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Abstract

This paper presents a novel algorithm for performing inference and/or
clustering in semiparametric copula-based mixture models. The algo-
rithm replaces the standard kernel density estimator by a weighted ver-
sion that permits to take into account the constraints put on the under-
lying marginal densities. Lower misclassification error rates and better
estimates are obtained on simulations. The pointwise consistency of the
weighted kernel density estimator is established under an assumption on
the rate of convergence of the sample maximum.
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clustering.

1 Introduction

In modern data science, the observations of heterogeneous clusters is not un-
common. An example is given in [11] where one can observe two heterogeneous
clusters of data points described by blood pressure and medical costs. The
first dimension has a skewed Gaussian distribution and the second a log-normal
distribution. The first cluster has negative dependency and the second pos-
itive dependency. These data cannot be captured by the standard Gaussian
mixture model. The Student-t mixture model [22][27] is not able to deal with
heterogeneous clusters either.

Recently more flexible models have been considered. On the one hand, there
are copula-based methods [19, 20]. Copula-based methods allow for a separate
analysis of the marginals and the dependence structure. They have been suc-
cessfully applied in Pattern Recognition [36], Machine Learning [35], Knowledge
Discovery and Database Management [11]. Copulas allow for concatenating dis-
crete and continuous data, too [25]. In this paper, we only consider continuous
data.

On the other hand, there are nonparametric methods. Nonparametric meth-
ods do not need to pick parametric families for the component distributions (i.e.,
the distributions of the clusters) but at the cost of assuming independence within
each component [5, 24]. In nonparametric mixture models, the parameters are
probability density functions, which are estimated by kernel density estimators
embedded in pseudo-EM algorithms [7].
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In this paper, following the work in [26], we combine both the copula frame-
work and nonparametric estimation into a single mixture model. This permits
to capture a wide spectrum of dependence structures while avoiding the choice
of setting up the parametric families for the marginals. However, there is an
important difference between the model of [26] and ours. In the former, the dis-
tributions in the clusters were not allowed to vary in scale. In the latter, change
in scale is possible. This additional degree of freedom induces a structural con-
straint on the component marginal densities of the mixture. The constraint is
not satisfied by the kernel density estimator used in the algorithm in [26]. How
can we take the constraint into account? Will the inference be improved? To
answer the first question, we have built a random weighted kernel density esti-
mator and proved its pointwise consistency. To answer the second, we compared
the algorithms on simulated and real data.

The rest of this paper is as follows. We present the models in Section 2.
The first part reviews the paradigms under which one can build mixture models
(Gaussian, copula-based, nonparametric and semiparametric) and the second
part presents the model of interest in this paper. We give the learning algorithms
in Section 3. Section 4 contains the definition and the consistency result for the
weighted kernel density estimator. This section is written in a generic framework
and therefore can be read independently. Section 5 and Section 6 contain the
simulation experiments and the real data analysis, respectively. A Summary
closes the paper.

2 Four kinds of mixture models

2.1 A review of paradigms for mixture models

We consider mixture models of the form

f(x1, . . . , xd) =

K∑
z=1

πzfz(x1, . . . , xd),(1)

where π1, . . . , πK are the proportions of the K components (or clusters) and
f1, . . . , fK are the corresponding densities. The choice of the structure for the
component densities fz specifies the kind of mixture model.

The first kind of mixture model is as follows. One picks a multivariate
parametric family for the component densities and estimate their parameters
by maximum likelihood through an EM algorithm. In the majority of cases
one usually picks the multivariate Gaussian family, or, perhaps, the multivari-
ate Student-t family. Note that all coordinates of a vector of variables are
distributed according to the same distribution up to their parameters. For
instance, all the coordinates of a vector distributed according to a Gaussian
mixture model are Gaussian. This is an homogeneity assumption. We refer to a
standard textbook [27] for further details. We note that, to deal with the com-
plex, high-dimensional and noisy data of modern science, reseachers build more
sophisticated models [4, 8, 10, 28, 41]. However, the Gaussian distribution re-
mains at the core of statistics and is often used as an important building block
of those [4, 8, 10, 41]. The copula method, presented next, is an interesting
alternative.
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The second kind of mixture model arises when one chooses to use the copula
decomposition for each of the component densities, that is, one writes

fz(x1, . . . , xd) = cz(F1,z(x1), . . . , Fd,z(xd))

d∏
j=1

fj,z(xj),(2)

where cz is the copula density corresponding to fz and f1,z, . . . , fd,z are the
marginals. Here F1,z, . . . , Fd,z are the corresponding (cumulative) distribution
functions. Sklar’s theorem [29, 39] states that for any distribution function Fz
with continuous marginals F1,z, . . . , Fd,z, there exists a function Cz : [0, 1]d →
[0, 1], called the copula, such that

Fz(x1, . . . , xd) = Cz(F1,z(x1), . . . , Fd,z(xd)),(3)

for any (x1, . . . , xd) in the domain of definition of Fz. The decomposition (2) fol-
lows from Sklar’s theorem by differentiation. The copula Cz encodes the depen-
dence structure of a random vector. One easily checks that Cz is the distribution
function of the random vector (F1,z(X1), . . . , Fd,z(Xd)) if Fz is the distribution
function of (X1, . . . , Xd). Copulas are typically parametrized by considering
families of the form {Cz(·, . . . , ·; θz), θz} for some parameters θz. An example
is given in Section 5. If in (3) Cz(u1, . . . , ud) = u1 · · ·ud, then cz = 1 in (2).
This means that the variables are independent conditionally on belonging to the
cluster z. In copula-based models, one can choose different parametric families
for the marginals within the same cluster but this heterogeneity property comes
at a price. Indeed, the specification of all the parametric families (there are dK
marginals) can be a daunting task. Estimation of copula-based mixture models
can be performed by EM or EM-like algorithms [20].

The third kind of mixture model is of nonparametric flavor. In nonparamet-
ric mixture models, one assumes

f(x1, . . . , xd) =

K∑
z=1

πz

d∏
j=1

fj,z(xj).

That is, conditionally on the labels (i.e. conditionally on being in a certain clus-
ter), the variables are assumed to be independent. But, in contrast to copula-
based mixture models, one does not assume parametric marginals. Nonpara-
metric estimation can be performed with kernel density estimators embedded
in EM-like algorithms [5]. In [5], marginals of the form

fj,z(xj) =
1

σj,z
gj

(
xj − µj,z
σj,z

)
,(4)

where µj,z and σj,z are location and scale parameters, respectively, are also
considered. The case σj,z = 1 and d = 1 was considered in [7]. This work largely
inspired further work on nonparametric mixture models from the kernel density
estimation viewpoint. But nonparametric maximum likelihood estimation is
also possible if one assumes log-concavity of the component densities [18].

