A. Balasubramanian, J. Wang, and B. Prabhakaran, Discovering Multidimensional Motifs in Physiological Signals for Personalized Healthcare, J. Sel. Topics Signal Processing, vol.10, pp.832-841, 2016.

A. Hoang, E. J. Dau, and . Keogh, Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery, Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD, pp.125-134, 2017.

Z. Gu, L. He, C. Chang, J. Sun, H. Chen et al., Developing an Efficient Pattern Discovery Method for CPU Utilizations of Computers, International Journal of Parallel Programming, vol.45, pp.853-878, 2017.

Y. Li, L. Hou, U. , M. L. Yiu, and Z. Gong, Quickmotif: An efficient and scalable framework for exact motif discovery, 31st IEEE International Conference on Data Engineering, pp.579-590, 2015.

M. Linardi, Y. Zhu, T. Palpanas, and E. J. Keogh, Matrix Profile X: VALMOD -Scalable Discovery of Variable-Length Motifs in Data Series, Proceedings of the International Conference on Management of Data (SIGMOD), pp.1053-1066, 2018.

A. Mueen, J. Eamonn, Q. Keogh, S. Zhu, M. Cash et al., Exact Discovery of Time Series Motifs, Proceedings of the SIAM International Conference on Data Mining, SDM 2009, pp.473-484, 2009.

S. Sinha, Discriminative motifs, Proceedings of the Sixth Annual International Conference on Computational Biology, pp.291-298, 2002.

R. Djamel-edine-yagoubi, B. Akbarinia, O. Kolev, F. Levchenko, P. Masseglia et al., ParCorr: efficient parallel methods to identify similar time series pairs across sliding windows, Data Mining and Knowledge Discovery (DMKD), vol.32, pp.1481-1507, 2018.

, Matrix Proï??le XI: SCRIMP++: Time Series Motif Discovery at Interactive Speed, Proceedings of the International Conference on Data Mining (ICDM), 2018.

C. Yeh, H. Van-herle, and E. J. Keogh, Matrix Profile III: The Matrix Profile Allows Visualization of Salient Subsequences in Massive Time Series, Proceedings of the International Conference on Data Mining (ICDM, pp.579-588, 2016.

C. Yeh, N. Kavantzas, and E. J. Keogh, Matrix Profile VI: Meaningful Multidimensional Motif Discovery, Proceedings of the International Conference on Data Mining (ICDM, pp.565-574, 2017.

C. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding et al., Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets, pp.1317-1322, 2016.

Y. Zhu, M. Imamura, D. Nikovski, and E. J. Keogh, Matrix Profile VII: Time Series Chains: A New Primitive for Time Series Data Mining (Best Student Paper Award, pp.695-704, 2017.

Y. Zhu, Z. Zimmerman, S. Nader, C. Senobari, G. Yeh et al., Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and Joins, Proceedings of the International Conference on Data Mining (ICDM, pp.739-748, 2016.