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UNIFYING MIRROR DESCENT AND DUAL AVERAGING

ANATOLI JUDITSKY, JOON KWON, AND ÉRIC MOULINES

Abstract. We introduce and analyse a new family of algorithms which generalizes and unifies
both the mirror descent and the dual averaging algorithms. The unified analysis of the algorithms
involves the introduction of a generalized Bregman divergence which utilizes subgradients instead of
gradients. Our approach is general enough to encompass classical settings in convex optimization,
online learning, and variational inequalities such as saddle-point problems.

1. Introduction

The family of mirror descent algorithms were initially introduced as first-order convex optimiza-
tion algorithms, and were then extended to a variety of (online) optimization problems. Let us
quickly recall the succession of ideas which have led to the the mirror descent algorithms.

Let us first consider the most basic setting, where the objective function f : Rn → R is convex
and finite on the whole space Rn, differentiable, and admits a unique minimizer x∗ ∈ Rn. We focus
on the construction of algorithms based on first-order oracles (in other words, the algorithm may
obtain the values of the function f(x) and of its gradient ∇f(x) at querried points x ∈ Rn) and
which outputs points where the value of the objective function f is provably close to the minimum
f(x∗). The most basic such algorithm is the gradient descent, which starts at some initial point
x1 ∈ Rn and iterates:

xt+1 = xt − γ∇f(xt), t > 1,

where γ > 0 is the step-size. An equivalent way of writing the above is the so-called proximal
formulation:

xt+1 = argmin
x∈Rn

{

f(xt) + 〈∇f(xt)|x− xt〉+
1

2γ
‖x− xt‖22

}

,

where xt+1 appears as the solution of a simplified minimization problem where the objective func-

tion f has been replaced by its linearization at xt plus a Euclidean proximal term 1
2γ ‖x− xt‖22

which prevents the next iterate xt+1 from being too far from xt. This algorithm is well-suited to
assumptions regarding the objective function f which involve the Euclidean norm (e.g. if ∇f is
bounded (or Lipschitz-continuous) with respect to the Euclidean norm).

The mirror descent algorithm, first introduced in [38, 41] and further studied in [5], can be
presented as an extension of the above gradient descent, by replacing the Euclidean proximal term
by a Bregman divergence [6] associated with a differentiable convex function F : Rn → R:

xt+1 = argmin
x∈Rn

{

f(xt) + 〈∇f(xt)|x− xt〉+
1

γ
DF (x, xt)

}

,

where, for any (x, x′) ∈ Rn the Bregman divergence is defined as:

DF (x
′, x) := F (x′)− F (x)−

〈

∇F (x)|x′ − x
〉

.

These mirror descent algorithms, with a carefully chosen function F , are used to better suit the
geometry of the problem, for instance when the objective function f is Lipschitz-continuous or
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smooth with respect to a non-Euclidean norm. One can see that the above mirror descent iteration
can we equivalently written (under appropriate assumptions on F ):

(1) xt+1 = ∇F ∗(∇F (xt)− γ∇f(xt)),

where F ∗ is the Legendre–Fenchel transform of F given by:

F ∗(ϑ) = max
x∈Rn

{〈ϑ|x〉 − F (x)} , ϑ ∈ Rn.

This formulation makes explicit the distinction between the primal space (where the iterates
(xt)t>1 live) and the dual space (where the gradients (∇f(xt))t>1 belong): point xt is mapped
from the primal into the dual using ∇F , the gradient step is then performed in the dual space
(∇F (xt) − γ∇f(xt)), and the point thus obtained is finally mapped back into the primal space
using ∇F ∗.

We now move on to constrained problems. Let X ⊂ Rn be a closed convex set. Even if an iterate
xt belongs to the set X , the above gradient/mirror descent iteration may well propose an iterate xt+1

which lays outside of X . Therefore, to force the next iterate xt+1 to belong to X , the mirror descent
can be adapted with the help of an additional projection step. But this projection can be introduced
in at least two ways, which give rise to two families of algorithms: mirror descent (MD) which can
be traced back to the pioneering work of [41, Chapter 3] and dual averaging (DA) introduced in
[45, 52], sometimes called lazy mirror descent or follow the regularizer leader. To illustrate the
similarities and differences between MD and DA, we here describe the simple Euclidean case for
each of the two families. The MD algorithm in the Euclidean case corresponds to the projected
gradient descent [21, 33]. For a given initial point x1 ∈ X , it writes, for all t > 1,

yt+1 = xt − γ∇f(xt) and xt+1 = projX (yt+1),

where projX denotes the Euclidean projection onto X . In other words, it first performs a gradient
step, then projects the point thus obtained onto the set X . Then the next gradient step is performed
starting from point xt+1.

For a given initial point ϑ0 ∈ Rn, the corresponding algorithm in the DA family writes, for all
t > 0:

ϑt+1 = ϑt − γ∇f(xt) and xt+1 = projX (ϑt+1).

The difference with the projected gradient descent is that the gradient steps are performed starting
from the unprojected point ϑt.

The MD and DA algorithms share similarities in their analysis and in the guarantees they provide.
However, their differences lead the two families to be well-suited for different situations. DA were
advantageous in distributed problems [16, 19], and manifold identification [18, 32], for instance.
They also show better averaging properties in the presence of noise [20]. On the other hand, MD
is known to provide better convergence rates in some cases (e.g. when the objective function f
is assumed to be smooth, see also [20, Section 4.2] for another simple case). MD also achieves
(unlike DA) the optimal rate in the adversarial multi-armed bandit problem [2, 3] and the online
combinatorial optimization problem with semi-bandit feedback [4] and bandit feedback [10, 14].

The mirror descent algorithms were also tranposed to provide solutions for other problems than
convex optimization. We already mentionned bandit problems. More generally, the mirror descent
algorithms have been successful in online learning—see e.g. [7, 11, 22, 48, 50, 51, 53]. They also
provided solutions for saddle-point problems [40], and similar procedures were used for estimator
aggregation in statistical learning [28, 29]. See also [35, Appendix C] for a discussion comparing
MD and DA.

A closely related family of algorithms, which has attracted much attention, is obtained by allowing
the regularizers or mirror maps—see below Sections 2 and 3—to vary over time (possibly as a
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function of previous data) [12, 17, 24–26, 36, 47]—see [35] for a recent survey. This will not be the
case in this work.

1.1. Main contributions. We introduce and study a new family of algorithms which unifies and
extends both the mirror descent and the dual averaging. The general algorithm has the property
of offering at each step several possible iterations. Our main result is an analysis of the algorithm
which is general enough to be then applied to various settings such as convex optimization, regret
minimization, saddle-point problems, etc.

1.2. Other works. To the best of our knowledge, the only other works which present in a common
unifying framework the mirror descent and the dual averaging algorithms [34, 35], and is quite
different from the present work. In our approach, the difference between the two methods appears
as a result of the problem being constrained in a set X ( Rn. In [34, 35], although the problems
are unconstrained, the difference between mirror descent and dual averaging appears as a result of
having regularizers/mirror maps which vary over time. The unification is then achieved by tweaking
the way the time-varying regularizers/mirror map are defined. Our unified algorithm is based on
quite different ideas and has the property of offering several possible iterations at some steps, which
is not the case in [34, 35].

