O(1), thus in total the Lines 16 to 25 are done in

O((n −m)2). Therefore, the time complexity of the algorithm

is O(n × (n −m)). Ifm is small compared to n, then the time

complexity of ACAMP is O(n2). But, if m is very close to n,

i.e.,m = n −c for a small constant c , then the time complexity

of ACAMP is linear, i.e., O(n).

Algorithm 2: ACAMP algorithm: matrix profile calcula-

tion with z-normalized Euclidean distance

Input: T: time series; n: length of time series; m:

subsequence length

Output: P: Matrix profile;

1 begin

2 for i=1 to n do

3 P[i] = ∞ ; // initialize the matrix profile

4 for k=1 to n-m+1 do

5 A =
∑m−1
l=0

t1+l //sum of the values in T1,m ;

6 B =
∑m−1
l=0

t1+k+l : // sum of the values in T1+k,m ;

7 A =
∑m−1
l=0

t2
1+l

: // sum of the square of values in

T1,m ;

8 B =
∑m−1
l=0

t2
1+k+l

: // sum of the square of values

in T1+k,m ;

9 C =
∑m−1
l=0

t1+l tk+l : // product of values ofT1,m
and T1+k,m .

10 dist = 2m

(
1 −

C− 1
m AB√

(A− 1
mA2)(B− 1

m B2)

)
// compute

the square of z-normalized distance

11 if dist < P[1] then

12 P[1] = dist;

13 if dist < P[k] then

14 P[k] = dist;

15 for i=2 to n - m + 1 - k do

16 A = A − ti−1 + ti+m−1;

17 B = B − ti−1+k + ti+m+k−1;

18 A = A − t2i−1 + t
2
i+m−1;

19 B = B − t2
i−1+k

+ t2
i+m+k−1

;

20 C = C − ti−1 × ti−1+k + ti+m−1 × ti+m+k−1;

21 dist = 2m

(
1 −

C− 1
mAB√

(A− 1
mA2)(B− 1

m B2)

)

22 if dist < P[i] then

23 P[i] = dist;

24 if dist < P[i+k] then

25 P[i+k] = dist;

26 for i=1 to n do

27 P[i] =
√
P[i] ; // compute the z-normalize

distance from its square

The algorithm needs to keep only some variables and an

array for the output matrix profile, thus its space complexity

is O(n), i.e., the size of the output.

4.4 More Optimization of ACAMP

Wecan further optimizeACAMPby not comparing the square

of z-normalized distance in Lines 11, 13, 22 and 24 in Algori-

htm 2, but by comparing Fi, j defined as follows:

Fi, j =
(AiB j −mCi, j) × |AiB j −mCi, j |

(Ai −
1
mA2

i )(Bj −
1
mB j )

, (9)
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Figure 3: Execution time of the three algorithms when

the time series length n varies

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10000  20000  30000  40000  50000  60000  70000

E
xe

cu
tio

n 
tim

e 
(s

)

m

Execution time vs. m

AAMP
ACAMP

SCRIMP++
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We can easily show that DZi, j > DZi,k if and only if

Fi, j > Fi,k . In the formula of Fi, j , there is no sqrt operation,

and its computation takes less time than that of DZi, j . Thus,

for comparing the z-normalized Euclidean distance of subse-

quences, we can simply compare their Fi, j . Then in Line 27

of the algorithm, the following equation can be used for com-

puting the z-normalized Euclidean distance DZi, j from Fi, j :

DZi, j = 2m + 2sign(Fi, j ) ×
√
|Fi, j | (10)

Another possible optimization is to move the first calcula-

tion of variables A, A, B, and B (actually done in Lines 5 to 8)

before the loop (i.e., before Line 4), and incrementally update

these variables in the loop.

5 PERFORMANCE EVALUATION

In this section, we compare the execution time of our algo-

rithms AAMP and ACAMPwith the state-of-the-art exact mo-

tif discovery algorithm SCRIMP++ [10]. We first describe the

experimental setup, and then present the results of our exper-

imental evaluation.

5.1 Setup

We implemented our algorithms in MATLAB. For Scrimp ++,

we use the algorithm available in [1] with step input the usual

step size of PreSCRIMP which is 0.25.

The execution times of the three algorithmsAAMP,ACAMP

and SCRIMP++ are only affected by the length of the time se-

ries (i.e., n) and the length of the subsequences (i.e., m). The

values inside the time series have no impact on the execution

time of the tested algorithms, thus we generated them ran-

domly using a uniform distribution. In our tests, we varied the

parameters n andm, and measured their impact on the algo-

rithms execution time. Unless otherwise specified, the default

values form and n arem = 28 and n = 218 respectively.

