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Introduction

Morphological traits determining 3D plant architecture have a large effect on biomass accumulation via light interception, light distribution in the canopy and light-use efficiency [START_REF] Zhu | Improving photosynthetic efficiency for greater yield[END_REF][START_REF] Chen | Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies[END_REF][START_REF] Bucksch | Overcoming the Law of the Hidden in Cyberinfrastructures[END_REF][START_REF] Balduzzi | Reshaping plant biology: Qualitative and quantitative descriptors for plant morphology[END_REF]. In silico studies using dynamic 3D plant architecture suggest that biomass can be increased by up to 20% by optimizing architectural traits [START_REF] Chen | Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using dynamic functional-structural plant model[END_REF]2015). Examining the genetic control of these traits is an avenue for crop improvement that has been under-exploited until now, but requires high throughput and reproducible phenotyping pipelines that are lacking until now [START_REF] Tardieu | Plant Phenomics, From Sensors to Knowledge[END_REF]. Several techniques are available for capturing 3D plant morphology and geometry, e.g. manual plant digitizing [START_REF] Godin | A method for describing plant architecture which integrates topology and geometry[END_REF]Danjon et al., 2008;[START_REF] Vos | Functional-structural plant modelling: a new versatile tool in crop science[END_REF], stereoscopic plant modelling [START_REF] Biskup | A stereo imaging system for measuring structural parameters of plant canopies[END_REF][START_REF] Lati | Estimating plant growth parameters using an energy minimization-based stereovision model[END_REF], laser scanning [START_REF] Paulus | High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[END_REF], multi-view image reconstruction [START_REF] Pound | Automated recovery of threedimensional models of plant shoots from multiple color images[END_REF]Nguyen et al., 2017;[START_REF] Gibbs | Approaches to three-dimensional reconstruction of plant shoot topology and geometry[END_REF]Gibbs et al., , 2018;;[START_REF] Pfeifer | Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension[END_REF] or depth imaging (McCormick et al., 2017). However, most of them have not been ported to high throughput.

Phenotyping platforms allow fulfilling this need via rapid and automatic collection of multiview 2D above-ground plant images for thousands of plants [START_REF] Fiorani | Future scenarios for plant phenotyping[END_REF][START_REF] Tardieu | Plant Phenomics, From Sensors to Knowledge[END_REF].

Most existing pipelines approach plant architecture via a series of independent 2D analyses (e.g., [START_REF] Knecht | Image Harvest: an open-source platform for high-throughput plant image processing and analysis[END_REF][START_REF] Zhang | High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth[END_REF] using regressions between traits of interest and 2D image features such as pixel counts, convex hull area or connectivity [START_REF] Walter | Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species[END_REF][START_REF] Jansen | Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants[END_REF][START_REF] Hartmann | HTPheno: An image analysis pipeline for high-throughput plant phenotyping[END_REF][START_REF] Klukas | Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping[END_REF][START_REF] Knecht | Image Harvest: an open-source platform for high-throughput plant image processing and analysis[END_REF]Burgess et al., 2017;Gibbs et al., 2018). Recently, Das [START_REF] Choudhury | Holistic and component plant phenotyping using temporal image sequence[END_REF] managed to extract morphological traits such as leaf length, leaf angle and leaf area, using a pipeline based on 2D skeleton analysis of maize images. However, 2D skeletons have intrinsic limitations due to 2D projection, such as angular deformation and crossing artifacts. As a consequence, the number of biological traits that can be quantitatively and automatically derived from image processing is still limited and does not approach the potential of 3D plant imaging.

The few automatic methods capturing plant 3D features are specific to one species or category of species [START_REF] Gibbs | Approaches to three-dimensional reconstruction of plant shoot topology and geometry[END_REF]. Most pipelines are limited to dicotyledonous plants (Paproki et al., 2012), for which leaf segmentation is simplified by easily identifiable petioles. [START_REF] Elnashef | Tensor-based classification and segmentation of three-dimensional point clouds for organ-level plant phenotyping and growth analysis[END_REF] showed that tensor-based classification of 3D point cloud allowed stem detection on maize, wheat and cotton. Still, the leaf segmentation task remains complex in monocotyledonous species where leaves are directly connected to the stem, often rolled within each other and frequently crossing neighboring leaves (Das [START_REF] Choudhury | Holistic and component plant phenotyping using temporal image sequence[END_REF][START_REF] Elnashef | Tensor-based classification and segmentation of three-dimensional point clouds for organ-level plant phenotyping and growth analysis[END_REF].

Currently, existing 3D analysis pipelines are either semi-automatic (Mccormick et al., 2017), automatic but only for a very limited dataset [START_REF] Elnashef | Tensor-based classification and segmentation of three-dimensional point clouds for organ-level plant phenotyping and growth analysis[END_REF], or implement only a subpart of the phenotyping pipeline, like 3D geometric reconstruction or organ segmentation from a mesh (Paproki et al., 2012;[START_REF] Pound | Automated recovery of threedimensional models of plant shoots from multiple color images[END_REF]. As a consequence, to our knowledge, none of these 3D solutions has been tested on large datasets.