1.3. Paper outline. In Section 2 (resp. 3) we recall the definition of the mirror descent (resp. dual
averaging) algorithms. In Section 4 we define our new family of algorithms which we call unified
mirror descent, and establish that the mirror descent and dual averaging families are special cases.
We then establish our main result, which is the guarantee offered by the unified mirror descent
algorithms. In Section 5, we present various classical problems in which the unifed mirror descent
algorithms can be applied.

1.4. Preliminaries and notation. Throughout the paper, we consider algorithms associated with
an arbitrary sequence (ξt)t>1 in Rn. The special case of gradient/mirror descent for the minimization
of a differentiable objective function f is recovered by considering sequences of the form ξt =
−γ∇f(xt).

For x, ϑ ∈ Rn, 〈ϑ|x〉 denotes the canonical scalar product. For a given set A ⊂ Rn, intA and
clA denote its interior and closure respectively. For a given norm ‖ · ‖ in Rn, we denote ‖ · ‖∗ its
dual norm is defined as

‖ϑ‖∗ := max
‖x‖61

〈ϑ|x〉 .

The convex characteristic IC : Rn → R ∪ {+∞} of a convex set C ⊂ Rn is zero on C and equal
to +∞ elsewhere. Denote g : Rn → R ∪ {+∞} a convex function. Its domain dom g is the set
{x ∈ Rn : g(x) < ∞}. Its subdifferential ∂g(x) at point x ∈ Rn is the set of vectors ϑ ∈ Rn such
that

∀x′ ∈ Rn, g(x′)− g(x) >
〈

ϑ|x′ − x
〉

.

The Legendre–Fenchel transform of g is defined by:

g∗(ϑ) = max
x∈Rn

{〈ϑ|x〉 − g(x)} , ϑ ∈ Rn.

If g is differentiable at a given point x ∈ Rn, its Bregman divergence between x and any point
x′ ∈ Rn is defined as

Dg(x
′, x) = g(x′)− g(x) −

〈

∇g(x)|x′ − x
〉

.

Further convexity definitions and results are recalled in Section A.
Throughout the paper, X ⊂ Rn will be a closed and nonempty convex set.
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2. Mirror descent

The greedy mirror descent algorithms rely on the notion of mirror maps that we now recall. Our
presentation draws inspiration from [8], with a few differences in definitions and conventions.

Definition 2.1. Let F : Rn → R ∪ {+∞} be a function. Denote DF := int domF . F is a
X -compatible mirror map if

(i) F is lower-semicontinous and strictly convex,
(ii) F is differentiable on DF ,
(iii) the gradient of F takes all possible values, i.e. ∇F (DF ) = Rn.
(iv) X ⊂ clDF ,
(v) X ∩ DF 6= ∅,

The following proposition gathers a few properties about mirror maps. For the sake of complete-
ness, the proofs given in Appendix B.

Proposition 2.2. Let F : Rn → R∪{+∞} be a X -compatible mirror map, F ∗ the Legendre–Fenchel
transform of F , and DF := int domF . Then,

(i) domF ∗ = Rn,
(ii) F ∗ is differentiable on Rn,
(iii) ∇F ∗(Rn) = DF ,
(iv) For all x ∈ DF and y ∈ Rn, we have ∇F ∗(∇F (x)) = x and ∇F (∇F ∗(y)) = y.

We can now define the mirror descent algorithm [38], [8, Section 4.2].

Definition 2.3. Let F be a X -compatible mirror map, ξ := (ξt)t>1 be a sequence in Rn and
x1 ∈ X ∩ DF an initial point. We define the associated MD iterates as follows:

(MD) xt+1 = argmin
x∈X

DF (x, ∇F ∗(∇F (xt) + ξt)), t > 1.

(xt)t>1 is then said to be a MD(X , F, ξ) sequence and ξ = (ξt)t>1 is called the sequence of dual
increments.

The above is well-defined thanks to the following induction. As soon as xt (t > 1) belongs to
X ∩DF , ∇F (xt) exists because F is differentiable on DF by Definition 2.1. Then, ∇F ∗(∇F (xt)+ξt)
exists because F ∗ is differentiable on Rn by Proposition 2.2–(ii). Then, the next iterate xt+1 is
obtained using the Bregman projection onto X , which is well-defined and belongs to X ∩DF thanks
to Theorem 2.4 below.

Statements similar to the following can be found in the literature (see e.g. [15, Lemma A.1]) but
we could not find one which matches our exact assumptions on F and X . Therefore, we give a
detailed proof in Appendix B for completeness.

Theorem 2.4 (Bregman projection onto X ). Let F : Rn → R ∪ {+∞} be a X -compatible mirror
map and denote DF := int domF . Then for any x0 ∈ DF , argminx∈X DF (x, x0) exists and is
unique. Moreover, it belongs to X ∩ DF ; in other words:

argmin
x∈X

DF (x, x0) = argmin
x∈X∩DF

DF (x, x0).

The above (MD) iteration can be rewritten as follows. Denote x̃t := ∇F ∗(∇F (xt) + ξt). Using
Proposition 2.2–(iv), we get ∇F (x̃t) = F (xt) + ξt. Then, using the definition of the Bregman
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X

Figure 1. Mirror descent

divergence:

xt+1 = argmin
x∈X

{F (x)− F (x̃t)− 〈∇F (x̃t)|x− x̃t〉}

= argmin
x∈X

{F (x)− 〈∇f(xt) + ξt|x〉}

= argmin
x∈X

{F (x)− F (xt)− 〈∇f(xt)|x− xt〉 − 〈ξt|x〉}

= argmin
x∈X

{− 〈ξt|x〉+DF (x, xt)} .

The above last expression is called primal formulation, and is taken as the definition of mirror
descent algorithms in some works—see e.g. [5, Section 3]. Introducing the so-called prox-mapping :

TX ,F (u, x) := argmin
x′∈X

{

−
〈

u
∣

∣x′
〉

+DF (x
′, x)

}

, u ∈ Rn, x ∈ X ∩ DF ,

the MD iterates starting from some point x1 ∈ X ∩ DF can then be alternatively written as:

(MD-prox) xt+1 = TX ,F (ξt, xt), t > 1.

We now give a few examples of mirror maps.

Example 2.5 (Gradient descent). The most simple example is X = Rn and F defined on Rn

by F (x) = 1
2 ‖x‖

2
2. One can easily see that F is indeed a Rn-compatible mirror map. We then

have ∇F = ∇F ∗ = In. Besides, if f : Rn → R is a differentiable objective function, and if
we consider dual increments ξt := −γ∇f(xt), then update rule (MD) boils down to the gradient
descent algorithm.

Example 2.6 (Projected gradient descent). A common variant of the above is the case where X
is some closed proper subset of Rn. The same function F (x) = 1

2 ‖x‖
2
2 is a X -compatible mirror

map. Again, if f is a objective function which is differentiable on the interior of X , then considering
ξt = −γ∇f(xt) makes (MD) correspond to the projected gradient algorithm.