The evaluation tests of the three algorithms were carried

out on amachine with Intel ®Core™i7-4770 CPU 3.40GHzÃŮ
×8 processor, on Ubuntu 14.04 LTS and 7,7 Gio memory with
the R2015B version of Matlab.

For each test, we perform two experiments and report their
average execution times.

5.2 Results

We studied the effect of the time series length (i.e., n) on the
execution time of our algorithms. Figure 3 shows the time re-
quired by AAMP, ACAMP and SCRIMP++ to compute matrix
profile for a fixed subsequence lengthm = 256, and with vary-
ing time series length values. As seen the execution time of
the three algorithms increases with increasing n. But, AAMP
and ACAMP performmuch better than Scrimp++. The results
show that the difference between the performance of AAMP/ACAMP
and Scrimp++ increases significantly when n gets higher.

We also studied the effect of subsequence length on the
performance of our algorithms. Figure 4 shows the execution
time of the three algorithms for computing the matrix profile
for time series with a fixed length of n = 218, and varying the
subsequence length fromm = 256 tom = 216. The response
of the our algorithms and that of Scrimp++ decreases whenm
increases. This is in accordance with our complexity analysis
presented in Sections 3.3 and 4.3 showing that for the cases
wherem is close to n, the time complexity of our algorithms
gets linear to n.

6 RELATED WORK

Motif discovery from time series is important for many appli-
cation domains such as bioinformatics [8], speech processing
[2], Seismology [9] and entomology [7]. Matrix profile has
been recently proposed as en efficient technique to the prob-
lem of all-pairs-similarity search on time series [3, 6, 11, 12,
14].

In [13], Yeh et al. introduced the theoretical foundations of
matrix profile, and proposed a first algorithm, called STAMP,
for computing the matrix profile over a time series. The al-
gorithm uses a similarity search algorithm, called MASS, that
under z-normalized Euclidean computes the distance of each
subsequence to other subsequences by using the Fast Fourier
Transform (FFT). Other exact algorithms such as Quick-Motif
[5], IMD [4], or MK [7] can be fast for cooperative data (those
that are relatively smooth data, short motif lengths etc.). But
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in less-cooperative data (e.g., seismology data) these algorithms
are not efficient [15].

In [15], Zhu et al. proposed an algorithm, called STOMP,
that is faster than STAMP. The STOMP algorithm is similar
to STAMP in that it can be seen as highly optimized nested
loop searches, with the repeated calculation of distance pro-
files as the inner loop. However, while STAMP must evaluate
the distance profiles in random order (to allow its anytime be-
havior), STOMP performs an ordered search. STOMP exploits
the locality of these searches, and reduces the time complex-
ity by a factor of O(loдn). In [10], the authors proposed an
extension of STOMP, called SCRIMP++, that converges much
faster than STOMP.

To the best of our knowledge, all most all matrix profile
algorithms have been developed for z-normalized Euclidean
distance. In this paper, we proposed efficient algorithms for
a larger class of Euclidean functions. We also proposed an al-
gorithm for the z-normalized case, i.e., ACAMP, that is sig-
nificantly faster than SCRIMP++, which is the fastest exact
algorithm for matrix profile computation in the literature, to
the best of our knowledge. Our ACAMP algorithm is designed
based on an efficient incremental technique that does not need
to calculate FFT (in contrast to SCRIMP++).

7 CONCLUSION

In this paper, we addressed the problem of matrix profile com-
putation for a general class of Euclidean distances. We first
proposed an efficient algorithm called AAMP for computing
matrix profile for the "non-normalized" Euclidean distance.
Then, we extended our algorithm for the p-norm distance,
which is a general form of Euclidean. Then, we proposed an al-
gorithm, calledACAMP, that uses the same principle as AAMP,
but for the case of z-normalized Euclidean distance. Our al-
gorithms are exact, anytime, incrementally maintainable, and
can be implemented easily using different languages. To eval-
uate the performance of our algorithms, we implemented them,
and compared their performance with the state of the art al-
gorithm SCRIMP++. The results show excellent performance
gains. For example, they show that ACAMP is significantly
faster than SCRIMP++. They also show that AAMP is very
efficient for computing matrix profile for non-normalized Eu-
clidean and p-norm distances.
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8 APPENDIX A: INCREMENTAL
COMPUTATION OF Z-NORMALIZED
EUCLIDEAN DISTANCE - PROOF

Here, we present the proof of Lemma 3 that gives an incre-
mental formula for computingmatrix profilewith z-normalized
Euclidean distance.

