

Haoues Alout

▶ To cite this version:

Haoues Alout. Is malaria vector control still useful despite insecticide resistance?. 2018 Institut Pasteur International Network Symposium, Nov 2018, Paris, France. hal-02788777

HAL Id: hal-02788777 https://hal.inrae.fr/hal-02788777

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Poster SHORT 02

Is vector control still useful despite insecticide resistance?

Haoues ALOUT

Combating resistance: microbes and vectors

2018 International Pasteur International Network Symposium

Institut Pasteur, Paris – November 15-16, 2018

Malaria prevalence: 50% reduction in 15 years

Contribution of control methods

Control of disease

21%

Control of transmission

79%

Bhatt et al. 2015

Insecticide resistance in malaria vectors

Table 1. Protective Efficacy of the Vector Control Tool against the Malaria Burden

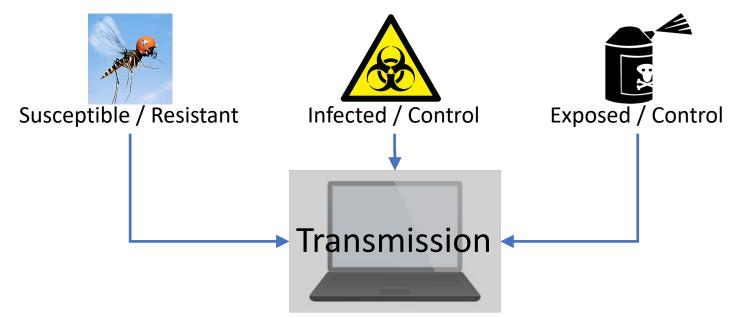
Year	Country	Vector control tool	Protective efficacy ^a		Type of control	Insecticide resistance	Mean efficacy (s.e.m) ^b	Refs
			Prevalence of parasitemia	Child morbidity				
1992	Gambia	ITN (permethrin)	7%	45%	Untreated	Susceptible	35% (21%)	[90-92]
1992	Cameroon	ITN (deltamethrin)	40%	NAc	No nets	Susceptible		[93,94]
1993-1995	Kenya	ITN (permethrin)	51%	NA	No nets	Susceptible		[95,96]
1996	Burkina Faso	ITC (permethrin)	57%	NA	No nets	Susceptible		[97,98]
1997-1999	Kenya	ITN (permethrin)	19%	55%	No nets	Low		[99,100]
2000	Ivory Coast	ITN (lambda-cyhalothrin)	17%	56%	No nets	High	33% (18%)	[24,101]
2004	Equatorial Guinea	IRS (deltametrin)	47%	38%	Untreated	Moderate-high		[20,21]
2005	Burundi	ITN (deltamethrin), IRS (deltamethrin + alphacypermethrin)	55%	43%	Untreated	Moderate		[22,23]
2012	Malawi	ITN (deltamethrin)	30%	NA	No nets	Moderate		[25]
2014	Kenya	ITN	14%	NA	No nets	High		[26,27]

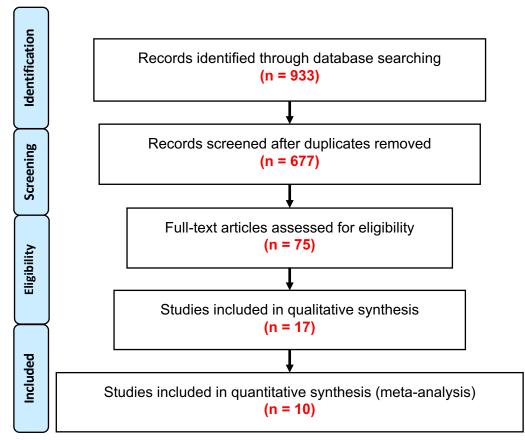
???

Alout et al. 2017

Cost of resistance

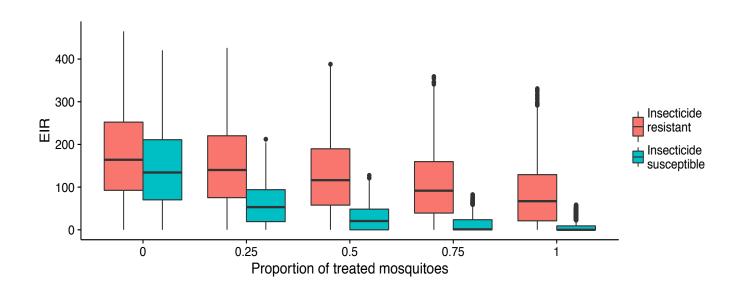
Modifications of several physiological and metabolical processes





Interactions between:

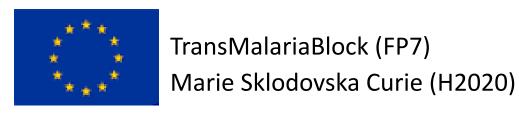
Resistance genes - Infection - Insecticides



Systematic review:

Criteria: - Experimental studies only

- At least 1 resistant strain/pop
- Known mechanism of resistance
- Appropriate control


In resistant populations, insecticides remain partially efficient to reduce malaria transmission

Poster SHORT 02

Thanks to

Anna Cohuet Benjamin Roche Fréderic Jourdain Roch Dabiré

And thank you