We present here the open source library Phenomenal for building automated high throughput analysis pipelines such as 3D shoot reconstruction, light interception, organ segmentation, or complex trait extraction (https://github.com/openalea/phenomenal). Phenomenal pipelines are fully compatible with the scientific workflow infrastructure InfraPhenoGrid [START_REF] Pradal | InfraPhenoGrid: a scientific workflow infrastructure for plant phenomics on the grid[END_REF] that allows processing of large dataset on the cloud [START_REF] Heidsieck | Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud[END_REF], and with the open-source OpenAlea scientific workflow system that provide full provenance of computations and ensure their reproducibility [START_REF] Cohen-Boulakia | Scientific workflows for computational reproducibility in the life sciences: Status, challenges and opportunities[END_REF] (https://github.com/openalea/openalea). Here, Phenomenal was first used to build a 3D shoot reconstruction pipeline for several species in 8 high-throughput experiments [START_REF] Cabrera-Bosquet | High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform[END_REF]. Then, the automated architectural analysis pipeline using the novel organ segmentation algorithms developed in Phenomenal was challenged on maize and sorghum using three independent tests.

Results

A library for automatic 3D topology and geometry reconstruction from images.

The Phenomenal library provides automatic, integrated and robust image analysis pipelines (Fig. 1, ABCD) for reconstructing 3D topology and geometry of plants on high-throughput multi-view images, based on (i) a camera calibration procedure adapted for multiple fixedcameras with a rotating object system (Fig. 1.A), (ii) a robust background subtraction filter based on a mean shift algorithm [START_REF] Breiman | A robot assisted imaging pipeline for tracking the growths of maize ear and silks in a high throughput phenotyping platform[END_REF] (Fig. 1.B), (iii) a 3D voxel volume reconstruction (Fig. 1.C) of the plant using an improved and fast space-carving algorithm (Kutulakos et al., 2000). To speed up the last algorithm, we use an octree decomposition technique [START_REF] Slabaugh | A survey of methods for volumetric scene reconstruction from photographs[END_REF] to carve the 3D volume. We also improve the algorithm to better support common imperfections of high-throughput plant imaging systems (plant movements, light reflections, binarization errors) that may cause parts of the plant to disappear (Supplementary Material S1-Robust multi-view reconstruction). Then, the marching cube algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF] transforms the 3D voxel volume in a standard 3D mesh (Fig. 1D). Second, Phenomenal provides new algorithms, based on 3D skeleton analysis, to perform individual organ segmentation and morphological analysis of the plant. Because such segmentation is already available for dicotyledons based on planar / tubular segmentation techniques developed elsewhere (Paproki et al., 2012, Elnashelf et al., 2019), our algorithm also targeted monocotyledonous plants, where oblong leaves are directly attached to stems and are partly tubular. (Fig. 1. E and F). Standard skeletonization algorithms produced results that were too noisy, so a new algorithm was designed to identify a unique path per leaf that allows connecting the plant base with leaf tip (Supplementary Material S1-3D skeletonization). Finally, these paths are used to segment the plant into stem and leaves, either expanding or mature (Supplementary Material S1 -Organ Segmentation). The final outputs of Phenomenal analysis workflows can be either a volume, a 3D-mesh, or a topology with its associated geometrical traits (Fig. 1F and Fig. 2). We tested 3D reconstruction analysis workflow by processing data of eight experiments (Table 1), in which 1680 plants were imaged daily for 30 to 40 days with either 3 or 13 images of each plant every day, obtained with two calibrated camera positioned on the side and the top of the plant. Each experiment involved up to 955,372 RGB images (Table 1) that are stored in the local instance of the Phenotyping Hybrid Information System (PHIS, [START_REF] Neveu | Dealing with multi source and multi scale information in plant phenomics: the ontology driven Phenotyping Hybrid Information System[END_REF].

Three millions of images belonging to four species were requested from PHIS during the computational experiments, and processed automatically by the 3D reconstruction workflow (Table 1, Fig. 3). Regardless of the species (monocotyledon or dicotyledon), the success rate was higher than 99%, with only two experiments where the success was between 99 and 99.95% due to a technical disruption of the imaging system ( We first tested a large diversity of maize genotype (342 lines and 402 hybrids), a large number of stages of development (i.e. from seedlings to mature plants), and well watered and water-stressed plants. The quality of reconstruction was satisfactory in all cases. The limited number of viewpoints ( 13), aimed at keeping a high throughput, and the undulation of leaf margin in this specie resulted however in reconstructed leaves being thicker than in reality. A loss of details can also be noticed in the whorl region (e.g. Fig. 3F), where small growing leaves tightly rolled within larger leaves are at best reconstructed as small tips emerging from a compact englobing volume. Sorghum plants (Fig. 3C), that display an architecture similar to maize but with lateral ramifications, were equally satisfactory reconstructed with 13 views, although some occlusions may produce some defects near plant base. Young Apple Trees reconstructed with 3 views (Fig 3B) allowed to clearly distinguish all leaves along the stem, but probably lack of supplemental viewpoints to capture with details individual leaves.