Proof. Let µi and µ j be the mean of the values in the se-
quencesTi,m andTj,m respectively. Also, let σi and σj be the
standard deviation of the values in the subsequencesTi,m and
Tj,m respectively. Then, the z-normalized Euclidean distance
between the subsequences Ti,m and Tj,m is defined as:

DZi, j =

√√√m−1∑
l=1

(
ti+l − µi

σi
−
tj+l − µ j

σj

)2
,

where

µi =
1

m

m−1∑
l=0

ti+l , µ j =
1

m

m−1∑
l=0

tj+l

and

σi =

√√√
1

m

m−1∑
l=0

t2
i+l

− (µi )2, σj =

√√√
1

m

m−1∑
k=0

t2
j+l

− (µ j )2.
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We can write the square of DZ as following:

DZ2
i, j =

m−1∑
l=0

(
ti+l − µi

σi
−
tj+l − µ j

σj

)2

=

m−1∑
l=0

((
ti+l − µi

σi

)2
− 2

(
ti+l − µi

σi

) (
tj+l − µ j

σj

)
+

(
tj+l − µ j

σj

)2)

=

m−1∑
l=0

(
t2
i+l

− 2ti+l µi + (µi )
2

(σi )2
− 2

(
ti+ltj+l − µi tj+l − ti+l µ j + µ j µi

σiσj

)
+

t2
j+l

− 2tj+l µ j + (µ j )
2

(σj )2

)

Let

Ai =

m−1∑
l=0

ti+l , B j =

m−1∑
l=0

tj+l , Ai =

m−1∑
l=0

t2
i+l
, Bj =

m−1∑
l=0

t2
j+l
, Ci, j =

m−1∑
l=0

ti+l tj+l .

Then, we have:

µi =
1

m
Ai , µ j =

1

m
B j

(σi )
2
=

1

m
Ai −

1

m2
A2
i , (σj )

2
=

1

m
Bj −

1

m2
B2j .

Then, the z-normalized Euclidean distance can be written as:

DZ2
i, j =

m−1∑
l=0

(
t2
i+l

− 2ti+l µi + (µi )
2

(σi )2
− 2

(
ti+lbj+l − µitj+l − ti+l µ j + µ j µi

σiσj

)
+

t2
j+l

− 2tj+l µ j + (µ j )
2

(σj )2

)

=

Ai − 2A2
i
1
m +

A2
i

m
1
mAi −

1
m2A

2
i

− 2 ×
Ci, j −

2
mAiB j +

AiBj
m√

( 1mAi −
1
m2A

2
i )(

1
mBj −

1
m2 B

2
j )
+

Bj − 2B2j
1
m +

B2
j

m

1
mBj −

1
m2 B

2
j

= 2m − 2 ×
m2Ci, j −mAiB j√

(mAi −A2
i )(mBj − B2j )

= 2m
©«
1 −

Ci, j −
1
mAiB j√

(Ai −
1
mA2

i )(Bj −
1
m B2j )

ª®®
¬
.

�

As mentioned in Subsection 4.4, by taking

Fi, j =
(AiB j −mCi, j) × |AiB j −mCi, j |

(Ai −
1
mA2

i )(Bj −
1
mB j )

, (11)

we have DZi, j = 2m + 2sign(Fi, j ) ×
√
|Fi, j | and we can use the following equivalence in our algorithm:

DZi, j > DZi,k ⇔ Fi, j > Fi,k .
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9 APPENDIX B: PSEUDO-CODE OF AAMP
ALGORITHM FOR P-NORM DISTANCE

Algorithm 3 shows the pseudo-code of AAMP algorithm for
computing thematrix profile while using the p-norm distance
for creating the matrix profile.

Algorithm 3: AAMP algorithm for p-norm distance

Input: T: time series; n: length of time series; m:
subsequence length

Output: P: Matrix profile;
1 begin

2 for i=1 to n do

3 P[i] = ∞ ; // initialize the matrix profile

4 for k=1 to n-m+1 do

5 dist = PNORM_Distance(T1,m,Tk,m ) //
compute the distance between T1,m , Tk,m

6 if dist < P[1] then

7 P[1] = dist;

8 if dist < P[k] then

9 P[k] = dist;

10 for i=2 to n - m + 1 - k do

11 dist =
p
√
((dist)p − (ti−1 − ti−1+k )

p
+ (ti+m−1 − ti+m+k−1)

p

12 if dist < P[i] then

13 P[i] = dist;

14 if dist < P[i+k] then

15 P[i+k] = dist;
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