Example 2.7 (Exponential weights). A frequent special case corresponds to X being the n-simplex:

X =

{

x ∈ Rn
+

∣

∣

∣

∣

∣

n
∑

i=1

xi = 1

}

,

and F defined by F (x) =
∑n

i=1 xi log xi for x ∈ Rn
+ (using convention 0 log 0 = 0) and F (x) = +∞

for x 6∈ Rn
+. F is then a X -compatible mirror map.
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3. Dual averaging

The dual averaging algorithms rely on the notion of regularizers which we now recall. These are
less restrictive than mirror maps: we see below in Proposition 3.4 that for a given mirror map,
there exists a corresponding regularizer but the converse is not true. A regularizer may have a
domain with empty interior (and therefore be nowhere differentiable), whereas mirror maps must
be differentiable on the interior of their domain.

Definition 3.1 (Regularizers). Let h : Rn → R ∪ {+∞} be a function. h is a X -pre-regularizer if
it is strictly convex, lower-semicontinous, and if cl domh = X . Moreover, if domh∗ = Rn, then h is
said to be a X -regularizer.

The following proposition gives several sufficient conditions for the above condition domh∗ = Rn

to be satisfied. The proof is postponed to Appendix B.

Proposition 3.2. Let h be a X -pre-regularizer.

(i) If X is compact, then h is a X -regularizer.
(ii) If h is differentiable on Dh := int domh and ∇h(Dh) = Rn, then h is a X -regularizer.
(iii) If h is strongly convex with respect to some norm ‖ · ‖, then h is a X regularizer.

Proposition 3.3 (Differentiability of h∗). Let h be a X -regularizer. Then h∗ is differentiable on
Rn.

Proposition 3.4. Let F be a X -compatible mirror map. Then, h := F + IX is a X -regularizer.

Corollary 3.5. (i) h(x) := 1
2 ‖x‖

2
2 + IX (x) is a X -regularizer.

(ii) The entropy defined as:

h(x) :=

{

∑n
i=1 xi log xi if x ∈ ∆n

+∞ otherwise,

where ∆n :=
{

x ∈ Rn
+

∣

∣

∑n
i=1 xi = 1

}

and where we use convention 0 log 0 = 1, is a ∆n-
regularizer.

Example 3.6 (Elastic net regularization). An example of regularizer which does not have a mirror
map counterpart, because it fails to be differentiable, is the so-called elastic net regularizer:

h(x) := ‖x‖1 + ‖x‖22 ,
which is indeed a Rn-regularizer by strong convexity (Proposition 3.2).

We now recall the definition of the dual averaging (DA) iterates.

Definition 3.7 (Dual averaging [45, 52]). Let h be a X -regularizer and ξ := (ξt)t>1 be a sequence in
Rn. A sequence (xt, ϑt)t>1 is said to be a sequence of DA iterates associated with h and ξ (DA(h, ξ)
for short) if for t > 1:

xt = ∇h∗(ϑt)

ϑt+1 = ϑt + ξt.
(DA)

Points (xt)t>1 (resp. (ϑt)t>1) are then called primal iterates (resp. dual iterates), and vectors (ξt)t>1

are called dual increments.

We can see that for a given couple (x1, ϑ1) of initial points satisfying x1 = ∇h∗(ϑ1), and a
sequence (ξt)t>1 of dual increments, the subsequent iterates (xt, ϑt)t>2 are well-defined and unique.
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X

Figure 2. Dual averaging

4. The unified mirror descent algorithm

We introduce in this section our general family of algorithms which we call unified mirror descent
(UMD) and prove that MD and DA are special cases. We then establish a guarantee provided by
the UMD algorithm.

4.1. Definition, properties and special cases.

Definition 4.1. Let h be a X -regularizer and ξ := (ξt)t>1 be a sequence in Rn. We say that
(xt, ϑt)t>1 is a UMD sequence associated with h and ξ (or a UMD(h, ξ) sequence for short) if for
all t > 1:

xt = ∇h∗(ϑt),(I)

∀x ∈ X , 〈ϑt+1 − ϑt − ξt|x− xt+1〉 > 0.(II)

Points (xt)t>1 (resp. (ϑt)t>1) are called primal iterates (resp. dual iterates), and vectors (ξt)t>1 are
called dual increments.

Proposition 4.2. Let (xt, ϑt)t>1 be an UMD(h, ξ) sequence defined as above. Then for all t > 1,

(i) ϑt ∈ ∂h(xt);
(ii) ϑt + ξt ∈ ∂h(xt+1) and xt+1 = ∇h∗(ϑt + ξt).

Proof. Let t > 1. By definition of UMD iterates, we have xt = ∇h∗(ϑt), which combined with
Propositions A.2 and A.3 gives property (i).

For all x ∈ X we deduce from ϑt+1 ∈ ∂h(xt+1) that:

h(x)− h(xt+1) > 〈ϑt+1|x− xt+1〉 > 〈ϑt + ξt|x− xt+1〉 .
where we used variational condition (II) from the definition of UMD iterates to get the second
inequality. Then, inequality h(x)− h(xt+1) > 〈ϑt + ξt|x− xt+1〉 also holds for x 6∈ X because then
h(x) = +∞. This proves that ϑt + ξt also belongs to ∂h(xt+1), i.e. property (ii). �

Remark 4.3 (Existence of UMD iterates). As soon as X -regularizer h and sequence of dual in-
crements (ξt)t>1 are given, we can see that UMD(h, ξ) always exist. Indeed, from the definition of
regularizers, it follows that there exists a primal point x1 ∈ X such that ∂h(x1) 6= ∅; in other words,
there exists (x1, ϑ1) such that x1 = ∇h∗(ϑ1). Then, for t > 1, one can consider ϑt+1 := ϑt + ξt
which indeed satisfies variational condition (II), and then define xt+1 := ∇h∗(ϑt+1). This choice
of ϑt actually corresponds to the iteration of the DA algorithm, as will be detailed in the proof of
Proposition 4.5.
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Figure 3. Unified mirror descent

We can consider the following alternative definition of UMD iterates. Let Πh : Rn ⇒ X ×Rn be
a multi-valued prox-mapping defined as follows. Πh(ζ) is the set of couples (x, ϑ) satisfying:

x = ∇h∗(ζ)

ϑ ∈ ∂h(x)

∀x′ ∈ X ,
〈

ϑ− ζ|x′ − x
〉

> 0.

Then, it can be easily checked that (xt, ϑt)t>1 is a sequence of UMD(h, ξ) iterates if and only if:

ϑ1 ∈ ∂h(x1)

(xt+1, ϑt+1) ∈ Πh(ϑt + ξt), t > 1.
(UMD-prox)

Remark 4.4 (On the non-unicity of UMD iterates). An interesting character of the UMD algorithm
is that for a given sequence (ξt)t>1 of dual increments and initial points (x1, ϑ1), there may be
several possible UMD sequences because the prox-mapping Πh is multi-valued. However, as soon
as the subdifferential ∂h(x) is at most a singleton at each point x ∈ X , the prox-mapping Πh is
single-valued and the UMD sequence is thus unique; in particuliar, DA and MD then coincide. This
is the case for instance if X = Rn and if the regularizer h is differentiable on Rn.

Proposition 4.5 (DA is a special case of UMD). Let h be a X -regularizer, ξ := (ξt)t>1 be a sequence
in Rn. Let (xt, ϑt)t>1 be DA(h, ξ) iterates. Then, (xt, ϑt)t>1 are UMD(h, ξ) iterates.