The fourth kind of mixture model combines nonparametric estimation and
copula modeling [26]. It is of the form (1), (2) and (4). In (2), the distribution
functions Fj,z are given by Fj,z(xj) = Gj((xj − µj,z)/σj,z) and

Gj(xj) =

∫ xj

−∞
gj(t) dt.(5)
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The model [26] is a particular case where σj,z = 1. The gj (hereafter called
the generators) are estimated in a nonparametric way but the copula is entirely
parametric, thus the term semiparametric used for this kind of models. Inference
can be performed with essentially the same algorithms as in [5, 7] but with an
additional step for estimating the copula parameters. Algorithm 1 in Section 3
is an example of such algorithms.

2.2 The model of interest

We consider a model of the fourth kind, a so called location-scale semiparametric
copula-based mixture model of the form

f(x1, . . . , xd;π,µ,σ,g,θ) =

K∑
z=1

πzcz

(
G1

(
x1 − µ1,z

σ1,z

)
, . . . , Gd

(
xd − µd,z
σd,z

)
; θz

)

×
d∏
j=1

1

σj,z
gj

(
xj − µj,z
σj,z

)
,

that is, of the form (1), (2) and (4) where the generators gj , j = 1, . . . , d, satisfy∫
xjgj(xj) dxj = 0(6)

and ∫
x2jgj(xj) dxj = 1.(7)

Here π = {πz}, µ = {µj,z}, σ = {σj,z}, g = {gj}, θ = {θz}, j = 1, . . . , d,
z = 1, . . . ,K, are the parameters of the model (note that θz can be a multi-
variate parameter). Note that there is no loss of generality in assuming a unit
variance in (7). Indeed, if the variance would be σ2

j , say, then we could find a
unique reparametrization (given by g̃j(xj) = σjgj(σjxj) and σ̃j,z = σjσj,z) so
that (7) would be true. The copulas are parametrized by vectors θz. No specific
parametric families are assumed for the generators.

3 Estimation

Given the model of interest in Section 2.2, one needs to estimate the proportions
πz, locations µj,z, scales σj,z, generators gj and copulas parameters θz for z =
1, . . . ,K and j = 1, . . . , d. Note that the estimates of the distribution functions

Gj can be computed through (5). The sample is denoted by (x
(i)
1 , . . . , x

(i)
d ),

i = 1, . . . , n. Two learning algorithms are presented in this section. Algorithm 1,
is essentially the same as that in [26], which itself is inspired from the algorithms
in [5, 7]. Hence we do not consider that Algorithm 1 is a contribution of the
paper. The contribution is Algorithm 2.

3.1 Description of the learning algorithms

Building upon the work of [5, 7, 26], the most natural algorithm one can build is
Algorithm 1. Algorithm 1 requires initial estimates π0

z , µ
0
j,z, σ

0
j,z, g

0
j , θ

0
z and then
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Algorithm 1

Given initial estimates π0
z , µ

0
j,z, σ

0
j,z, g

0
j , θ

0
z and for t = 1, 2, . . . (until some stop-

ping criterion has been reached), follow the steps below.

1. Compute (for i = 1, . . . , n and z = 1, . . . ,K)

wti,z =

πtzcz

{
Gt1

(
x
(i)
1 −µ

t
1,z

σt1,z

)
, . . . , Gtd

(
x
(i)
d −µ

t
d,z

σtd,z

)
; θtz

}∏d
j=1

1
σtj,z

gtj

(
x
(i)
j −µ

t
j,z

σtj,z

)
∑K
z=1 π

t
zcz

{
Gt1

(
x
(i)
1 −µt1,z
σt1,z

)
, . . . , Gtd

(
x
(i)
d −µ

t
d,z

σtd,z

)
; θtz

}∏d
j=1

1
σtj,z

gtj

(
x
(i)
j −µtj,z
σtj,z

)
2. Process through the following steps (j = 1, . . . , d, z = 1, . . . ,K).

(a) Update the cluster proportions

πt+1
z =

1

n

n∑
i=1

wti,z.

(b) Update the location parameters

µt+1
j,z =

∑n
i=1 x

(i)
j wti,z∑n

i=1 w
t
i,z

.

(c) Update the scale parameters

(σt+1
j,z )2 =

∑n
i=1(x

(i)
j − µ

t+1
j,z )2wti,z∑n

i=1 w
t
i,z

.

3. To update the generators, proceed through the following steps (j =
1, . . . , d).

(a) Generate a random variable Z(i) from Multi(wti,1, . . . , w
t
i,K),

(b) Define x̃ij = (xij − µtj,Z(i))/σ
t
j,Z(i) .

(c) Update the generators

gt+1
j (xj) =

1

nhj

n∑
i=1

K

(
xj − x̃(i)j

hj

)
(8)

4. Update the copula parameters (z = 1, . . . ,K)

θt+1
z = arg max

θz

∑
i

wti,z log cz

Gt+1
1

(
x
(i)
1 − µ

t+1
1z

σt+1
1,z

)
, . . . , Gt+1

d

x(i)d − µt+1
dz

σd,z

t+1
 ;θz
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produces a sequence πtz, µ
t
j,z, σ

t
j,z, g

t
j , θ

t
z, for t = 1, 2, . . . until some stopping

criterion has been reached. The first step is similar to the E step of any EM
algorithm. The second step is also similar to the EM algorithm for Gaussian
mixture models: the parameters are updated by computing weighted means
where the weights wti,z relate the observations to their probabilities of belonging
to the given clusters. The third step is similar to the computations undertaken

in [7]. Given the data x
(i)
j and given the weights computed at the t-th iteration,

one generates a random label Zi ∈ {1, . . . ,K} according to a multinomial distri-
bution Multi(wti,1, . . . , w

t
i,d). One then standardizes the data according to these

simulated labels, that is, builds a pseudo-sample x̃
(1)
j , . . . , x̃

(n)
j and constructs a

kernel density estimator on the top of it for updating the generators. The kernel
density estimator can be constructed by following the guidelines as those in a
standard textbook [38]. In (8), the kernel is denoted by K and the bandwidth
by hj . Thanks to a straightforward extension of Lemma 1 in [7], one has that,

at each iteration t of the algorithm, x̃
(1)
j , . . . , x̃

(n)
j is a sample from gtj and there-

fore the choice of the bandwidth can be based on that sample. Finally in the
last step, one maximizes a pseudo-likelihood for the copula parameters. See [26]
for more details about this step. Algorithm 1 empirically has been found to
perform well on simulations (see Section 5) whenever one is concerned with the
estimation of the parameters for their own sake. However, when one is inter-
ested in the task of clustering instead, Algorithm 1 appears to have no greater
value than a standard Gaussian mixture model. See Figure 1 and Section 5.

