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Overview

Overview Introduction

Inferring transmission links, for fast evolving pathogens, using viral genetic data is crucial to make epidemiological predictions and to design control strategies.

Pathogen sequence data have been exploited to infer who infected whom, by using empirical and model-based approaches.

Data collected with deep sequencing techniques provide a subsample of the pathogen variants that were present in the host at sampling time. They are expected to give better insight into epidemiological links.

Introduction

Here, we present a Statistical Learning Approach For Estimating Epidemiological Links from deep sequencing data (SLAFEEL), which is summarized as follows:

After that, we apply this approach to three real cases of animal, human and plant epidemics.

Then, we show the impact of introducing penalization and, therefore, using training data on the inference. Pseudo-evolutionary model for the evolution and transmission of populations of sequences
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It describes transitions between sets of sequences sampled at different times from an infected host and its putative sources.

It takes into consideration the loss and gain of virus variants during within-host evolution and their loss during between-host transmissions.

We built a sort of regression function parameterised by an evolutionary parameter and a penalisation parameter, where:

the response variable is the set of sequences S = {S 1 , ..., S J } observed from a recipient host unit, the explanatory variable is the set of sequences

S (0) = {S (0) 1 , ..., S (0) 
I } observed from a putative source. the coefficients are weights measuring how each sequence in S (0) contributes to explaining each sequence in S. Semi-parametric pseudo-evolutionary model (1/2)

f μ m ' ( θ) , θ (S m |S m ' ) m given θ μ m' (θ ) S 1 (m 1 ) , ..., S I m 1 ( m 1 ) S 1 (m 2 ) , ..., S I m 2 (m 2 ) S 1 (m 3 ) ,..., S I m 3 (m 3 ) S 1 (m 4 ) ,
Its general form is given by a penalized pseudo-likelihood:

f µ,θ S 1 , ..., S J |S (0) 1 , ..., S (0) I = P θ (W ) × J j=1       I i=1 w ij K µ {d(S j , S (0) i ); ∆ ij } I i=1 w ij pj      
where: Two hypotheses are considered for the penalization:

1 H 1 : E J j=1 w ij = J/I. Two associated penalization shapes:

¢ P θ (W ) = I i=1 Φ J j=1 wij ; J I , θ J I 1 -1 I , ¢ P θ (W ) = θχ 2 I i=1 J j=1 w ij -J/I 2 J/I ; I -1 , 2 H 2 : E 1 J J j=1 min(d(S j , S (0) f (j)
)) = dobs . A linked penalization shape: Comparaison between SLAFEEL and BadTrIP probability for each recipient (i.e., for each recipient, potential donors were ranked with respect to link intensity, and the subset of donors with higher ranks for which the sum of link intensities reached 0.2 were retained to be displayed in the graph).

¢ P θ (W ) = θ J j=1 Φ I i=1 wij d(Sj , S (0) i );

Inference of epidemiological links in a low diversity pathogen population

Recipient Donor ! SLAFEEL is valuable in non-standard situations where classical mechanistic assumptions may be erroneous and when sequencing and variant calling may be noisy.

! Introducing a penalization and using more contact information lead to accurate inferences of transmission links.

! Calibrate and assess its efficiency by applying it to simulated data generated with diverse sampling efforts, sequencing techniques and stochastic models of viral evolution and transmission.

! Investigate the statistical relationship between inferred transmission links and environmental factors.

  d(., .) is a distance function giving the number of different nucleotides between two sequences, ∆ ij is the duration separating the two sequences S j and S (0) i , w ij = 1/n j for indices i corresponding to sequences S (0) i minimally distant from the sequence S j (the number of such sequences denote n j ) and w ij = 0 otherwise, K µ (., ∆) is a kernel smoother parameterised by an evolutionary parameter µ. It is the probability distribution function of the binomial law with size equals to the sequence length and success probability 3(1 -exp(-4µ∆))/4, Semi-parametric pseudo-evolutionary model (2/2) P θ (W ) is a parametric penalization for the weight matrix W , parameterised by a penalisation parameter θ. It measures the likelihood of the contributions of explanatory sequences S , i = 1, ..., I) to the response set of sequences S 1 , ..., S J .
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 : Figure: Transmissions inferred in the vaccinated chain of SIV using different sets of training hosts for calibrating the penalization: (A) a pair of hosts in the last group of the chain (B) a pair of hosts in the middle of the chain (C) three hosts in the last group and the middle of the chain. Training hosts are highlighted. The thickness of each arrow is proportional to the intensity of the corresponding inferred link.

Figure : Figure :

 :: Figure: Discrepancy between inferred transmission graphs obtained with SLAFFEL (with and without penalization) and BadTrIP and reference graphs, for naive and vaccinated chains of SIV. This discrepancy is measured by the proportion of correct source identifications.

  seems to be an interface between Kissi Teng and Kissi Tongi chiefdoms on the one hand and most of the other chiefdoms on theother hand.

Figure : !

 : Figure: Epidemiological links inferred between 27 salsify patches based on sets of potyvirus variants sequenced from 189 infected plants sampled in a 40 × 10 km region of south-eastern France.

of transmissions Sequencing Learning stage Inference of transmission links for the whole data set by assessing the link intensity between each directed pair of hosts is calibrated by building and optimising a criterion that compares contact information and inferred sources of infection for training hosts

  Estimation and calibration of parameters, and inference

			Maximise
			f μ , θ (S m |S m ' ); m '≠m
			μ
	Θ	θ	Identify the most likely source of
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113 Naive chain (5 groups) 410 405 Vaccinated chain (7 groups) 113 115 417 409 106 115 400 108 105 ….. 410 405 ….. 414 412 First group Last group First group Last group

  dobs , σ 2 obs . Transmissions inferred in the naive chain (A) and vaccinated chain (B) of Swine influenza virus using pair of training hosts in the last group for calibrating the penalization. Training hosts are written in bold. The thickness of each arrow is proportional to the intensity of the corresponding inferred link.
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Maryam ALAMIL (INRA-BioSP) Host Figure: Host Consistent estimations with the two pairs of training hosts.
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Thank you for your attention!

We welcome your questions, comments & suggestions!