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Introduction

Inferring transmission links, for fast evolving pathogens, using viral
genetic data is crucial to make epidemiological predictions and to
design control strategies.

Pathogen sequence data have been exploited to infer who infected
whom, by using empirical and model-based approaches.

Data collected with deep sequencing techniques provide a subsample
of the pathogen variants that were present in the host at sampling
time. They are expected to give better insight into epidemiological
links.
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Introduction

Here, we present a Statistical Learning Approach For Estimating
Epidemiological Links from deep sequencing data (SLAFEEL), which
is summarized as follows:

After that, we apply this approach to three real cases of animal,
human and plant epidemics.

Then, we show the impact of introducing penalization and, therefore,
using training data on the inference.
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Pseudo-evolutionary model for the evolution and
transmission of populations of sequences

+ It describes transitions between sets of sequences sampled at different
times from an infected host and its putative sources.

+ It takes into consideration the loss and gain of virus variants during
within-host evolution and their loss during between-host
transmissions.

+ We built a sort of regression function parameterised by an
evolutionary parameter and a penalisation parameter, where:

the response variable is the set of sequences S = {S1, ...,SJ} observed
from a recipient host unit,

the explanatory variable is the set of sequences S(0) = {S(0)
1 , ...,S(0)

I }
observed from a putative source.

the coefficients are weights measuring how each sequence in S(0)

contributes to explaining each sequence in S.
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Estimation and calibration of parameters, and inference of
transmissions
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Estimation and calibration of parameters, and inference of
transmissions
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Semi-parametric pseudo-evolutionary model (1/2)
+ Its general form is given by a penalized pseudo-likelihood:

fµ,θ
(

S1, ...,SJ |S(0)
1 , ...,S(0)

I

)
= Pθ(W )×

J∏
j=1


∑I

i=1 wijKµ{d(Sj ,S(0)
i ); ∆ij}∑I

i=1 wij︸ ︷︷ ︸
pj


where:

d(., .) is a distance function giving the number of different nucleotides
between two sequences,

∆ij is the duration separating the two sequences Sj and S(0)
i ,

wij = 1/nj for indices i corresponding to sequences S(0)
i minimally distant

from the sequence Sj (the number of such sequences denote nj) and wij = 0
otherwise,

Kµ(.,∆) is a kernel smoother parameterised by an evolutionary parameter µ.
It is the probability distribution function of the binomial law with size equals
to the sequence length and success probability 3(1− exp(−4µ∆))/4,
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Semi-parametric pseudo-evolutionary model (2/2)
Pθ(W ) is a parametric penalization for the weight matrix W , parameterised
by a penalisation parameter θ. It measures the likelihood of the
contributions of explanatory sequences S(0)

1 , ...,S(0)
I (measured by

∑J
j=1 wij ,

i = 1, ..., I) to the response set of sequences S1, ...,SJ .

Two hypotheses are considered for the penalization:

1 H1 : E
[∑J

j=1wij

]
= J/I. Two associated penalization shapes:

ã Pθ(W ) =
∏I

i=1 Φ
(∑J

j=1 wij ; J
I , θ

J
I

(
1 − 1

I

))
,

ã Pθ(W ) = θχ2
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j=1

wij −J/I
)2

J/I ; I − 1

)
,

2 H2 : E
[

1
J
∑J

j=1 min(d(Sj ,S(0)
f (j)))

]
= d̄obs . A linked penalization shape:

ã Pθ(W ) = θ
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j=1 Φ
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i ); d̄obs, σ
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obs

)
.
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Inference of epidemiological links for hosts with different
immunological histories
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Inference of epidemiological links for hosts with different
immunological histories
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Inference of epidemiological links for hosts with different
immunological histories
A

Tree inferred by optimizing the penalization 
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Figure: Transmissions inferred in the naive chain (A) and vaccinated chain (B) of Swine
influenza virus using pair of training hosts in the last group for calibrating the
penalization. Training hosts are written in bold. The thickness of each arrow is
proportional to the intensity of the corresponding inferred link.
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Inference of epidemiological links for hosts with different
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Consistent estimations with the two pairs of training hosts.
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Impact of training hosts