Proof. First, condition (I) is true by definition of (DA). Besides, the relation ϑt+1 = ϑt + ξt makes
condition (II) trivially satisfied because one of the arguments of the scalar product is zero. �

Proposition 4.6 (MD is a special case of UMD). Let F be a X -compatible mirror map and ξ :=
(ξt)t>1 be a sequence in Rn. Let (xt)t>1 be a sequence of MD(F,X , ξ) iterates. Then, (xt,∇F (xt))t>1

is a sequence of UMD(F + IX , ξ) iterates.

Proof. For t > 1, we consider ϑt := ∇F (xt). Let us prove that conditions (I) and (II) are satisfied
with regularizer h := F + IX .

For t > 1, denote x̃t := ∇F ∗(∇F (xt)+ ξt), which implies ∇F (x̃t) = ∇F (xt)+ ξt = ϑt+ ξt thanks
to Proposition A.2. We can then rewrite the (MD) iteration as follows:

xt+1 = argmin
x∈X

DF (x, x̃t)

= argmin
x∈X

{F (x)− F (x̃t)− 〈∇F (x̃t)|x− x̃t〉}

= argmin
x∈X

{F (x)− 〈ϑt + ξt|x〉} .
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In other words, xt+1 is the minimiser on X of the convex function x 7→ F (x) − 〈ϑt + ξt|x〉. This
function is differentiable at xt+1 because we know by Theorem 2.4 that xt+1 ∈ DF := int domF
and F is differentiable on DF . Applying the variational characterization from Proposition A.4, we
get

∀x ∈ X , 〈∇F (xt+1)− ϑt − ξt|x− xt+1〉 > 0,

which is exactly condition (II) because we just set ϑt+1 = ∇F (xt+1).
By convexity of F , the following is true

∀x ∈ Rn, F (x)− F (xt) > 〈∇F (xt)|x− xt〉 .
By definition of h, we obviously have h(x) > F (x) for all x ∈ Rn, and h(xt) = F (xt)+IX (xt) = F (xt)
because xt ∈ X . Therefore, the following is also true

∀x ∈ Rn, h(x) − h(xt) > 〈∇F (xt)|x− xt〉 .
In other words, ϑt = ∇F (xt) ∈ ∂h(xt), which is equivalent to xt ∈ ∇h∗(ϑt) (see Propositions A.2
and (A.3)), and condition (I) is satisfied. �

4.2. Simple examples. Let us describe and compare the iterates of MD, DA and UMD in a
Euclidean setting: in this section only we consider X -regularizer h := 1

2 ‖x‖
2
2 + IX as well as mirror

map F := 1
2 ‖x‖

2
2. It is then easy to check that the map ∇h∗ is the Euclidean projection onto X .

We denote (xt, ϑt)t>1 a sequence of UMD(h, ξ) iterates. We consider below two simple cases for the
set X .

4.2.1. Euclidean ball. We here consider the case where the set X = B(0, 1) is the closed unit
Euclidean ball. Let t > 1 and assume that ϑt + ξt is outside of B(0, 1) so that xt+1, which is the
Euclidean projection of ϑt + ξt, belongs to the boundary of B(0, 1), in other words, ‖xt+1‖2 = 1.

From this point xt+1, a MD iteration corresponds to choosing ϑMD
t+1 := xt+1, and a DA interation

corresponds to choosing ϑDA
t+1 := ϑt + ξt. Besides, we can see that the set of points ϑt+1 with have

xt+1 as Euclidean projection is is [1,+∞)xt+1 and that the set of points ϑt+1 satisfying condition
(II) is (−∞, 1] (ϑt + ξt). Therefore, the set of vectors ϑt+1 satisfying both conditions (II) and (I) is
the convex hull of xt+1 and ϑt + ξt, which is represented by a thick segment in Figure 4.

•
0

X = B(0, 1)

•
xt+1

•
ϑt + ξt

ϑMD
t+1 ϑDA

t+1

Figure 4. Comparison of MD, DA and UMD iterations when X is the Euclidean ball.

4.2.2. Segment in R2. We here assume the ambiant space to be R2 and consider X = [0, 1] × {0}.
Let t > 1 and assume that ϑt + ξt belongs to R∗

− × R so that xt+1, the Euclidean projection of
ϑt + ξt, is equal to (0, 0). Then, we can see that the set of points ϑt+1 which have xt+1 = (0, 0) as
Euclidean projection is R− × R and that the set of points ϑt+1 satisfying condition (II) are those
with first coordinate greater or equal than the first coordinatcoordinate of ϑt+ξt. The set of vectors
satisfying both conditions (II) and (I) is represented by the dashed area in Figure 5.
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•xt
X

• (1, 0)

•ϑt + ξt
ϑMD
t+1

ϑDA
t+1

Figure 5. Comparison of MD, DA and UMD iterations when X is a segment in R2.

4.3. Analysis. We introduce a natural extension of the Bregman divergence, which utilizes sub-
gradients instead of gradients. This notion will be central in the statement and the analysis of the
guarantee provided by UMD iterates.

Definition 4.7 (Bregman divergence). Let g : Rn → R ∪ {+∞} be a convex function. For x ∈ Rn

such that ∂g(x) 6= ∅, x′ ∈ Rn, and ϑ ∈ ∂g(x), we define the Bregman divergence from x to x′ with
subgradient ϑ as

Dg(x
′, x; ϑ) := h(x′)− h(x)−

〈

ϑ
∣

∣x′ − x
〉

.

Remark 4.8. If g is differentiable at point x, the traditional Bregman divergence from x to x′ is
well-defined and is equal to the the only the Bregman divergence (as defined above) from x to x′

with (only) subgradient ∇g(x), in other words: Dg(x
′, x; ∇g(x)) = Dg(x

′, x).

Proposition 4.9. Let g : Rn → R ∪ {+∞} be a lower-semicontinuous convex function. Let
x, x′, ϑ, ϑ′ ∈ Rn such that ϑ ∈ ∂g(x) and ϑ′ ∈ ∂g(x′).

(i) Then,
0 6 Dg(x

′, x; ϑ) = Dg∗(ϑ, ϑ
′; x′),

where Dg∗( · , · ; · ) is the Bregman divergence associated with the Legendre–Fenchel transform
g∗ of g.

(ii) Moreover, if g is K-strongly convex with respect to a given norm ‖ · ‖, g∗ is differentiable on
Rn and:

K

2

∥

∥x′ − x
∥

∥

2
6 Dg(x

′, x; ϑ) = Dg∗(ϑ, ϑ
′) 6

1

2K

∥

∥ϑ− ϑ′
∥

∥

2

∗
.

Proof. (i) The nonnegativity is satisfied because, by simply using Definition 4.7, it can be seen
to be equivalent to the convexity of g. Using the Fenchel identity (property (iii) form Propo-
sition A.2), we write

Dg(x
′, x; ϑ) = g(x′)− g(x)−

〈

ϑ
∣

∣x′ − x
〉

=
〈

ϑ′
∣

∣x′
〉

− g∗(ϑ′)− 〈ϑ|x〉+ g∗(ϑ)−
〈

ϑ
∣

∣x′ − x
〉

= g∗(ϑ)− g∗(ϑ′)−
〈

ϑ− ϑ′
∣

∣x′
〉

= Dg∗(ϑ, ϑ
′; x′).

(ii) The differentiability of g∗ and the second inequality is given by [50, Lemma 15]. For the first
inequality, we refer to [50, Lemma 13].