Interestingly, one can improve on Algorithm 1 by taking the inherent struc-
ture of the model into account. Note that in Algorithm 1 the estimator of the
generators is not a generator itself. That is, (6) and (7) hold true but in general∫

xjg
t+1
j (xj) dxj = 0 and

∫
x2jg

t+1
j (xj) dxj = 1(9)

do not. By letting the estimators gt unconstrained in spite of (6) and (7), in-
formation may be lost. To overcome this problem, we propose to base inference
on Algorithm 2. Algorithm 2 takes into account the inherent constraints of the
model by replacing the standard kernel density estimator (8) by a weighted ver-
sion (10) satisfying the constraints at each iteration of the algorithm. The proof
of pointwise consistency of the weighted kernel density estimator are postponed
to Section 4.

Algorithm 2 proceeds as follows. First one follows the instructions of Al-

gorithm 1 till the construction of the pseudo-samples x̃
(i)
j . Then one solves an

optimization problem for each marginal to get the weights of an adaptive kernel
density estimator which, at each iteration of the algorithm, satisfies the con-
straints (9) (see Section 4). The optimization problem is convex and easy to
solve. Consistency of the resulting estimator is studied in Section 4. Finally,
once the marginals have been updated, a last step is added to estimate the
copula parameters, as in Algorithm 1.

3.2 Heuristics underlying the learning algorithms

Increase of the log-likelihood

The two learning algorithms of Section 3.1 are designed to increase the log-
likelihood of the data. They start as the standard EM algorithm. In particular,
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Algorithm 2

1. Follow the steps 1 and 2 in Algorithm 1.

2. Generate the random labels Z(i) ∼ Multi(wti,1, . . . , w
t
i,K) and build the

pseudo-sample x̃ij = (xij − µtj,Z(i))/σ
t
j,Z(i) as in Algorithm 1.

3. Compute

M̂n,j =

 1 · · · 1

x̃
(1)
j · · · x̃

(n)
j

[x̃
(1)
j ]2 · · · [x̃

(n)
j ]2

 , and bn,j =

 1
0

1− h2j

 .

4. Solve the optimization problems

min
p∈Rn

‖p‖22

such that

{
M̂n,jp = bn,j

p ≥ 0,

and denote the solutions by p̃j = (p̃
(1)
j , . . . , p̃

(n)
j ).

5. Follow step 3 of Algorithm 1 but substitute (8) for

gt+1
j (xj) =

1

hj

n∑
i=1

p̃
(i)
j K

(
xj − x̃(i)j

hj

)
(10)

6. Follow step 4 of Algorithm 1 to update the copula parameters.
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the E step of the EM algorithm and Step 1 of Algorithm 1 are the same. In
the M step of the EM algorithm, at each iteration t, one can always write the
objective function, given by∑

z

∑
i

wti,z log cz

[
G1

(
x
(i)
1 − µ1z

σ1,z

)
, . . . , Gd

(
x
(i)
d − µdz
σd,z

)
; θz

]
(11)

+
∑
z

∑
i

wti,z


d∑
j=1

log

[
1

σj,z
gj

(
x
(i)
j − µj,z
σj,z

)]
+
∑
z

∑
i

wti,z log πz,

where wi,z are the weights calculated at the E step. The heuristic is to find
values of πz, µj,z, σj,z, gj , θz at which the objective function is high. For πz, the
solution is standard and independent of the other parameters: it is the formula
in Step 1 of Algorithm 1. For the other parameters, we use the following tricks.

If updates µt+1
j,z , σ

t+1
j,z , g

t+1
j were available, then they could be plugged in to

the first term in (11), which in turn could be maximized over θz. To get the
updates µt+1

j,z , σ
t+1
j,z , g

t+1
j , one tries to “maximize” the second term in (11). But

what does it mean to “maximize” the second term? A method of [7] is used. By
the decoupling of the marginals, we are left with d univariate problems similar
to those of [7]. Their idea consists of updating the location parameters µj,z (the
scale parameters σj,z were assumed to be one) by proceeding as if the generators
gj were Gaussian, leading to the formula in Step 2 (b) in Algorithm 1. Once
updates µt+1

j,z have been obtained, they go on by proposing an elegant way of
updating the generators gj : this is Step 3 of Algorithm 1. Note that step 2 (c)
of Algorithm 1 simply incorporates the estimation of the scale parameters σj,z
in a straightforward way. The novelty of Algorithm 2 is to replace the standard
kernel density estimator of Algorithm 1 by a new one that satisfies identifiability
constraints and is consistent, as shown in Section 4.

Let us come back to the “as if the gj were Gaussian” argument mentioned
above. Although the original authors [7] did not mention the following argu-
ment, this “Gaussian trick” can be supported for densities symmetric about
zero. Indeed, maximization over µj,z of the second term in (11) is tantamount
to solving ∑

i,z

g′j(x
(i)
j − µ)

gj(x
(i)
j − µ)

wti,z = 0.

Now, if gj is symmetric and hence an even function, then g′j/gj is an odd function
and odd functions are quite close to the identity function around zero because
the terms of even order in Taylor expansions are zero themselves exactly. Thus,
up to quadratic approximation, and assuming that the data observations are
tightly concentrated around their mean value within each cluster, the formula
in Step 2 (b) is approximately correct.

Initialization of the algorithms

To get initial values π0
z , µ

0
j,z, σ

0
j,z, g

0
j , θ

0
z , one can proceed as follows. A k-means

algorithm is run and the returned centers provide values for the location param-
eters µ0

j,z. The returned partition of the data is used to estimate the remaining
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parameters. The proportions of the returned clusters provide values for the
proportion parameters π0

z . The standard errors of the clusters provide values
for the scale parameters σ0

j,z. The estimation of the generators g0j is based on
the shuffle of all the K standarized samples. That is, one builds the sample

{(x(i)j − µ0
j,z)/σ

0
j,z}i,z and performs kernel density estimation on it to get an

estimate for g0j . Finally, copula parameters θ0z are estimated by standard meth-
ods [13, 14], cluster by cluster. Note that, as with the standard EM algorithm,
Algorithm 1 and Algorithm 2 may depend on the initialization. It is therefore
advisable to test as many starting points as possible.

Check of convergence

The convergence of Algorithm 1 and Algorithm 2 is checked visually. Since the
likelihood contains all the information about the parameters, we check that the
log-likelihood has increased until stabilization, in average. “In average” means
that one must take into account the inherent randomness of the algorithms,
which is why the check is done visually. Practically, we set a large number of
iterations, let the algorithms run, and inspect the plot afterwards. If the log-
likelihood has not stabilized around a mean value, we increase the number of
iterations. Examples are given in Section 5 and Section 6.

4 Kernel density estimation under moment con-
straints

We consider the problem of estimating the common density g of independent
random variables X1, . . . , Xn. We assume that g verifies the regularity condi-
tions in Assumption 1

Assumption 1. The density g is continuous on R, symmetric about zero and
obeys ∫

x2g(x) dx = 1 6=
∫
x4g(x) dx <∞.