Finally, the experiment on Cotton with 13 views (Fig. 3A) demonstrate the ability to reconstruct a very different kind of architecture mixing small thin structure (petioles) and large flat leaves.
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Phenomenal was successfully tested against manual measurements, published datasets and synthetic datasets

The algorithm was tested on three independent dataset (Fig. 4). The first test consisted of comparing outputs of the pipeline with manual measurements performed during one highthroughput experiment on PhenoArch (Fig. 4 A, B, andC; Supplementary Material S2). A second test challenged the ability of the pipeline to re-analyze a dataset of the literature (Fig. 4 D, E, and F), namely the sorghum dataset of Mccormick et al. (2017), where a different 3D acquisition method was used and for which we had access to a limited amount of metadata.

The third test involved the use of synthetic data (Fig. 4 G, H, I, and J) in order to directly compare outputs to 'ground truth' data that are perfectly known [START_REF] Lobet | Image analysis in plant sciences: publish then perish[END_REF], using maize plants generated with the ADEL maize simulation model (Fournier & Andrieu, 1998). Comparison with manual measurement -The organ segmentation workflow was run on 39,548 reconstructed 3D maize plants from the experiment ZA16 of the PhenoArch platform (Table 1, Fig. 4A, B, andC), with a failure rate of 0.07%.

On this experiment, 199,487 mature leaves and 168,404 expanding leaves were automatically detected. On the full set of reconstructed mature leaves, only 4.6% of them were artifacts

(1.4% with maximal leaf width 20% larger than the actual measured maximum, 134 mm, or smaller than the actual measured minimum, 6 mm, and another 3.2% having width/length ratio larger than 0.26 or smaller than 0.009). In contrast, 15.6% of the detected expanding leaves had unrealistic morphological characteristics. This result is consistent with the intrinsic On this dataset, the number of leaves was detected without bias, with a mean absolute error of 1.03 leaf (Fig. 5). This error was a bit higher than for the other tests (0.4 leaf for sorghum data and 0.2 leaf for synthetic data), probably related to the fact that this dataset focus only on one particular stage of development, characterized by a high proportion of growing leaves (33% of total), hence increasing the probability of occurrence of artefact detection. length (10.96 cm versus 7.94 cm, Fig. 6C) and leaf width (0.54 cm versus 1.84 cm, Fig. 6F).

Part of this noise may originate from differences between the information present on the image and on the plant when it is measured in the lab. The tips of maize leaves, for instance, can often break when leaves are manipulated. This is consistent with leaf length being noisier than leaf area. Growing leaves were less accurately measured than mature ones, especially the shortest ones (Fig. S14 C). These leaves are those located in the center of the whorl, with a tip that cannot always be identified on silhouette images. The same occurred for leaf width (Fig. S14 F), and therefore leaf area (Fig. S14 I). similar error level as manual measurements (Fig. 5). Stem length estimates for this dataset were slightly biased, with a mean absolute error of 10.14 cm (Fig. 5). This corresponds to approximately 1.7 times the mean distance between the insertion points of successive leaves, suggesting that the estimation of stem endpoint by Phenomenal may be located one leaf G, H, I, and J). This allows for testing the method accuracy for leaf number and leaf type detection, leaf length, maximal leaf width, leaf area, leaf insertion height, leaf azimuth and mean leaf angle for individual leaves of plants (Fig. 6).

Reanalysis of an existing dataset on sorghum -

The segmentation of the leaves of the synthetic dataset resulted in an absence of bias and a mean absolute error of 0.2 leaves (Fig. 5), i.e. is two times more accurate than on the sorghum dataset.

The comparison of stem length estimates with reference values yielded also very consistent results, with less than an internode error on the location the last ligulated leaf insertion.

Morphology and size on mature leaves was accurately measured when compared with their synthetic counterparts (Fig. 6). The leaf azimuth angle and leaf path length (from the base of the plant to the tip of the leaf) were estimated almost without error by Phenomenal (1 and 2 % NRMSD respectively), indicating that the computed skeleton was reliable (Fig. 6A andD).

The accuracy decreases slightly for estimation of the visible leaf length (Fig. 6B), with a mean absolute error of 5 cm (NRMSD = 4%), which almost always leads to an underestimation of the reference length. This difference is mostly due to errors in the localization of the leaf insertion point rather than errors in the localization of leaf tips (Supplementary material S2). The relative accuracy was lower for leaf width than leaf length (NRMSD = 7%, Fig. 6E), but it still allowed a good estimate of visible leaf area (Fig. 6H). Leaf angle estimations were less accurate (Fig. 6G), probably because plants are reconstructed with discrete voxels, therefore leading to unsmooth path in the skeleton.

This indicates that the binarization -which is exact on synthetic data (no background, movements or tutor) (Fig. 4 G, H, I, and J) -is probably an important point of attention for improvement of accuracy.

On growing leaves, we observed a slight increase of skeleton error for synthetic data (Fig.

S3

.1 A and D), as the NRMSD for leaf azimuth and leaf path length reached 3 %. This is consistent with the higher frequency of leaf crossing and pairing mismatch in this region of the plant. Errors on leaf length remain small (Fig. S3.1), with a 1.5 cm increase of error compared to mature leaves. The situation is very different, even on synthetic data, for leaf width and leaf area (Fig. S3.1E and H), with a doubling of the NRMSD (13%) compared to mature leaves, almost always resulting in an overestimation. Results of the comparison with actual data confirm and amplify these trends. Leaf inclination angles were accurate and comparable to mature leaf angle accuracy for a subset of the growing leaves, but highly variable for another subset (Fig. S3.1G). This is consistent with the increased frequency of tortuous skeleton path in the whorl.