�
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The idea of analysing mirror descent and dual averaging with the help a generalized version of the
Bregman divergence appears in [26] but differs from our work in several ways: the Bregman diver-
gence is defined with directional derivatives (which are unique), and does not lead to an unification
of both families of algorithms.

We now establish the following fundamental inequalities, which are the extention to UMD of a
classical tool due to [13]. They will be operational in the analysis of the various applications of
UMD presented in Section 5.

Lemma 4.10. Let h be a X -regularizer, ξ := (ξt)t>1 a sequence in Rn, and (xt, ϑt)t>1 a sequence
of UMD(h, ξ) iterates. Then, for all x ∈ domh and t > 1,

〈ξt|x− xt+1〉 6 Dh(x, xt; ϑt)−Dh(x, xt+1; ϑt+1)−Dh(xt+1, xt; ϑt),(3)

〈ξt|x− xt〉 6 Dh(x, xt; ϑt)−Dh(x, xt+1; ϑt) +Dh∗(ϑt + ξt, ϑt).(4)

Proof. Let x ∈ domh and t > 1. Using variational inequality (II) from the definition of the UMD
iterates, we write:

〈ξt|x− xt+1〉 6 〈ϑt+1 − ϑt|x− xt+1〉
= 〈ϑt+1|x− xt+1〉 − 〈ϑt|x− xt〉+ 〈ϑt|xt+1 − xt〉
= (h(x)− h(xt)− 〈ϑt|x− xt〉) + (h(x) − h(xt+1)− 〈ϑt+1|x− xt+1〉)

− (h(xt+1)− h(xt)− 〈ϑt|xt+1 − xt〉)
= Dh(x, xt; ϑt)−Dh(x, xt+1; ϑt+1)−Dh(xt+1, xt; ϑt).

The above Bregman divergences are indeed well-defined because ϑt ∈ ∂h(xt) and ϑt+1 ∈ ∂h(xt+1)
as a consequence of the definition of UMD iterates (property (i) from Proposition 4.2).

To prove (4), we note that

〈ξt|xt+1 − xt〉 = Dh(xt+1, xt; ϑt) +Dh(xt, xt+1; ϑt + ξt),

where the second Bregman divergence is well-defined because ϑt + ξt ∈ ∂h(xt+1) according to
property (ii) from Proposition 4.2. Moreover, we have

Dh(xt, xt+1; ϑt + ξt) = Dh∗(ϑt + ξt, ϑt; xt) = Dh∗(ϑt + ξt, ϑt),

where the first equality comes from Proposition 4.9–(i) and the second equality from the differen-
tiability of h∗. Combining the two previous displays and adding to (3) gives the result. �

An immediate consequence of Lemma 4.10 and property (ii) of Proposition 4.9 is the following
celebrated inequality (sometimes called regret bound), which extends and unifies classical guarantees
on MD and DA—see e.g. [48, Proposition 11], [51, Lemma 2.20], [9, Theorems 5.2 & 5.4].

Corollary 4.11. Let h be a X -regularizer which we assume to be K-strongly convex with respect
to some norm ‖ · ‖, and ξ := (ξt)t>1 a sequence in Rn. Let (xt, ϑt)t>1 be a sequence of UMD(h, ξ)
iterates. Then for T > 1 and x ∈ domh,

(5)

T
∑

t=1

〈ξt|x− xt〉 6 Dh(x, x1; ϑ1)−Dh(x, xT+1; ϑT+1) +
1

2K

T
∑

t=1

‖ξt‖2∗ .

5. Applications

This section illustrates how the UMD algorithm can be used as a building block for various
(online) optimization problems. In the examples presented below, the analysis of the algorithms
will always make use of Lemma 4.10.
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5.1. UMD for nonsmooth convex optimization. Let M > 0, X ⊂ Rn be closed and convex,
‖ · ‖ be a norm on Rn, and f : Rn → R∪{+∞} a convex function such that X ⊂ dom f . We assume
that f has nonempty subdifferential on X with bounded subgradients:

∀x ∈ X , ∀ξ ∈ ∂f(x), ‖ξ‖∗ 6 M.

We suppose that the optimization problem

(6) f∗ = min
x∈X

f(x)

admits a minimizer x∗ ∈ X .
We now define UMD iterates for solving (6). Let h be an X -regularizer and (γt)t>1 be a sequence of

positive step-sizes. We consider (xt, ϑt)t>1 a sequence of UMD(h, ξ) with associated dual increments
ξ := (−γtf

′(xt))t>1 where f ′(xt) is a subgradient in ∂f(xt). In other words, ϑ1 ∈ ∂h(x1) and for
t > 1:

(xt+1, ϑt+1) ∈ Πh(ϑt − γtf
′(xt)).

The following result provides accuracy estimates for approximate solutions x′T by UMD after T
iterations, computed either as

x′T =

∑T
t=1 γtxt
∑T

t=1 γt
or as x′T ∈ argmin

t=1,...,T
f(xt).

In particular, it recovers known guarantees for mirror descent [5, Theorem 4.1] and dual averaging
[45, Theorem 1] algorithms.

Proposition 5.1. We assume h to be K-strongly convex with respect to ‖ · ‖ and that x∗ ∈ domh.
For T > 1, one has

f(x′T )− f∗ 6
Dh(x∗, x1; ϑ1) +

M2

2K

∑T
t=1 γ

2
t

∑T
t=1 γt

.

For instance, with constant step-sizes

γt = γ :=
ΩX

M
√
T
, t > 1,

where ΩX is an upper estimate of
√

2Dh(x∗, x1; ϑ1)
1, the following holds:

f(x′T )− f∗ 6
ΩXM√

T
.

Proof. Applying inequality (5) from Corollary 4.11 with x = x∗ gives:

T
∑

t=1

γt
〈

f ′(xt)
∣

∣xt − x∗
〉

6 Dh(x∗, x1; ϑ1) +
M2

2K

T
∑

t=1

γ2t .

On the other hand, by convexity of f ,

T
∑

t=1

γt
〈

f ′(xt)|xt − x∗
〉

>

T
∑

t=1

γt(f(xt)− f(x∗)) >

(

T
∑

t=1

γt

)

(f(x′T )− f(x∗)),

and the result follows. �

1In the case of compact X one can take ΩX = [maxx∈X 2Dh(x, x1; ϑ1)]
1/2. Note that in this case due to strong

convexity of Dh(·, x1, ϑ1) one has ΩX > maxx∈X‖x− x1‖.
12



5.2. A quasi-monotone UMD for nonsmooth convex optimization. We consider the same
problem as in Section 5.1. Similarly to [37, 46], we construct an algorithm which guarantees the
same convergence as in Proposition 5.1 but for the last iterate.

Let function f and regularizer h satisfy the same assumptions as in Section 5.1 and (γt)t>1 be a
sequence of positive step-sizes. We define iterates (xt, yt, ϑt)t>1 according to x1 = y1, ϑ1 ∈ ∂h(x1)
and for t > 1:

(xt+1, ϑt+1) ∈ Π(ϑt − γtf
′(yt))

yt+1 = (1− νt)yt + νtxt+1.

where f ′(yt) is some subgradient in ∂f(yt) and where coefficient νt ∈ (0, 1) is given for t > 1 by:

νt = γt+1

(

t+1
∑

s=1

γs

)−1

.