Note that the assumed symmetry implies∫
xg(x)dx = 0.

Continuity is a standard assumption to ensure pointwise consistency of the
standard kernel density estimator [30] and the Nadaraya-Watson estimator [42].
The condition on the moment of second order stems from the structure of the
model in Section 2.2. The moment of fourth order must have a different value
than that of the moment of second order to ensure the convergence of a certain
quantity (see the proof of Theorem 1 for details). We view this rather as a
technical condition. For instance if g were the Gaussian density, its variance
would have to be not equal to 1/3.

As explained in Section 3, our aim is to construct an estimator ĝ that obeys∫
xĝ(x) dx = 0, and

∫
x2ĝ(x) dx = 1.(12)
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We define the estimator

ĝ(x) =

n∑
i=1

p̂n,iKhn(Xi − x)(13)

where Khn(y) = K(y/hn)/hn is a kernel depending on a positive sequence
hn and where p̂n = (p̂n,1, . . . , p̂n,n)′ (throughout ′ stands for the transpose
operation) is the unique solution of the random optimization problem

min
p∈Rn

‖p‖22(14)

such that

{
M̂np = bn

p ≥ 0,
(15)

where p = (p1, . . . , pn)′ and

M̂n =

 1 · · · 1
X1 · · · Xn

X2
1 · · · X2

n

 , and bn =

 1
0

1− h2n

 .

Each p̂n,i is a function of the random sample. For each realization of the sample,
the optimization problem (14) is convex and hence admits a unique solution
which is denoted by p̂n. The constraint (15) ensures that ĝ satisfies (12). Indeed,
elementary calculations show that (12) holds if and only if

n∑
i=1

p̂n,iXi = 0 and

n∑
i=1

p̂n,iX
2
i = 1− h2n,

respectively. The constraints
∑
i p̂n,i = 1 and p̂n,i ≥ 0, i = 1, . . . , n, must

always hold to ensure that ĝ is a density.
As soon as n > 3 the system M̂np = b has infinitely many solutions and

hence there are infinitely many estimators that satisfy (12). We chose to pick
the closest one to the standard kernel density estimator. The standard kernel
density estimator is an estimator of the form (13) where p̂n,i = 1/n, and the
solution of

min
(p1,...,pn)

E

∫
(

n∑
i=1

piKhn(Xi − x)− g(x))2 dx.

In our case, we cannot set p̂n,i = 1/n because the constraint (15) would not be
satisfied. But we can project (1/n, . . . , 1/n) onto the feasible space given in (15),
which amounts to solve the optimization problem (14) because minimizing ‖p‖2
is the same as minimizing ‖p− e‖2, where e = (1, . . . , 1)′. Thus, the minimiza-
tion of ‖p‖2 is a heuristic justified by an analogy. Moreover, even though one
can imagine other criteria [16] for choosing p, the choice of the euclidean norm
is the easiest from a theoretical and computational point of view.

Having defined the estimator in (13), it is natural to require at least point-
wise consistency. The issue resides in the constraint p ≥ 0. Without such a
constraint, Lemma 1 states that the solution of the optimization problem is
explicit and yields a consistent estimate. In the presence of the constraint, The-
orem 1 states that consistency can be achieved under a condition on the tail of
the underlying density.
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Theorem 1. Suppose Assumption 1 holds. If hn → 0, nhn → ∞ and there
exist constants an > 0, bn ∈ R such that n−1/4an → 0, hnan → 0, n−1/4bn → 0,
hnbn → 0 and

a−1n (max{X1, . . . , Xn} − bn)(16)

converges in distribution, then the estimator (13) is pointwise consistent.

The conditions hn → 0 and nhn → ∞ are necessary to ensure pointwise
convergence of the standard kernel density estimator [38]. The condition (16)
is standard in extreme value theory [34]. The conditions n−1/4an → 0 and
n−1/4bn → 0 state that the rate at which the sample maxima grows to infinity
must not be too fast. The conditions hnan → 0 and hnbn → 0 state that
the rate at which the sample maxima grows to infinity must be smaller than
the rate at which the bandwidth hn vanishes. If hn is the optimal bandwidth,
that is if hn ∝ n−1/5, then the conditions n−1/4an → 0 and n−1/4bn → 0
are automatically satisfied. Example 1 and Example 3 give distributions which
satisfy these conditions. Example 2 is a counter-example. Example 1 and
Example 2 are drawn from [9], p. 153–157. The computation of the normalizing
constants in Example 3 is given in the Appendix.

Example 1. Let hn ∝ n−1/5. The Gaussian distribution (2π)−1/2 exp(−x2/2),
x ∈ R, satisfies the conditions in Theorem 1 with

an = (2 log n)−1/2, bn =
√

2 log n− log(4π) + log log n

2(2 log n)1/2

Example 2 (Counter-example). The Cauchy distribution g(x) = [π(1+x2)]−1,
x ∈ R, does not satisfy the conditions in Theorem 1. Indeed, in addition to
have infinite variance, the normalization constants are given by an = n/π and
bn = 0. The sequence (an) does not verifies n−1/4an → 0.

Example 3. Let hn ∝ n−1/5. The Laplace distribution g(x) = exp(−|x|/b)/(2b),
b > 0, x ∈ R, satisfies the conditions in Theorem 1 with an = b and bn =
b log(n/2).

5 Computer experiments

In this section, we wish to compare Algorithm 1 (hereafter called cKDE for con-
venience) and Algorithm 2 (fKDE) in terms of the quality of the obtained es-
timates. The standard Gaussian Mixture Model (GMM) was also implemented
as a benchmark.

We generated 500 datasets of size n = 300, 500, 700, 900 according to the
following data generating process. The number of clusters was set to K = 3
and their proportion parameters were all set of equal value. The Frank family
of bivariate copulas, given by

Cθz (u, v) =

{
− 1
θz

log
(

1 + (e−θzu−1)(e−θzv−1)
(e−θz−1)

)
, if θz ∈ (−∞,∞) \ {0},

uv, if θz = 0.

was chosen for all of the three copulas. The parameters were θ1 = −3.45, θ2 =
3.45 and θ3 = 0, corresponding to negative, positive and null dependence levels,
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respectively. The generators for the marginals along the first, resp. second,
axis (g1, resp. g2), were a normal, resp. a Laplace, distribution with zero
mean and unit variance. The three clusters had means (µ1,1 = −3, µ2,1 = 0),
(µ1,2 = 0, µ2,2 = 3) and (µ1,3 = 3, µ2,3 = 0) respectively. The scale parameters
along the first, resp. second, axis were set to σ1,1 = 2, σ1,2 = 0.7 and σ1,3 = 1.4,
resp. σ2,1 = 0.7, σ2,2 = 1.4 and σ2,3 = 2.8.