Coupling 3D shoot reconstruction with eco-physiological models

Phenomenal has been integrated in the OpenAlea framework, a platform dedicated to the 

A scientific workflow environment for HTP reproducible experiments

Phenomenal components, tools and algorithms are packaged as a Python package library under an open-source license using state-of-the-art computational science methodology.

Developers can adapt the code and the design of analysis workflows to fit their experimental or processing needs. For quality assurance and continuous deployment, several tools have been set up. After each modification, a set of unit and functional tests are run on the cloud using continuous integration (https://travis-ci.org). When they succeed, the software is continuously deployed on the web for Linux, Windows and Mac operating systems on a

Conda channel [START_REF] Grüning | Bioconda: sustainable and comprehensive software distribution for the life sciences[END_REF]. Documentation is also automatically rebuilt after each modification and updated on the web using the readthedocs service (https://readthedocs.org).

To facilitate the installation of the software by end-users as well as administrators of computing infrastructures, Conda packages and Docker images are provided [START_REF] Merkel | Docker: lightweight linux containers for consistent development and deployment[END_REF].

A set of tutorials are available as Jupyter Notebooks to enhance the computational understanding of the different steps by developers, the ability for end-user to reproduce the workflow, and the interaction with the 3D reconstruction through a web-based interface [START_REF] Kluyver | Jupyter Notebooks-a publishing format for reproducible computational workflows[END_REF].

Phenomenal has been integrated into the OpenAlea SWfS, providing users with several major features. First, users are able to compose and interact with processing workflows within a visual programming environment: algorithms can be dragged and dropped in the user workspace, parameters can be modified and their behaviors interactively visualized (Fig. 1).

Second, they have the ability to reproduce results [START_REF] Cohen-Boulakia | Scientific workflows for computational reproducibility in the life sciences: Status, challenges and opportunities[END_REF] obtained with the Phenomenal software which is guaranteed by the use of OpenAlea and its companion tools [START_REF] Pradal | InfraPhenoGrid: a scientific workflow infrastructure for plant phenomics on the grid[END_REF]. OpenAlea is indeed a SWfS able to keep track of the exact series of software used to design a scientific experiment and is provided with a provenance module, collecting parameter settings and datasets produced and processed during an execution.

Moreover, to be able to process very large datasets obtained from phenotyping platforms, we have designed the infrastructure InfraPhenoGrid to distribute the computation of workflows on distributed computing facilities [START_REF] Pradal | InfraPhenoGrid: a scientific workflow infrastructure for plant phenomics on the grid[END_REF]2018;[START_REF] Heidsieck | Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud[END_REF].

Finally, OpenAlea is built by an open-source community, which provides models and tools that are very valuable for plant phenotyping. The availability of ecophysiological models, as well as topological and geometrical data structures, makes it possible to implement a modeldriven phenotyping approach. Moreover, the availability of several 3D plant architectural models allows to reuse the knowledge source for generating synthetic data for validation purposes on a wide range of condition and parameters.

Discussion

In line with some other initiatives, such as PlantCV [START_REF] Gehan | PlantCV v2: Image analysis software for highthroughput plant phenotyping[END_REF] RGB multi view acquisition systems like PhenoArch are widely spread, which makes our workflows probably also valid for processing data from other platforms. Whilst this is true for the image processing workflow itself, which can be run on every environment running Python, the 3D reconstruction workflow requires some adaptation due to specific acquisition and setup and data management strategies of each platform. In particular, the link with data management strategies is a key element to reach full automation, by retrieving camera calibration data and plant images as well as storing the resulted images and intermediate data.

The complete integration of Phenomenal workflows in Python eases this automation.

Based on segmentation of 3D reconstruction, Phenomenal provides new traits for HTP experiments. First, it provides leaf counts on complex adult morphology, which is a key feature of phenological development and also important in the assessment of developmental stages [START_REF] Erickson | The Plastochron index[END_REF][START_REF] Arvidsson | A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects[END_REF][START_REF] Meicenheimer | The Plastochron index: Still useful after six decades[END_REF].

Second, it quantifies the total size and extents of the plant organs in the different dimensions.

In graminea, like maize, being able to separate overall plant area growth from elongation growth is important, as elongation and widening are under different environmental controls and genetic regulations [START_REF] Lacube | Distinct controls of leaf widening and elongation by light and evaporative demand in maize[END_REF]. Although we do not assess it quantitatively, it was quite clear from our reconstruction that leaf thickness was clearly overestimated on the 3D reconstructed plants. This limitation remains even when refining the voxel size, and may therefore be intrinsic to the space carving method. Phenomenal also allows to quantify leaf angle distribution and its dynamics, which are key factors modulating light interception [START_REF] Liu | Estimating wheat green area index from groundbased LiDAR measurement using a 3D canopy structure model[END_REF]. These traits have been extracted by [START_REF] Lacube | Distinct controls of leaf widening and elongation by light and evaporative demand in maize[END_REF] but not in an automatic way, therefore limiting their use in large datasets. More originally, thanks to its connection to OpenAlea platform, Phenomenal allows retrieving some functional traits with models.