Note that (xt, ϑt)t>1 are UMD(h, ξ) iterates, where ξ := (−γtf
′(yt))t>1.

Proposition 5.2. We assume h to be K-strongly convex with respect to ‖ · ‖ and that x∗ ∈ domh.
For T > 1,

f(yT )− f∗ 6
Dh(x∗, x1; ϑ1) +

M2

2K

∑T
t=1 γ

2
t

∑T
t=1 γt

.

Like in Proposition 5.1, choosing constant step-sizes

γt = γ :=
ΩX

M
√
T
, t > 1

where ΩX is an upper estimate of
√

2Dh(x∗, x1; ϑ1), we obtain:

f(yT )− f∗ 6
ΩXM√

T
.

Proof. Let t > 2. It follows from the definition of the iterates that xt − yt = (ν−1
t−1 − 1)(yt − yt−1).

Therefore, using the convexity of f , we can write:
〈

γtf
′(yt)

∣

∣xt − x∗
〉

= γt
〈

f ′(yt)
∣

∣yt − x∗
〉

+ γt
〈

f ′(yt)
∣

∣xt − yt
〉

= γt
〈

f ′(yt)
∣

∣yt − x∗
〉

+ γt(ν
−1
t−1 − 1)

〈

f ′(yt)
∣

∣yt − yt−1

〉

> γt (f(yt)− f∗) + γt(ν
−1
t−1 − 1) (f(yt)− f(yt−1))

= γtν
−1
t−1f(yt)− γt(ν

−1
t−1 − 1)f(yt−1)− γtf∗.

Besides, for t = 1, we simply have γ1 〈f ′(y1)|x1 − x∗〉 > γ1(f(y1)−f∗) because x1 = y1 by definition.
Then, summing over t = 1, . . . , T and simplifying, we get:

(γ1 − γ2(ν
−1
1 − 1))f(y1) +

T−1
∑

t=2

(γtν
−1
t−1 − γt+1(ν

−1
t − 1))f(yt) + γT ν

−1
t−1f(yT )

−
(

T
∑

t=1

γt

)

f∗ 6
T
∑

t=1

〈

γtf
′(xt)

∣

∣xt − x∗
〉

.

Using the definition of coefficients νt, the above left-hand side simplifies as follows:
(

T
∑

t=1

γt

)

(f(yT )− f∗) 6

T
∑

t=1

〈

γtf
′(xt)

∣

∣xt − x∗
〉

.
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Finally, because (xt, ϑt)t>1 is a sequence of UMD(h, ξ) iterates where ξ = (−γtf
′(yt))t>1, the result

then follows by applying inequality (5) from Corollary 4.11 and dividing by
∑T

t=1 γt. �

5.3. Accelerated UMD for smooth convex optimization. We present a first-order algorithm
for the constrained minimization of a smooth convex function (with respect to an arbitrary norm).
Like the Nesterov’s accelerated method [42], of which it is an extension, the following algorithm
achieves a 1/T 2 convergence rate. The construction of the involves a sequence of UMD iterates,
and its analysis makes use of inequality (3) from Lemma 4.10.

Let X be a closed and convex subset of Rn, U an open and convex neighborhood of X and ‖ · ‖
a norm on Rn. Let f : U → R be a convex function which we assume to be L-smooth with respect
to ‖ · ‖ (and therefore differentiable) on U :

∥

∥∇f(x)−∇f(x′)
∥

∥

∗
6 L

∥

∥x− x′
∥

∥ , x, x′ ∈ U .
We assume that the optimization problem

f∗ = min
x∈X

f(x)

admits an optimal solution x∗ ∈ X .
Let K > 0 and let h be a X -regularizer. Points (xt, yt, zt, ϑt)t>1 are AUMD iterates if they satisfy

x1 = y1 = ∇h∗(ϑ1) and for t > 1:

(xt+1, ϑt+1) ∈ Πh(ϑt − γt∇f(yt))(7a)

zt+1 = yt + νt(xt+1 − xt)(7b)

yt+1 = (1− νt+1)zt+1 + νt+1xt+1,(7c)

where the coefficients (γt)t>1 and (νt)t>1 are given for t > 1 by:

γ1 = K/L, γt+1 =
K

2L

(

1 +
√

1 + (2Lγt/K)2
)

, νt =
K

Lγt
.

Remark 5.3 (AUMD iterates always exist). It follows from the above definition that (xt, ϑt)t>1 is
a sequence of UMD(h, ξ) iterates (associated with dual increments ξ := (−γt∇f(yt))t>1). There-
fore, such points (xt)t>1 do exist as long as gradients (∇f(yt))t>1 exists (see below). Applying
Lemma 4.10 to the UMD iterates (xt, ϑt)t>1 immediately gives Lemma 5.7 below. Besides, one can
easily check that for t > 1, point zt+1 can we written as a convex combination of zt and xt+1, specif-
ically: zt+1 = (1− νt)zt+ νtxt+1. Since xt+1 belongs to X by construction, an immediate induction
proves that zt belongs to X for all t > 1. Then, yt being by construction a convex combination of
zt and xt, it also belongs to X . Since f is differentiable on U ⊃ X , ∇f(yt) indeed exists. Therefore,
AUMD iterates always exist.

Remark 5.4 (Bibliographic remarks). Accelerated versions of mirror descent [30] and dual averaging
[43] are both special cases of our AUMD algorithm.

The accelerated version of DA from [43, Section 3] is slightly different from our version, as the
points (zt)t>1 are updated as:

(8) zt+1 = argmin
z∈X

{

f(yt) + 〈∇f(yt)|z − yt〉+
L

2
‖z − yt‖2

}

,

Therefore, our version (while providing the same convergence guarantee) has a computational ad-
vantage since update (7b) is much less demanding computationnaly than the above MD-style update
(8).

The idea of emphasizing—both in the presentation and the analysis of the algorithm—the pres-
ence of a sequence of mirror descent iterates is borrowed from [1, 43].
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Theorem 5.5. We assume h to be K-strongly convex with respect to ‖ · ‖ and that x∗ ∈ domh. For
T > 1, AUMD iterates defined as above guarantee:

f(zT+1)− f∗ 6
4LDh(x∗, x1; ϑ1)

KT 2
.

We give without proof the following lemma which gathers a few immediate consequences of the
above definitions.

Lemma 5.6. For t > 1,
(i) νt ∈ (0, 1),
(ii) yt − xt = (ν−1

t − 1)(zt − yt),
(iii) γtν

−1
t − γt+1(ν

−1
t+1 − 1) = 0,

(iv) For T > 1, γT ν
−1
T =

∑T
t=1 γt >

KT 2

4L .

Sequence (xt, ϑt)t>1 being UMD iterates, the following lemma follows from summing inequality
(3) from Lemma 4.10.

Lemma 5.7. For T > 1,

T
∑

t=1

γt 〈∇f(yt)|xt+1 − x∗〉 6 Dh(x∗, x1; ϑ1)−
T
∑

t=1

Dh(xt+1, xt; ϑt).