All the three algorithms were run with 100 iterations and initialized accord-
ing to Section 3.1. The kernel and the bandwidth selection method used for
building the kernel density estimators were the Gaussian kernel and the method
given by (3.30) in p. 47 of [38]. That is, the bandwidth is 1.06An−1/5, where A is
the minimum between the standard deviation of the data and, the interquartile
range divided by 1.34.

In order to compare the algorithms, we computed the mean absolute errors,
that is, the differences in absolute value between the true parameters and the es-
timates. These were averaged over the clusters and the coordinates (if any). For
the generators, the L1 norm was used instead. Only the errors for the location,
scale and proportion parameters were computed for GMM. The misclassifica-
tion rate was computed, too. All these error measures can be computed at each
iteration of the algorithms and averaged over the replications. The results are
shown in Fig. 1.

From a clustering point of view, the three learning algorithms can be com-
pared on the basis of the misclassification error rate in Fig. 1 (f). Both the
semiparametric algorithms perform better than GMM, especially for large sam-
ple sizes, where nonparametric modeling can express its potential (see Fig. 2).
When the sample size is not so large, cKDE performs much better than fKDE.
This indicates that the new kernel density estimator implemented in cKDE was
a good idea. For larger sample sizes, the difference diminishes.

With regard to estimation, cKDE performs better than fKDE but the differ-
ence is approximately constant across the sample sizes. Both the semiparametric
algorithms perform better than GMM for the proportion (Fig. 1 (b)), location
(Fig. 1 (c)) and scale (Fig. 1 (d)) parameters in a way that is similar to the
missclassification error. That is, the gain is much more important as the sample
size gets larger.

The stability of the algorithms was checked by plotting the log-likelihood
and the pointwise averaged error trajectories. Specifically, we focused on the
case n = 300 and inspected the behaviors of the error trajectories across the it-
erations. These are displayed in Fig. 3. In Fig. 3 (f), we see that, in average, the
log-likelihood increases and stabilizes after 20–30 iterations. This is in agree-
ment with the heuristics discussed in Section 3.2. The log-likelihood of cKDE
is higher than that of fKDE, which is in agreement with the results found in
Figure 1. In the other panels, note that the method with the lowest trajectory
cannot formally be claimed the best because the point at which would converge
the algorithms is unknown. Of course if the sample size is large enough then the
true parameter would be close to this point. Thus the error trajectories (except
the log-likelihood) are here only to inspect convergence of the algorithms.

In view of the panels (a), (c) and (d) of Fig. 3, convergence seems to have
been reached after 30 iterations. For the proportion parametres in panel (b),
cKDE seems to have reached convergence while it is less clear for fKDE and
even GMM. The density generators in panel (e) exhibit a high variability.

To get an idea of the variability of individual trajectories, Fig. 4 shows the
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Figure 1: Averaged error values for the various parameters and algorithms in
terms of the sample size.
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Figure 2: Pointwise averaged marginal density estimates along the second axis
in the first cluster for GMM and fKDE. The true underlying density is added
for comparison.

trajectories for the first replication of the experiment under focus.
Finally, we repeated the computer experiment described at the beginning of

this section with two modifications, one at a time. First, in five successive exper-
iments, the proportion parameters π were set to (1/4, 3/8, 3/8), (1/5, 2/5, 2/5),
(1/6, 5/12, 5/12), (1/7, 6/14, 6/14), (1/8, 7/16, 7/16). Second, a fourth compo-
nent with location parameter (µ1,4, µ2,4) given by (0, 8), (0, 6), (0, 4), (0, 2),
(0, 0) with independent marginals and σ1,4 = σ2,4 = 1 was added. The cluster
proportions were π = (1/4, 1/4, 1/4, 1/4). Note that, since the centers of the
other clusters are (−3, 0), (0, 3) and (3, 0), the added fourth component gets
closer to the other clusters.

The computed missclassification errors averaged over 100 replications are
shown in Table 1. We see that the missclassification error seems to remain stable
(it exhibits only a very slight increase) as the proportion of observations in the
first cluster decreases from π1 = 1/4 to 1/6. Thus, there is some robustness in
the clustering in spite of nonparametric estimation.

In general, clustering methods typically perform worst as the amount of
separation between clusters decreases. This is also illustrated in Table 1, where
the error goes from 7-8% to 21-25%. Compared to GMM, the increase of the
error is not worst for semiparametric copula models.
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Figure 3: Trajectories of the errors (from (a) to (e)) and log-likelihoods (f),
averaged over the replications. The x-line is the number of steps and the y-line
the value of the error or observed log-likelihood.15
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Figure 4: Trajectories of the errors (from (a) to (e)) and log-likelihoods (f) for
the first replication. The x-line is the number of steps and the y-line the value
of the error or observed log-likelihood.16



π1 = 1/4 1/5 1/6 µ2,4 = 8 6 4 2 0
algo: cKDE 7 7 8 7 10 12 16 21

fKDE 8 8 9 7 11 11 15 25
GMM 9 10 11 8 11 14 18 23

Table 1: Averaged missclassification error of the computer experiment under
eight situations, in %.

6 Illustrations on real data

6.1 Illustration on the Iris data

We performed two data analyses of the well-known iris data available in the
R software. In the first analysis, we took the first (sepal length) and the third
(petal length) variables and ran Algorithm 2 for four families of copulas, namely,
the Frank, Clayton, Gaussian copulas and the copula representing independence
between the variables. The convergence of the algorithms was checked by in-
spection of the log-likelihood values, which stabilized after 50 iterations around
-250, -245, -246, -288, for the four copula families, respectively. The missclassi-
fication errors are given in Table 2. The lowest errors correspond to the highest
likelihoods. In terms of the estimated densities, the difference between the cop-
ulas is depicted in Figure 5. The Frank and Gaussian copulas seem to best fit
the data, in agreement with the results in Table 2.

Frank Clayton Gaussian independence
log-likelihood -250 -245 -246 -288

missclassification error (%) 16 10 8 14

Table 2: Missclassification errors and estimated log-likelihood for the different
copula families

In the second analysis, we ran Algorithm 2 with the complete data, that
is, we fitted a semiparametric copula-based mixture model of dimension d = 4.
Only the Gaussian copula was tested because the other copulas do not generalize
easily in higher dimensions. We let the algorithm run 50 iterations and observed
that the log-likelihood seem to have stabilized, see Figure 6(a). The isocontours,
depicted in Figure 6(b) do not differ much from those in Figure 5(c).