Coupling with FSPM models could also improve the precision of analysis like Alvarez Prado et al. ( 2017) that inverted a simple evaporation model to get stomatal conductance estimates of thousands of plants in PhenoArch. Moreover, on maize plants, Phenomenal allows to separate the growing and mature leaves, and therefore allows the quantification of the whorl development. This structure is poorly characterized in the literature [START_REF] Ruget | Estimation simple de la surface foliaire de plantes de maïs en croissance[END_REF], yet being involved in the regulation of the organ dimension, and is also the missing link between elongation and LAI models, as it determines the fraction of leaves exposed to light.

The extraction of biological traits is by nature more specific than neutral generic image analysis features such as object size or envelopes. For example, in the case of maize plants, it is important to separate mature from growing leaves to interpret the meaning of the leaf insertion height for correct architecture analysis. Leaf insertion visibility point is either at the base of the leaf or at the point of emergence. Such particularity makes HTP workflows less generic than pure image processing but provides more interpretable traits. However, while the segmentation has been developed for maize, it can help analyzing other cereal species that have a relative similar architecture (e.g. sorghum, wheat, barley, rice). For example, we have successfully tested the ability of the Phenomenal maize analysis workflow to process existing published dataset of sorghum from [START_REF] Mccormick | 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture[END_REF].

Phenomenal algorithms currently focuses on the independent analysis of images acquired through time on phenotyping platform. This allows to analyze kinetics for plant-level characteristics (e.g. volume, total length leaf counts). For organ-based traits, in which one wants to analyze for example the growth of individual leaves over time, a temporal analysis would require tracking. Tracking will also allow to get more robust analysis as some errors (e.g. in skeletonization) can be compensated over time. However, tracking of dynamic and deformable leaves is complex and provides further essential challenges, especially if robustness and reliability are key requirements, as is the case in fully automated assessments.

In this study, we use a virtual plant model only in the frame of the validation procedure. The generated plants and images could also be used to train deep learning networks (CNN) and retrieve more complex traits to overcome the current limitations of computer vision algorithms, mainly for tracking organ development [START_REF] Pound | Deep machine learning provides state-of-the-art performance in image-based plant phenotyping[END_REF][START_REF] Ubbens | The use of plant models in deep learning: an application to leaf counting in rosette plants[END_REF].

Reciprocally, linking models with Phenomenal can greatly improve models. FSPM have been of limited use, due to cost of parameterization/acquisition of data [START_REF] Landl | Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models[END_REF]. HTP platforms inverse the problematic and open the way to calibrate FSPM for different species and/or different genotypes. This may allow predicting competition between plants and therefore find rules/models for community of plants. This is a current important limitation of crop models, which if addressed in term might then also help to further optimize holistic functional agro-ecological and environmental models on a landscape or field scale.

Conclusions

Phenomenal provides a robust, end-to-end and open-source software library that allows setting up fully automated and data-intensive imaging analysis workflows for high throughput phenotyping platforms. It is able to manage large-scale data sets using distributed computing infrastructure. Based on botanical analysis of 3D reconstruction, Phenomenal provides new traits for assessment and analysis in HTP platforms. Accuracy on trait estimation is satisfactory for mature leaves but will require improvements for analysis of growing leaves.

More originally, thanks to its connection to OpenAlea platform, Phenomenal allows to use models to estimate light interception and thus take into account the competition for light in analysis of platform experiments. Phenomenal algorithms currently focus on independent analysis of images acquired through time on phenotyping platforms. An important future evolution of Phenomenal is the development of tracking algorithms from sequences of images to enhance segmentation, 3D-skeletonization and trait extraction on various types of plants and take benefit of the redundancy of information to improve the accuracy of the analyses.

Materials & Methods

PhenoArch experiments and image acquisition system

Data from eight experiments conducted in the PhenoArch HTP platform (https://www6.montpellier.inra.fr/lepse/M3P, [START_REF] Cabrera-Bosquet | High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform[END_REF] between summer 2012 and summer 2017 were used to test our workflow (Table 1). In all experiments, plants 

Multiple-camera calibration

Reconstruction of the 3D plant geometry from images requires the calibration of the imaging system. Although this procedure is standard in computer vision, we did not find a library that completely fit the specific requirements of phenotyping platforms (several cameras pointing at a well-controlled turning object). Therefore, Phenomenal library includes a specific calibration procedure, based on a generic optimization algorithm [START_REF] Salvi | A comparative review of camera calibrating methods with accuracy evaluation[END_REF], that allow retrieving at once the rotation angle, the axis of rotation and the intrinsic and extrinsic parameters of one or several cameras positioned around a rotation axis (Supplementary Material S1-Camera Calibration). These parameters allow to define the projection functions for the different views, and thus determine the pixel coordinate on any image of any point cabin. In the case of the PhenoArch,. The calibration was performed using images of a chessboard target taken every 3° from a side and top camera.

Background subtraction

The details of the procedure we used to process PhenoArch images can be found in [START_REF] Breiman | A robot assisted imaging pipeline for tracking the growths of maize ear and silks in a high throughput phenotyping platform[END_REF], and are summarized in Supplementary material S1-Background subtraction.