Proof of Theorem 5.5. Let t > 1. We begin by expressing the smoothness of f between points yt
and zt+1 (see e.g. [31, Proposition 3]):

f(zt+1)− f(yt) 6 〈∇f(yt)|zt+1 − yt〉+
L

2
‖zt+1 − yt‖2

= νt 〈∇f(yt)|xt+1 − xt〉+
Lν2t
2

‖xt+1 − xt‖2

6 νt 〈∇f(yt)|xt+1 − xt〉+
Lν2t
K

Dh(xt+1, xt; ϑt),

where we used relation (7b) from the definition of the algorithm to get the second line, and the K-
strong convexity of h (Proposition 4.9) to get the third line. Multiplying by Lγ2t /K and simplifying
gives:

(9) γtν
−1
t (f(zt+1)− f(yt)) 6 γt 〈∇f(yt)|xt+1 − xt〉+Dh(xt+1, xt; ϑt).

Besides, we can write

xt+1 − xt = (xt+1 − x∗) + (x∗ − yt) + (yt − xt)

= (xt+1 − x∗) + (x∗ − yt) + (ν−1
t − 1)(zt − yt),

where the second line uses relation (ii) from Lemma 5.6. Injecting the above into 〈∇f(yt)|xt+1 − xt〉
gives:

〈∇f(yt)|xt+1 − xt〉 = 〈∇f(yt)|xt+1 − x∗〉+ 〈∇f(yt)|x∗ − yt〉+ (ν−1
t − 1) 〈∇f(yt)|zt − yt〉

6 〈∇f(yt)|xt+1 − x∗〉+ f(x∗)− f(yt) + (ν−1
t − 1) (f(zt)− f(yt)) .

(10)

Combining inequalities (9) and (10), and summing over t = 1, . . . , T gives:

T
∑

t=1

γtν
−1
t (f(zt+1)− f(yt)) 6 Dh(x∗, x1; ϑ1)−

T
∑

t=1

Dh(xt+1, xt; ϑt) +

T
∑

t=1

γt (f(x∗)− f(yt))

+
T
∑

t=1

γt(ν
−1
t − 1) (f(zt)− f(yt)) +

T
∑

t=1

Dh(xt+1, xt; ϑt),
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where we used Lemma 5.7 to get the first two terms of the right-hand side. Then, simplifying and
moving all values of f (except for f(x∗)) to the left-hand side, we get:

T
∑

t=1

(

γt + γt(ν
−1
t − 1)− γtν

−1
t

)

f(yt) +

T
∑

t=2

(

γt−1ν
−1
t−1 − γt(ν

−1
t − 1)

)

f(zt)

+ γ1(ν
−1
1 − 1)f(z1) + γT ν

−1
T f(zT+1) 6 Dh(x∗, x1; ϑ1) +

(

T
∑

t=1

γt

)

f(x∗).

The factor in front of f(yt) is clearly zero, as well as γ1(ν
−1
1 −1). The result then follows by applying

properties (iii) and (iv) from Lemma 5.6. �

5.4. Solving variational inequalities. Let X ⊂ Rn be closed and convex and Φ : X → Rn a
monotone operator:

∀x, x′ ∈ X ,
〈

Φ(x′)− Φ(x)
∣

∣x′ − x
〉

> 0.

A point x∗ ∈ X is a (weak) solution of the variational inequality associated with Φ if it satisfies:

(11) ∀x ∈ X , 〈Φ(x)|x∗ − x〉 6 0.

The is goal is to construct algorithms which outputs approximate solutions. This framework is a
generalization of convex optimization and contains various problems such as convex-concave saddle-
point problems and convex Nash equilibrium problems—see e.g. [27, 39, 44].

Remark 5.8 (Weak and strong solutions). Since Φ is monotone, condition (11) is implied by
〈Φ(x∗)|x− x∗〉 > 0 for all x ∈ X , which is the standard definition of a (strong) solution associ-
ated with Φ. The converse—a weak solution as defined by (11) is a strong solution as well—is also
true, provided, e.g., that Φ is continuous. An advantage of the concept of weak solution is that such
a solution always exists as soon as X is assumed to be compact.

Let h be a X -regularizer and γ > 0 a step-size. We say that points (xt, yt, ϑt, ζt)t>1 are associated
unified mirror prox (UMP) iterates if they satisfy x1 = ∇h∗(ϑ1) and for t > 1:

ζt ∈ ∂h(xt)(12a)

∀x ∈ X , 〈ζt − ϑt|x− xt〉 > 0(12b)

yt = ∇h∗(ζt − γΦ(xt))(12c)

(xt+1, ϑt+1) ∈ Πh(ϑt − γΦ(yt)).(12d)

Note that the above definition implies that (xt, ϑt)t>1 is a sequence of UMD(h, ξ) iterates where
ξ = (−γΦ(yt))t>1.

Remark 5.9 (Mirror prox [39] is special case of UMP). The original mirror prox algorithm [39]
associated with a X -compatible mirror map F is defined as follows. Let x1 ∈ X ∩ DF be an initial
point and for t > 1:

yt = argmin
x∈X

DF (x,∇F ∗(∇F (xt)− γΦ(xt)))(13a)

xt+1 = argmin
x∈X

DF (x,∇F ∗(∇F (xt)− γΦ(yt))).(13b)

By setting ϑt := ζt := ∇F (xt), we can easily check that points (xt, yt, ϑt, ζt)t>1 satisfy above
conditions (12a)–(12d) with regularizer h := F + IX and are therefore UMP iterates.
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Remark 5.10 (Nesterov’s dual extrapolation [44] is a special case of UMP). Let F be an X -
compatible mirror map and h := F + IX the associated X -regularizer. Then, the dual extrapolation
algorithm is defined for t > 1 as [44, Section 3]:

xt = ∇h∗(ϑt)(14a)

yt = argmin
x∈X

DF (x,∇F ∗(∇F (xt)− γΦ(xt)))(14b)

ϑt+1 = ϑt − γΦ(yt).(14c)

Then, one can check that considering ζt := ∇F (xt) makes the above satisfy conditions (12a)–(12d)
from the definition of UMP. Moreover, Theorem 5.11 below generalizes the original guarantee [44,
Theorem 2].

Theorem 5.11. Let ‖ · ‖ be a norm on Rn. We assume monotone operator Φ : X → Rn to be
L-Lipschitz continuous with respect to the following norms:

∥

∥Φ(x)− Φ(x′)
∥

∥

∗
6 L

∥

∥x− x′
∥

∥ , x, x′ ∈ X ,

regularizer h to be K-strongly convex with respect to ‖ · ‖. Denote yt = 1
T

∑T
t=1 yt the average of

points yt from some unified mirror prox iterates associated with Φ and parameter γ 6 K/L. Then,
for T > 1, the following guarantee holds:

∀x ∈ domh, 〈Φ(x)|yT − x〉 6 Dh(x, x1; ϑ1)

γT
.

Proof. Let x ∈ domh and T > 1. Using the definition of yT and the monotonicity of Φ, we write:

〈γΦ(x)|yT − x〉 = 1

T

T
∑

t=1

〈γΦ(x)|yt − x〉 6
T
∑

t=1

〈γΦ(yt)|yt − x〉

=

T
∑

t=1

(〈γΦ(yt)|xt+1 − x〉+ 〈γΦ(yt)|yt − xt+1〉)

6 Dh(x, x1; ϑ1) +

T
∑

t=1

(−Dh(xt+1, xt; ϑt) + 〈γΦ(yt)|yt − xt+1〉) ,

where the second inequality comes from summing inequality (3) from Lemma 4.10 (because
(xt, ϑt)t>1 is a sequence of UMD iterates as we noticed). We bound the above last two terms
as follows. Let t > 1 and denote δt the content of the above last sum and let us bound it as follows.