6.2 Illustration on RNA-seq data

The use of high-throughput sequencing technologies to sequence ribonucleic acid
content results in the production of RNA-seq data. From a statistical point of
view, the observations are (realizations of) random variables Yi,j , i = 1, . . . , n,
j = 1, . . . , d, each of which is a measure of the digital gene expression (DGE)
of the biological entity i (e.g., a gene) for the experimental condition j. For
instance, Yi,j may be the number of reads of the ith gene for the jth condition
aligned to a reference genome sequence. One question of interest deals with the
clustering of DGE profiles [32]. For instance, one may want to discover groups
of co-expressed genes.
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(a) Frank copula
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(b) Clayton copula
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(c) Gaussian copula
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(d) Independence

Figure 5: Isocontours of estimated densities under different copula assumptions:
Frank copula (a), Clayton copula(b), Gaussian copula(c) and independence(d).

18



0 10 20 30 40 50

−
1

9
5

−
1

8
5

−
1

7
5

−
1

6
5

iterations

lo
g

−
lik

e
lih

o
o

d

(a) Log-likelihood

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

1
2

3
4

5
6

7

sepal length

p
e

ta
l 
le

n
g

th

    

  

  

  

  

  

(b) Isocontours

Figure 6: Results of the semiparametric model for the fit in four dimensions:
(a)Log-likelihood value of the complete Iris data; (b)isocontours of the estimated
density, component by component (the estimated density is built on the four
variables of the iris data and this is the coordinatewise projection on the first
and third variables).

In recent years several clustering methods have been proposed. Poisson
mixture models can be applied but they need to assume that, within a cluster,
the DGE measures are independent, a very strong assumption. More precisely,
they are of the form [32] f(y;ψ) =

∏n
i=1

∑K
z=1 πzfz(yi;χiz) where fz(yi;χiz) =∏d

j=1

∏rj
l=1 P(yijl;µijlz) and χiz = {µijlz}jl, ψ = {πz, χiz}i,z. Here rj = 1,

j = 1, . . . , d and P denotes the Poisson density. Another approach consists of
applying a transformation Yi,j 7→ Ỹi,j , i = 1, . . . , n, j = 1, . . . , d, so that the
transformed data, or pseudo data, are more appropriate for Gaussian mixture
models [31]. One such transformation [12] is given by

Ỹi,j = log

(
Yi,j/Nj + 1

mi + 1

)
,

where Nj =
∑n
i=1 Yi,j/106 and mi = d−1

∑d
j=1N

−1
j Yi,j . This approach es-

sentially amounts to assuming that the data are Gaussian on a log-scale. The
semiparametric copula-based mixture models permit to relax this assumption.

In this section, we compare the Poisson mixture model of [32], the Gaussian
mixture model and the semiparametric copula-based mixture models with Gaus-
sian and Frank copulas. The data are high-throughput transcriptome RNA-seq
data [40] downloaded from the companion R package HTSCluster of [32]. We
removed the biological replicates so that d = 2. Estimation in the semipara-
metric copula-based models was performed with Algorithm 2. Estimation in
the Poisson mixture model was performed with the function PoisMixClus of
the package HTSCluster. All the algorithms were run with a fixed number of
clusters, set to K = 10, corresponding to the number of clusters selected by the
integrated completed likelihood criterion in the analysis performed in [33].
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In order the compare the models, we reproduced Fig. 2 of [32]. The bar
heights in Fig. 7 stand for the quantities∑n

i=1 ŵi,zYi,j∑n
i=1 ŵi,z

∑d
j=1 Yi,j

,

each of which, according to [32], can be interpreted as the proportion of reads
that are attributed to condition j in cluster z. The quantities ŵi,z are estimates
of the probability that the i-th observation belongs to the z-th cluster, estimate
of which depends on the fitted model (Poisson, GMM, or semiparametric copula-
based). Bar widths are proportional to π̂z, the estimated cluster proportions.
Each bar represents a cluster and each color represents a mean normalized
expression profile, the value of which is given by the bar length of a given color.
In Figure 7, the results for the Poisson model, the only one which does not take
into account the dependence structure within the clusters, differ from all the
other models. We note that the copula-based semiparametric models are both
similar (compared to the Poisson model) and different from GMM. We take this
as an encouragement for copula-based semiparametric models: there are not
absurd since similar to GMM; there are potentially of practical interest since
they differ from GMM.

7 Open problems and challenges

Despite the good results of the learning algorithms in Section 5 and Section 6,
there are open problems that need to be addressed to make these algorithms
fully applicable in practice.

High dimensions

Are Algorithm 1 and Algorithm 2 applicable to a high-dimensional setting? In
principle, the algorithms are written for any dimension d. In practice, however,
two issues make the problem challenging. First, as the dimension increases, the
number of flexible copula families drops rapidly. Still, there are certain families
such as Gaussian copulas, Vines copulas [1] or factor copulas [21] that might be
appropriate. But then one must be able to solve the optimization problem in
Step 4 of the algorithms.

Number of clusters

An important problem is that of the choice of the number of clusters. To this
end, many criteria write as the observed log-likelihood minus a penalization
term [2, 6, 15, 37]. But it is unclear what the penalization term should be in
semiparametric copula-based mixture models. That said, let us notice that the
observed log-likelihoods between different semiparametric copula-based mixture
models with the same number of parameters may be compared to at least select
the appropriate copula family.
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Figure 7: Cluster profiles for the Poisson mixture model, the Gaussian mixture
model and the semiparametric copula-based mixture models with Frank and
Gauss copulas. Each bar represents a cluster and each color represents a mean
normalized expression profile, the value of which is given by the bar length
of a given color. The bar widths are proportional to the estimated cluster
proportions.
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Identifiability

As of today, identifiability of semiparametric copula-based mixture models has
not been proved. Proving identifiability in general is known to be a difficult
problem. In fact, even purely parametric copula-based mixture models, such as
those in [20], have not been proved to be identifiable. Identifiability of elliptical
mixtures, hence including Student-t mixtures, was not proved until 2006 [17].
Identifiability, in a weaker sense, of nonparametric mixtures with independence
components under certain assumptions was proved in 2009 [3]. Identifiability
in the weak sense means that non-identifiable parameters in the strong sense
belong to a subset of Lebesgue measure zero.

From a statistical perspective, that is, from an estimation point of view,
identifiability is an important problem. In this respect, the simulations in Sec-
tion 5 are reassuring: the true parameters with which the data were simulated
could be recovered.

From a learning perspective, that is, from a clustering point of view, identi-
fiability is less important. For example, it is well known that neural networks
are not identifiable and still have been enjoying success throughout the sciences.

Convergence

Another important problem is that of checking the convergence of the algo-
rithms given in Section 3.1. The current method is to check visually that the
log-likelihood has increased and stabilized, taking into account the inherent
stochasticity. The problem is that the standard criterion in EM algorithms,

of the form |∇φ
∑
i log f(X

(i)
1 , . . . , X

(i)
d ;φ)| < ε, where ∇φ denotes the gradi-

ent operator with respect to the parameters φ, is not applicable because of the
inherent randomness of the algorithms. To address this issue, a smooth sum-
mary of the log-likelihood could be considered, as, for instance, its least concave
majorant.