Briefly, for side images, the segmentation combines a mean-shift threshold algorithm [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF] to a HSV threshold algorithm [START_REF] Sural | Segmentation and histogram generation using the HSV color space for image retrieval[END_REF]. For top images, we used a decision tree learning method [START_REF] Breiman | A robot assisted imaging pipeline for tracking the growths of maize ear and silks in a high throughput phenotyping platform[END_REF]. In both cases, a median blur filter [START_REF] Huang | A fast two-dimensional median filtering algorithm[END_REF] was used for denoizing the result.

Robust multi-view reconstruction

Based on camera calibration, the 3D plant architecture is reconstructed using a space carving algorithm (Kutulakos et al., 2000). The space carving algorithm detects the photo-consistent voxels in the scene (i.e. voxels for which all projections on binary images contain foreground pixels) and produces a 3D plant volume. To account for small deformations of plants induced by rotation of the pot during acquisition and errors in foreground / background segmentation, two adaptations have been made to this algorithm (Supplementary Material S1-Robust multi-view reconstruction). A first adaptation introduces a tolerance for non consistent projections on a given number of views. The second adaptation is to extend the 3D plant volume so that its re-projection along a particular direction perfectly match the observation.

The 3D surface is thereby computed from the volume with a marching cube algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF] implemented in the VTK library (Schroeder et al., 2004). This allows to derive geometric traits such as surface area directly from this 3D representation. The size of the mesh surface is reduced using a decimation algorithm [START_REF] Schroeder | Decimation of triangle meshes[END_REF] and smoothed (Taubin et al., 1996) to simplify and improve further post-processing.

3D skeletonization

The segmentation of the 3D volume into individual organs is based the analysis of its skeleton, that is a one-dimensional graph that allows to capture the main topological relationships between different regions of the 3D volume (Tagliasacchi et al., 2013;Liu et al., 2011). Because standard skeletonization algorithms produce results that are too noisy, a new algorithm was designed in Phenomenal (Supplementary Material S1 -3D skeletonization).

It is based on an iterative selection of paths joining plant base to leaf tips, followed by a removal of voxels associated to this path. The result was further filtered to eliminate the paths associated to re-projections that always superposed to re-projection of other objects on the different views.

3D organ segmentation

The segments are finally partitioned into stem, mature leaves and growing leaves (Supplementary Material S1 -Organ Segmentation). The usual definition of stem is the morphological axe going from plant base to the position of the highest visible blade-sheath junction, named collar. As we do not directly detect collars on images, we defined the stem as the basal part of the path linking the base to the topmost point of the plant, up to the point where stem diameter suddenly and sharply increase due to the bunch of growing leaves forming the whorl. This definition is only a geometric proxy of the position of the highest collar, that works well during the vegetative stage.

Deriving architectural traits at the organ level

Once the stem and individual leaves are segmented, morphological and architectural traits of these organs can be derived from their 3D-geometries. Traits extracted at whole plant level are 3D volume, maximal height, convex hull and projection area.

The 3D volume is obtained with the number of voxels and their size. Maximal height of the plant is the Euclidean distance between the highest and the lowest voxels. Traits extracted from leaf levels are leaf inclination angle and leaf azimuth angle, leaf length, maximum leaf width, average leaf width, leaf area and leaf volume (Fig. 2). Azimuth is the angle between the mean vector of the leaf polyline and the y axis. Leaf inclination angle is the mean of angles between vectors of leaf polyline and z-axis. Length is defined as the sum of the 

Validation with manual measurements

In order to compare manual and automatic measurements, 126 maize plants belonging to 26 genotypes with contrasting plant architectures were manually measured destructively at the end of experiment ZA16. For each plant, length, area, maximum and average width of the leaves and the stem were measured by a leaf area meter (LI-COR 3100 area meter, LI-COR, Lincoln, NE, USA). Before the destructive measurement, each plant was imaged with the PhenoArch acquisition system on 13 views (12 side views and 1 top view). From those images, the architectural traits were derived from the Phenomenal workflow configured with voxel diameter of 4 mm and a tolerance of photo-consistency equal to. To match the leaf data obtained from the workflow with the manual measurements, the visible leaf tips of a plant were first manually tagged on the best side view (the view with the binarized image with the largest convex hull). Then, the 3D leaf tips detected in the workflow were projected onto the same view. Finally, the distance between the projected tip and corresponding manually tagged tip were calculated (Supplementary Material S2).

To compare results from the Phenomenal workflow with manual measurements, comparisons were plotted (Fig. 6), which were optimized in regard for the visualization of large datasets using semi-transparent markers as proposed recently by [START_REF] Dhutia | Open-source, vendor-independent, automated multi-beat tissue Doppler echocardiography analysis[END_REF], with a chosen αtransparency value adjusted to the size and number of overlapping markers.

To allow to access both negative and positive errors, we also calculated the mean absolute error (MAE):

𝑀𝐴𝐸 = 1 𝑛 ! !!! 𝑦 ! -𝑦 !
and the normalized root mean squared difference (nRMSD).

Validation with synthetic data

The ADEL maize model (Fournier and Andrieu, 1999) simulates 3D geometry and topology of maize plants from a set of architectural parameters. The precise 3D geometry of each organ on the 3D mesh is therefore known, as well as the topological organization of the plant. We used the ADEL-maize model to simulate 1000 3D-maize architecture with random architectural parameters (Fig. 4 G, H, I and J). For each plant generated, model parameters were randomly and uniformly selected in specific intervals: plant height varied between 100 and 300 centimeters, the number of phytomers between 2 and 12 and base stem diameter between 1.25 and 7.5 cm. The other parameters are kept to ADEL default values. The geometry of these simulated plants were projected to different planes, which correspond to the ones of the PhenoArch phenotyping system, to create 2D binary images of these plants,.