A B C

Figure: Transmissions inferred in the vaccinated chain of SIV using different sets of
training hosts for calibrating the penalization: (A) a pair of hosts in the last group of
the chain (B) a pair of hosts in the middle of the chain (C) three hosts in the last group
and the middle of the chain. Training hosts are highlighted. The thickness of each arrow
is proportional to the intensity of the corresponding inferred link.
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Impact of training hosts
A B C

Using more contact information allows a finer calibration of
the penalisation and, consequently, a more accurate resolu-
tion of transmissions.
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Comparaison between SLAFEEL and BadTrIP

Figure: Discrepancy between inferred transmission graphs obtained with SLAFFEL (with
and without penalization) and BadTrIP and reference graphs, for naive and vaccinated
chains of SIV. This discrepancy is measured by the proportion of correct source
identifications.
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Inference of epidemiological links in a low diversity
pathogen population
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Senga et al. (2017)
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Figure: Most likely epidemiological links between Ebola patients cumulating to 20%
probability for each recipient (i.e., for each recipient, potential donors were ranked with
respect to link intensity, and the subset of donors with higher ranks for which the sum of
link intensities reached 0.2 were retained to be displayed in the graph).
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Inference of epidemiological links in a low diversity
pathogen population

Recipient Donor
G3817 G3729
G3820 G3729
G3821 G3729
G3823 G3729
G3851 G3752

Senga et al. (2017)
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The Jawie chiefdom seems to be an interface between Kissi
Teng and Kissi Tongi chiefdoms on the one hand and most
of the other chiefdoms on theother hand.
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Inference of epidemiological links at a metapopulation scale

+ Geographic proximity is used as contact information

10 km

Figure: Epidemiological links inferred between 27 salsify patches based on sets of
potyvirus variants sequenced from 189 infected plants sampled in a 40× 10 km
region of south-eastern France.
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Inference of epidemiological links at a metapopulation scale

10 km

No secondary arrows are displayed,
Non-negligible proportion of long links,
Environmental factors and intra-host demo-genetic
factors may play a role in the transmission of the virus.
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Conclusion and perspectives

F SLAFEEL is adaptable to very different contexts and data from
animal, human and plant epidemics.

F SLAFEEL is valuable in non-standard situations where classical
mechanistic assumptions may be erroneous and when sequencing and
variant calling may be noisy.

F Introducing a penalization and using more contact information lead to
accurate inferences of transmission links.

F Calibrate and assess its efficiency by applying it to simulated data
generated with diverse sampling efforts, sequencing techniques and
stochastic models of viral evolution and transmission.

F Investigate the statistical relationship between inferred transmission
links and environmental factors.
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Inferring epidemiological links from deep sequencing data: a statistical learning
approach for human, animal and plant diseases.
Submitted.

C Desbiez, A Schoeny, B Maisonneuve, K Berthier, et al.
Molecular and biological characterization of two potyviruses infecting lettuce in
southeastern france.
Plant Pathology, 66(6):970–979, 2017.

SK Gire, A Goba, KG Andersen, RS Sealfon, et al.
Genomic surveillance elucidates Ebola virus origin and transmission during the 2014
outbreak.
Science, 345:1369–1372, 2014.

PR Murcia, J Hughes, P Battista, L Lloyd, GJ Baillie, et al.
Evolution of an Eurasian Avian-like influenza virus in näıve and vaccinated pigs.
PLoS Pathogens, 8(5):e1002730, 2012.

Maryam ALAMIL (INRA-BioSP) ModStatSAP-2019 12 March 2019 20 / 21



Thank you for your attention!

We welcome your questions,
comments & suggestions!
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Impact of introducing a penalization
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Figure: Transmissions inferred in the naive chain (A) and vaccinated chain (B) of
SIV without including the penalisation and, therefore, without including training
hosts.
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