8 Summary

We proposed a novel algorithm which permitted to improve the inference in
semiparametric copula-based mixture models in which the marginals have a
location-scale structure. We did this by replacing the standard kernel density
estimator by a weighted one in order to satisfy the inherent constraints of the
model. Pointwise consistency of the estimator was proved under mild assump-
tions. An application to RNA-seq data and a benchmark dataset (the iris data)
confirmed the ability of the models to fit real data.

Research on copula-based (and hence genuinely multivariate) semiparamet-
ric models has started only recently, and, therefore, many challenges still remain.
A list of important open problems is given in Section 7. Among them stands
the identifiability problem and the convergence of the algorithms. In fact, with
regard to the last point, even for simpler algorithms such as those in [5, 7, 26],
the convergence properties are still unknown, even though a first step has been
achieved in [23]. Addressing these problems should open the gate for designing
sound convergence check methods and performing model selection (including
selection of the correct number of clusters) through pseudo-AIC criteria.
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A Appendix

A.1 Computation of the normalizing constants in Exam-
ple 3

From [9], p. 155, we know that

[E(cnx+ dn; 1/b)]n → Λ(x), n→∞, x > 0,

where E(x; 1/b) = 1 − exp(−x/b), b > 0 is the distribution function of the
exponential distribution, Λ(x) = exp(−e−x) is the distribution function of the
Gumbel distribution and cn = b, dn = b log n. Let L(x; b) = exp(x/b)/2, x > 0,
be the distribution function of the Laplace distribution on the positive real line.
Let an = cn, bn = dn − b log 2 and x > 0. By identification of the binomial
coefficients in the binomial theorem, we have

[L(anx+ bn)]n = [E(cnx+ dn)]n → Λ(x),

meaning that an = b and bn = b log(n/2) are the appropriate constants. If
x < 0, the same formula applies because anx+ bn →∞.

A.2 Proof of Theorem 1

Theorem 1 shall be proved by first considering the optimization problem (14)–
(15) without the constraint p ≥ 0. (This shall be called the simplified optimiza-
tion problem.) Throughout the proofs, the bandwidth sequence hn is simply
denoted by h.

Lemma 1. Let n ≥ 3. If h → 0 and nh → 0 then the solution p̂n of the
simplified problem

min
p
‖p‖22(17)

such that
{
M̂np = bn(18)

obeys

p̂n =p̃n −
(I − H̃n)X2

X2′(I − H̃n)X2
(X2′p̃n − 1 + h2)(19)

p̃n =
X2e−XX

n(X2 −X2
)

(20)

where H̃n = M̃ ′n(M̃nM̃
′
n)−1M̃n is the projection matrix on the space spanned by

e, X = (X1, . . . , Xn), X = n−1
∑n
i Xi, and X2 = n−1

∑n
i X

2
i . Moreover, the

estimator (13) with p̂n as in (17)– (18) is pointwise consistent.

Proof of Lemma 1. Since the distribution of Xi has no atom at zero, one
has

P (∀y ∈ R3, M̂ ′ny 6= 0 or y = 0) = 1,
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meaning that M̂ ′n has full rank with probability one. Since n ≥ 3 this rank must

be three. Hence M̂nM̂
′
n has full rank equal to three and therfore is invertible.

The optimization problem is convex hence there is a unique solution p̂n whose
expression is easily found: the Lagrangian writes p′p − λ(M̂n − bn) for some
λ > 0 and by equating its gradient to zero we get

p̂n = M̂ ′n(M̂nM̂
′
n)−1bn(21)

(and λ = 2(M̂nM̂
′
n)−1bn).

In order to obtain the desired formulas (19) and (20) it is convenient to
introduce

M̃n =

(
1 · · · 1
X1 · · · Xn

)
and X2 =

X
2
1

...
X2
n

 .

so that we have the decompositions by blocks:

M̂n =

(
M̃n

X2′

)
and M̂nM̂

′
n =

(
M̃nM̃

′
n M̃nX

2

X2′M̃ ′n X2′X2

)
.

Let H̃n = M̃ ′n(M̃nM̃
′
n)−1M̃n be the projection matrix onto the linear space

spanned by the rows of M̃n. With this notation, we have

[M̂nM̂
′
n]−1 =

(M̃nM̃
′
n)−1 +

(M̃nM̃
′
n)
−1M̃nX

2X2′M̃ ′n(M̃nM̃
′
n)
−1

X2′(I−H̃n)X2

−(M̃nM̃
′
n)
−1M̃nX

2

X2′(I−H̃n)X2

−X2′M̃ ′n(M̃nM̃
′
n)
−1

X2′(I−H̃n)X2

1

X2′(I−H̃n)X2


Decomposing bn = (b̃′n, 1−h2)′ and applying formula (21) then yields (19) with

p̃n = M̃ ′n(M̃nM̃
′
n)−1b̃n, this last equality being equivalent to (20).

We now introduce an intermediate lemma in order to facilitate the study of
remainder terms which shall appear in the proof of consistency.

Lemma 2. Let (Zn,1, . . . , Zn,n) be i.i.d. random variables defined on the same
probability space as X1, . . . , Xn. They are assumed to obey n−1

∑n
i=1 Zn,iX

k
i →

ck, k = 0, 1, 2, in probability as n→∞ where ck is some real constant. Then

1

n
X2′(I − H̃n)Zn

P→ c2 − c0, n→∞,

where Zn = (Zn,1, . . . , Zn,n)′.

Proof of Lemma 2. Write

1

n
X2′(I − H̃n)Zn =

1

n

n∑
i=1

X2
i Zn,i −

1

n
X2′M̃ ′nn(M̃nM̃

′
n)−1

1

n
M̃nZn

P→ c2 − c0.

To see why the limit holds, note that n(M̃nM̃
′
n)−1 converges elementwise to the

identity matrix.
We now prove the consistency statement of Lemma 1. We have ĝ(x) = g̃(x)+

ĝ(x) − g̃(x) with g̃(x) =
∑n
i=1 p̃n,iKh(x −Xi) and ĝ(x) − g̃(x) =

∑n
i=1(p̂n,i −
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p̃n,i)Kh(x−Xi). Using (20) and
∑n
i=1XiKh(x−Xi)/

∑n
i=1Kh(x−Xi)→ x, we

easily get that g̃(x) → g(x) in probability. Now using (20)–(21) and Lemma 2
we also get

ĝ(x)− g̃(x) =
X2′p̃n + 1− h2

X2′(I − H̃n)X2
X2′(I − H̃n)K

P→ 0,

where K = (Kh(x−X1), . . . ,Kh(x−Xn))′. The proof of Lemma 1 is complete.