Then, the Phenomenal workflow was applied to those images to obtain 3D voxels, skeleton, organ segmentation and measurements of these plants. These results were compared to the synthetic data where everything is known (topology, geometry). This allowed us to validate the Phenomenal approach on a large set of conditions without expensive and complex manual data acquisition. Again to compare results from the Phenomenal workflow with measurements with synthetic data, comparisons were plotted as modified Bland-Altman plots as described in the previous paragraph, with a chosen α-transparency value adjusted to the size and number of overlapping markers. 

Figure 1 .

 1 Figure 1. Snapshot of an image processing pipeline composed with Phenomenal under the visual programming environment VisuAlea of the OpenAlea platform, superposed with graphical outputs produced by terminal point the workflow. Small blue boxes are for atomic algorithm of the Phenomenal library. Small disc above and below boxes represent the inputs and outputs ports, the color of the disc being related to the data type. Connections between ports indicate which output is reused as an input for another algorithm. Large boxes delimit subparts of the workflow used to produce to the displayed output. (A) Multiple camera calibration before starting an experiment; (B) plant segmentation by background subtraction on the different views of the plant; (C) 3D geometric multi-view reconstruction from plant images; (D) 3D mesh production (E) skeleton computation from the 3D plant; (F) 3D organ segmentation and architectural trait analysis used for genome-wide association study.

Figure 2 .

 2 Figure 2. Architectural traits measured with the Phenomenal analysis algorithm. Measured traits displayed are stem height (h), path length, leaf length, average and maximal leaf width, leaf insertion angle (α) and azimuth angle (β)

Figure 3 .

 3 Figure 3. 3D reconstruction of different plant species imaged in the PhenoArch platform with Phenomenal: (A) Cotton (Gossypium); (B) Apple tree (Malus pumila); (C) Sorghum (Sorghum bicolor); (D-F) Three Maize (Zea Mays L.) genotypes (EZ38, A375 and PHZ51) with contrasting plant architecture

Figure 4 .

 4 Figure 4. Snapshots of plants processed with Phenomenal for the three tests. Top : ground truth validation for a Phenoarch experiment where plants have been manually measured after imaging. (A) Input raw image from the platform (13 views), (B) 3D volume obtained with Phenomenal robust multi-view reconstruction (C) segmented plants. Middle: Re-analysis of a sorghum plant semi-automatically segmented by McCormick et al. (2016). (D)The original 3D mesh plant segmented from McCormick et al., (2016), (E) Initial 3D volume from McCormick et al., (2016) (F) segmented plant using Phenomenal. Bottom: Comparison with synthetic data. (G) 3D maize mesh generated from the ADEL maize model (Fournier and Andrieu, 1999), (H) binary images generated with Phenomenal projection on virtual cameral mimicking the Phenoarch 13 view acquisition system, (I) 3D volume computed using Phenomenal multi-view reconstruction (J) automatic segmentation with Phenomenal.

  increase of complexity of the reconstruction in the upper part of the plant where leaves are rolled within each other. Manual leaf counts performed during the same experiment lead to a theoretical expectation of 184,190 fully expanded leaves (to be compared to the 192,305 realistic mature leaves found by the workflow) and 163,705 expanding leaves (versus 142,132). These numbers indicate that up to 96 % of the leaves were correctly detected, and that up to 96 % of them were correctly classified as mature. These performances can be compared to the 2D algorithm run by Das Choudhury (2018) on maize skeletons reconstructed from one side view selected out of two, which detected 4,011 leaves out of the 4,443 actual leaves tagged on images (90%).

Figure 5 .

 5 Figure 5. Boxplot of leaf number (left panel) and stem height (right panel) predictions for the 3 tested data set. (Pink) actual maize plants measured in the lab, (Red) synthetic maize plants generated with the ADEL, (green) segmented 3D sorghum provided by McCormick Phenomenal organ segmentation analysis workflow was further validated by comparing image-based extracted features (Fig. 2) with detailed manual measurements performed on 1,218 leaves (i.e. 781 mature and 437 growing leaves) harvested from 127 plants at one date.

Figure 6 .

 6 Figure 6. Comparison of image-based measurements with reference measurements for mature leaves detected by the Phenomenal organ analysis workflow vs. measurements for synthetic leaves and measurements made with a LICOR leaf area meter. Measurements with Phenomenal were performed on the 3D reconstructed plants. Plots visualize the bias between Phenomenal measurements and the ground truth values of synthetic leaves for skeleton path length, leaf length, leaf azimuth, leaf width, leaf angle and leaf area (red symbols; A-B, D-E, G-H). A second series of Plots were used to visualize the bias of Phenomenal measurements made on 3D reconstructed plants in comparison to manual measurements performed with the LICOR leaf area meter (pink symbols; C,F,I). An alpha-transparency of 0.05 and 0.15 have been applied to the plotted markers for red and pink symbols respectively. MAE: mean absolute difference; SD: standard deviation NRMSD: normalized root mean square difference (normalization by the range of values shown on x-axis) As for leaf dimensions, amplitude and frequency of errors (Fig. 6 C, F and I) was smaller than previously reported error (McCormick et al. 2016) with a RMSD of 56 cm² for the area of 781

