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Context & Objective

Ammonia (NH;) is the most abundant alkaline component in the atmosphere, and is therefore of great importance in the neutralization of atmospheric acids and formation of aerosol particles. Numerous studies have been published investigating the
effects of NH; fluxes on agricultural ecosystems since emissions of atmospheric NH; are mainly related to agriculture. However, NH; emissions also occur from natural sources and deposition may affect sensitive ecosystems such as forests.
Understanding and predicting the biosphere-atmosphere interactions of NH; in a forest canopy is challenging due to the complex nature of this ecosystem.

<S The aim of this study is to investigate the NH, flux partitioning between the ground layer, cuticle and stomata compartments for a deciduous forest using a two-layer NH, compensation point model SURFATM-NH, as a
comparison and interpretation tool. Modeling results are evaluated with data collected during the Southern Appalachian Nitrogen Deposition (SANDS) study in southwestern North Carolina.

Materials and Methods +*Dataset for model validation
. Field site location
“*SURFATM-N H3[1] s N Coweeta Hydrologic Laboratory, North Carolina
- o\ - Parameterization of (I'y ) and (I'y) as
Inputs a function of the nitrogen status of gt Banc 5 T A Southern W o * Deciduous overstory (tulip poplar,
- Meteorological data the plant 121 - | P, S XN A Y Appalachia ¢ > red maple, oak, hickory)
- Plant and soil properties ) \ Amount and type of fertilizer applied. o\ o ' I Evergreen understory

(rhododendron, mountain laurel)

/

Pollutant exchange model 4]

@ergy budget model [l

{Outputs: energy balance, surface temperature (soil, leaf), NH; volatilization flux ]

NH; flux ( ng m-2s-1)

* Mature southern Appalachian
forest (~85 years since harvesting)

 Mean annual temperature: 12.7 °C
§i° Average canopy height: 35 m
|» Total canopy LAI: 4.6

* The emission potential for the vegetation (I'g ) and ground layer (I'y) are given by the NH; gas concentrations at S ) Time (Day of Year)
equilibrium with the ammonium (NH,*) concentration in the apoplastic fluid or soil solution. o Measurements

 Volatilization flux of NH, (F,)

Surface
temperature

Fig.2: Simulation of the different sources of NH, fluxes with SURFATM-NH,; model

» Air : NH; concentration (denuder and MARGA data), wind speed, friction velocity, sensible

| and latent heat flux, chemical fluxes, solar radiation, rainfall, air temperature - SURFATM-NH, simulates LE and H which are in good agreement with the experimental data.
Fi - = (;(a—;(c) . C . heiaht. LAI st 4] L tential (I d litt L tential - The stomatal exchange is the main contributor to the simulated forest NH; emissions.
a anopy: height, LAI, stomatal emission potential (I';) and litter emission potentials - The total modeled NH, fluxes over this forest ecosystem are relatively small.

with | 7 = F s 2o 2 R R Ros Ros Ro s R Ry - Soil: temperature, moisture, pH, heat flux, soil emission potential (I';) m
* Initial model testing

* Stomatal compensation point (x,) - Implement a litter emission potential (I'j;e,) iIN the model,

- Improve the description of R, by implementing: (i) the effect of temperature suggested by Flechard et
al. (2010) [71, (ii) the effect of LAl suggested by Zhang et al. (2003) 8], and (iii) the molar ratio of total
acid / NH, in the atmosphere (AR) proposed by Massad et al. (2010) Pl

- Study the sensitivity of the model to various parameters ;

- Simulate NH3 fluxes for the whole experimental study and compare the model outputs to the

* Initial focus: July 20-30, 2016 - Implemented emission potentials: [ ;= 40, I', =200

AH® + AH? 1 1
=K xK. xex é H _ x T
Ao = BT p[ R [298.15 TD S

* Ground layer compensation point () [ measurements:
Fig.1: Resistive Scheme for NH, exchange model. o 0 T "0  Hohs - Compare SURFATM-NHS3 results with other models.
R.,, R.o Ries Riom Row Rps and R, are respectively 7. =K, xK, xexp AH, + AH y 1 T Bl pessenssmmnnans s T presemm—— |
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do and g, are fitted parameters, D the vapor pressure deficit, C.,, the atmospheric CO, concentration, Jg the light-limited assimilation Fig.2: Comparison of modeled and measured latent heat flux (LE) and sensible heat flux (H)
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rate, J. the rubisco-limited assimilation rate, J, the assimilation rate due to the limitation of the export of assimilates inside the leaf, Ry
the leaf dark respiration.
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