Proof of Theorem 1. In this proof, the symbol p̂n stands for the solution of
the optimization problem (17)–(18), that is, without the positivity constraint,
and the symbol p̂+

n stands for the solution of the optimization problem (14)–
(15), that is, with the positivity constraint. In view of Lemma 1, it is sufficient
to show that

P (p̂n,i ≥ 0, i = 1, . . . , n)→ 1, n→∞,

because, by definition of the optimization problems, this implies that

P (p̂n,i = p̂+n,i, i = 1, . . . , n)→ 1

and therefore that the estimators are equal with probability tending to one.
We write

p̂n,i = p̃n,i

(
1 +

p̂n,i − p̃n,i
p̃n,i

)
and the proof will be complete if (i) P (p̃n,i ≥ 0, i = 1, . . . , n) → 1 and (ii)
|(p̂n,i− p̃n,i)/p̃n,i| can be bounded above by a quantity which would not depend
on i and would vanish asymptotically.

We first show (i). We have

|np̃n,i − 1| =

∣∣∣∣∣X
2 −XXi

X2 −X2

∣∣∣∣∣ ≤
∣∣∣∣∣ X

2

X2 −X2

∣∣∣∣∣+

∣∣∣∣ X

X2 −X2 ana
−1
n Xi

∣∣∣∣ .
The first term in the right hand side is a OP (n−1) and does not depend on i.
Now

|a−1n Xi| ≤ ∨i |a−1n Xi|
=max{∨ia−1n Xi,∨i − a−1n Xi}
=max{∨ia−1n (Xi − bn),∨i − a−1n (Xi + bn)}+ a−1n bn,

where ∨iXi is a compact notation for max{X1, . . . , Xn}. By assumption, ∨ia−1n (Xi−
bn) converges in distribution. By symmetry, so does ∨i − a−1n (Xi + bn). Hence,
by the continuous mapping theorem, the maximum of ∨ia−1n (Xi − bn) and
∨i − a−1n (Xi + bn) converges in distribution. Thus

|np̃n,i − 1| ≤
∣∣ X

2

X2 −X2

∣∣+
∣∣ X

X2 −X2 an
∣∣|max{∨ia−1n (Xi − bn),∨i − a−1n (Xi + bn)}+ a−1n bn|

=OP (n−1) +OP (n−1/2an)(OP (1) + a−1n bn).
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The bound does not depend on i and vanishes asymptotically in probability by
assumption on the sequences an and bn. This is enough to conclude that (i)
holds with probability tending to one.

We finally show (ii). It is convenient to introduce Lemma 3 the proof of
which is deferred to the end of this Section.

Lemma 3. Let vn be a positive sequence satisfying v−1n → 0, v−1n an → 0,
v−1n bn → 0. There exist random quantities An, Bn, Cn, Dn, En such that, as n→
∞, An is OP (v−2n ), Bn, Cn, Dn are OP (v−1n ), En tends to a nonzero constant
in probability, P (DnXi + En > 0, i = 1, . . . , n)→ 1 and

p̂n,i − p̃n,i
p̃n,i

=
AnX

2
i +BnXi + Cn
DnXi + En

(22)

In view of 22, one has∣∣∣ p̂n,i − p̃n,i
p̃n,i

∣∣∣ ≤ |An| ∨ni=1 X
2
i + |Bn| ∨ni=1 Xi + |Cn|

En − ∨ni=1 −DnXi
(23)

(we used the fact that min{y1, . . . , yn} = −max{−y1, . . . ,−yn} for the denom-
inator). By assumption and by symmetry, both ∨ni=1Xi and ∨ni=1 − Xi are
OP (an) + bn and by assumption on vn,

v−2n ∨ni=1 X
2
i =

[
max(v−1n ∨ni=1 Xi, v

−1
n ∨ni=1 −Xi)

]2 P→ 0.

Hence the numerator in (23) is oP (1). The denominator equals En+Dn∨ni=1Xi

if Dn < 0 and equals En−Dn∨ni=1−Xi if Dn > 0. Either way, the denominator
tends to a constant in probability and ∣∣∣ p̂n,i − p̃n,i

p̃n,i

∣∣∣ ≤
max

{
|An| ∨ni=1 X

2
i + |Bn| ∨ni=1 Xi + |Cn|

En +Dn ∨ni=1 Xi
,
|An| ∨ni=1 X

2
i + |Bn| ∨ni=1 Xi + |Cn|

En −Dn ∨ni=1 −Xi

}
.

This upper bound does not depend on i and vanishes asymptotically in proba-
bility. This proves (ii). It only remains to prove Lemma 3.

Proof of Lemma 3. Let δi,j = 1 whenever i = j and δi,j = 0 whenever i 6= j.

Let H̃i,j denote the element at the i-th row and j-th column of H̃n. We have

p̂n,i − p̃n,i
p̃n,i

=
−
∑n
j=1(δi,j − H̃i,j)X

2
j

X2′p̃n−1+h2

X2′(I−H̃n)X2

X2−XXi
n(X2−X2

)

.

Standard calculations yield

n∑
j=1

(δi,j − H̃i,j)X
2
j =

(X2 −X2
)X2

i + (XX2 −X3)Xi +XX3 −X2
2

X2 −X2

and hence we can rewrite

p̂n,i − p̃n,i
p̃n,i

=
[−(X2 −X2

)X2
i − (XX2 −X3)Xi −XX3 +X2

2
][X2′p̃n − 1 + h2]

[X2 −XXi][n−1X2′(I − H̃n)X2]
.
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This is a ratio of polynomials in Xi that can be identified with (22). One easily
sees that X2′p̃n − 1 + h2 is OP (n−1/2) + OP (h2) and hence all the coefficients
of the polynomial in the numerator are (at least) OP (n−1/2) + OP (h2). By

Lemma 2, n−1X2′(I − H̃n)X2 tends to EX4
1 − 1 which nonzero by assumption.

Therefore the desired equation (22) is satisfied with

v−2n = n−1/2 + h2,

An = −(X2 −X2
)[X2′p̃n − 1 + h2]

Bn = −(XX2 −X3)[X2′p̃n − 1 + h2]

Cn = (−XX3 +X2
2
)[X2′p̃n − 1 + h2]

En = X2n−1X2′(I − H̃n)X2.

Indeed, v−2n a2n = n−1/2a2n + h2a2n → 0 by the assumptions in Theorem 1. Let
us show that An is OP (v−2n ). We have

v2nAn =Op(v
2
nn
−1/2) +Op(v

2
nh

2)

=Op

(
1

1 + n1/2h2

)
+Op

(
1

1 + n−1/2h−2

)
=Op(1),

the last equality holding because the sequence (1 + n1/2h2)−1 is bounded. The
remaining conditions in Lemma 3 are checked in the same way. The proof of
Lemma 3 is complete. Hence the proof of Theorem 1 is complete, too.
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