  The organ segmentation workflow was challenged on a public dataset of 3D sorghum plants containing 1187 plants analyzed by McCormick et al. (2016). In their experiment, McCormick et al. provided semi-automatically segmented plants into leaves and stems. The Phenomenal workflow has been applied to process all this dataset automatically (Fig. 4D, E and F). The stem and leaf detection algorithm was considered by McCormick et al. (2016) as the main limiting step to the complete automation of their workflow on sorghum plants, and the authors kept this step manual to preserve the performance of their pipeline. The number of leaves identified was exact in 65% of cases, and for 87 % of the remaining plants the difference was only 1 leaf, i.e.

  below or above the manually determined insertion point. It should be noted that, unlike[START_REF] Mccormick | 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture[END_REF], the error in the location of stem endpoint does not impact the detection and counting of individual leaves. The comparison of stem length estimates with reference values yielded very consistent results among datasets, in terms of bias and error (Fig.5). The mean absolute error was found within one leaf to leaf interval for actual plants (sorghum or maize). Note that McCormick et al (2016) observed a bias of 5.75 and a root mean square error of 6.67 between manual measurement on actual plants and manual measurement on image for stem length.Comparison with a synthetic dataset -The workflow was finally challenged by comparing image-based extracted features with corresponding known references on thousand synthetic 14 3D maize plants (corresponding to 4488 mature and 4291 growing leaves) obtained with the ADEL 3D-maize simulation model(Fournier & Andrieu, 1998) available in OpenAlea (Fig.4

  analysis, validation and development of functional-structural plant models. This allows one to construct computational experiments mixing image analysis, 3D reconstruction and modelling steps. By connecting the output results of Phenomenal 3D reconstruction analysis workflow with ecophysiological models available in OpenAlea, we can compute foliar distribution (LAI), light interception and radiation-use efficiency. For example, the semi-automated workflow presented in[START_REF] Cabrera-Bosquet | High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform[END_REF] has been fully automatized using Phenomenal under OpenAlea to estimate light interception of individual plants reconstructed from PhenoArch platform (Fig.7). This workflow was also used by[START_REF] Chen | Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies[END_REF] on 3 different PhenoArch experiments (ZA13, ZB13 and ZA16) to analyze competition between plants, and by Lacube et al. (2017) to analyze the relation between leaf width and light interception. This workflow combines both the 3D reconstruction of plants with Phenomenal, the reconstruction of the virtual canopy in the greenhouse using PlantGL (Pradal, Boudon et al, 2009), and a radiative transfer model, Caribu (Chelle et Andrieu 1998), available in OpenAlea.

Figure 7 .

 7 Figure 7. Example of extension of a Phenomenal pipeline with models available on the OpenAlea platform. The 3D maize canopy reconstruction pipeline built using Phenomenal was chained with the Caribu raycasting model available on OpenAlea to automate the simulation of light interception for the 1680 plants of the PhenoArch platform every day. The image shows the distribution of light irradiances (from blue to red) over a virtual field faithful to the actual arrangement of plants in the PhenoArch platform.

  were grown in polyvinyl chloride (PVC) 9 L pots (0.19 m diameter, 0.4 m high) filled with a 30:70 (v/v) mixture of a clay and organic compost. Detailed descriptions of most of the experiments can be found in the literature (MA14: Lopez et al., 2015; ZB12, ZA13, ZB13 and ZA16 (Alvarez-Prado et al., 2017); ZA17 (Brichet et al. 2017); ZB14 and GA16, unpublished). The PhenoArch image acquisition system takes RGB color images (2056 x 2454 pixels) from the top and the side of the plant (Cabrera-Bosquet et al. 2016). By rotation of the plant, multiple images representing different lateral views are acquired (Fig. S1.1). The camera is precise enough for picturing the cabin without considerable spherical aberration (<0.1%, data not shown). Plants are usually imaged daily during nighttime, with customized 20 number of images per plant. Typically, one image from top view and 2 to 24 images from side views are used for a given experiment.

  Euclidean distances between two points along a polyline. The width is estimated along the leaf polyline by the maximal distance between two points in the set of voxels intercepted by a moving normal plane along the polyline. Leaf area is obtained by the integral of leaf width as a function of curvilinear abscissa of leaf polyline breakpoints. Traits extracted from the stem are length, volume and diameter. Length and volume are estimated similarly to leaves. To avoid artifacts due to stem enlargement at each leaf insertion(Brichet et al. 2018), the stem diameter is estimated only at positions of stem path where the moving normal plane pass through a local minimum (minimal peak of the diameter as a function of curvilinear abscissa curve).
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Table 1

 1 

	). After curation of the

  or Scikit-image (van der[START_REF] Van Der Walt | Scikit-image: image processing in Python[END_REF], Phenomenal is a step towards an open-source ecosystem around high throughput image analysis of phenotyping platforms. However, to our knowledge, this is the first end-to-end open-source library that is able to analyze and reconstruct 3D models from images on large datasets in a reproducible way. While some algorithms are already available in other software, most of them have been enhanced to process actual HTP data automatically.
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