δt := −Dh(xt+1, xt; ϑt)− 〈γΦ(yt)|xt+1 − yt〉
= −h(xt+1) + h(xt) + 〈ϑt|xt+1 − xt〉+ 〈γ(Φ(xt)− Φ(yt))|xt+1 − yt〉 − 〈γΦ(xt)|xt+1 − yt〉 .

(15)

Condition (12b) from the definition of UMP iterates gives:

(16) 〈ϑt|xt+1 − xt〉 6 〈ζt|xt+1 − xt〉 .

Besides, using basic inequality 〈y|x〉 6 1
2 ‖y‖

2
∗ +

1
2 ‖x‖

2, we can write:

〈γ(Φ(xt)− Φ(yt))|xt+1 − yt〉 6
γ2

2K
‖Φ(xt)− Φ(yt)‖2∗ +

K

2
‖xt+1 − yt‖2

6
γ2L2

2K
‖xt − yt‖2 +

K

2
‖xt+1 − yt‖2 ,

(17)
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where we used the Lipschitz continuity of operator Φ. Injecting (16) and (17) into (15) and simpli-
fying gives

(18) δt 6 −h(xt+1) + h(xt) + 〈ζt|yt − xt〉+ 〈ζt − γΦ(xt)|xt+1 − yt〉

+
γ2L2

2K
‖yt − xt‖2∗ +

K

2
‖xt+1 − yt‖2 .

First, we have ζt ∈ ∂h(xt) thanks to condition (12a) and Dh(yt, xt; ζt) is well-defined. Besides,
thanks to Proposition A.2, condition (12c) is equivalent to ζt−γΦ(xt) ∈ ∂h(yt), and Dh(xt+1, yt; ζt−
γΦ(xt)) is thus well-defined. We can make those two generalized Bregman divergences appear in
the above right-hand side, which is consequently equal to:

δt 6
γ2L2

2K
‖yt − xt‖2 −Dh(yt, xt; ζt) +

K

2
‖xt+1 − yt‖2 −Dh(xt+1, yt; ζt − γΦ(xt)).

Using the K-strong convexity of h (Proposition 4.9) and the fact that γ 6 K/L by assumption, the
above simplifies to δt 6 0. The result follows. �

5.5. Regret minimization. Like the MD and DA algorithms, the UMD algorithm can also be
used for online optimization. Let us recall the classical problem called online linear optimization
[7, 9, 11, 22, 23, 50, 51]. We assume X to be a convex compact subset of Rn. The problem is a
repeated game between a decision maker and Nature and is played as follows. For each stage t > 1:

• the decision maker chooses an action xt ∈ X ,
• Nature chooses an action ζt ∈ Rn,
• decision maker gets payoff 〈ζt|xt〉.

The goal of the decision maker is to minimize its regret RT (where T > 1 is the number of stages),
which is defined as the difference between its cumulative payoff and the cumulative of the best
constant choice of action in hindsight:

RT := max
x∈X

T
∑

t=1

〈ζt|x〉 −
T
∑

t=1

〈ζt|xt〉 .

The decision maker can choose its actions according to the UMD algorithm to minimize the re-
gret. The following result is an immediate consequence of Corollary 4.11 and extends classical
guarantees—see e.g. [48, Proposition 11], [Lemma 2.20 51] and [9, Theorem 5.4].

Theorem 5.12. Let M > 0 and η > 0. Let ‖ · ‖ be a norm on Rn, h a X -regularizer which we
assume to be K-strongly convex with respect to ‖ · ‖ and such that domh = X , and assume (xt, ϑt)
to be a sequence of UMD(h, ξ) iterates where ξ := (ηζt)t>1. We assume that ‖ζt‖∗ 6 M for all t > 1.
Then, for all T > 1,

RT 6
ΩX

η
+

ηMT

2K
,

where ΩX := maxx∈X Dh(x, x1; ϑ1). In particular, the choice η =
√

2KΩX /(MT ) gives

RT 6

√

2MTΩX

K
.
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Appendix A. Convex analysis tools

Definition A.1 (Lower-semicontinuity). A function g : Rn → R ∪ {+∞} is lower-semicontinuous
if for all c ∈ R, the sublevel set {x ∈ Rn | f(x) 6 c} is closed.

One can easily check that the sum of two lower-semicontinuous functions is lower-semicontinuous.
Continuous functions and characteristic functions IX of closed sets X ⊂ Rn are examples of lower-
semicontinuous functions.

Proposition A.2 (Theorem 23.5 in [49]). Let g : Rn → R∪{+∞} be a lower-semicontinuous convex
function with nonempty domain. Then for all x, y ∈ Rn, the following statements are equivalent:

(i) x ∈ ∂g∗(y);
(ii) y ∈ ∂g(x);
(iii) 〈y|x〉 = g(x) + g∗(y);
(iv) x ∈ argmaxx′∈Rn {〈y|x′〉 − g(x′)};
(v) y ∈ argmaxy′∈Rn {〈y′|x〉 − g∗(y′)}.

Proposition A.3 (Theorem 25.1 in [49]). Let g : Rn → R∪{+∞} be a convex function and x ∈ Rn.
Then ∂g(x) is a singleton if and only if g is differentiable at x. Then, ∂g(x) = {∇g(x)}.
Proposition A.4. Let g : Rn → R∪{+∞} be a convex function, X ⊂ Rn a convex set and x0 ∈ X .
We assume that g is differentiable in x0. Then

x0 ∈ argmin
x∈X

g(x) ⇐⇒ ∀x ∈ X , 〈∇g(x0)|x− x0〉 > 0.

Definition A.5 (Strong-convexity). Let g : Rn → R ∪ {+∞}, ‖ · ‖ be a norm in Rn and K > 0.
Function g is said to be K-strongly convex with respect to norm ‖ · ‖ if for all x, x′ ∈ Rn and
λ ∈ [0, 1],

g(λx+ (1− λ)x′) 6 λg(x) + (1− λ)g(x′)− Kλ(1− λ)

2

∥

∥x′ − x
∥

∥

2
.
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Appendix B. Postponed proofs

Proof of Proposition 2.2. Let ϑ ∈ Rn. By property (iii) from Definition 2.1, there exists x1 ∈ DF

such that ∇F (x1) = ϑ. Therefore, function ϕϑ : x 7→ 〈ϑ|x〉 − F (x) is differentiable at x1 and
∇ϕϑ(x1) = 0. Moreover, ϕϑ is strictly concave as a consequence of property (i) from Definition 2.1.
Therefore, x1 is the unique maximizer of ϕϑ and:

F ∗(ϑ) = max
x∈Rn

{〈ϑ|x〉 − F (x)} < +∞,

which proves property (i).
Besides, we have

(19) x1 ∈ ∂F ∗(ϑ) ⇐⇒ ϑ = ∇F (x1) ⇐⇒ x1 minimizer of φϑ,

where the first equivalence comes from Proposition A.2. Point x1 being the unique maximizer of
ϕϑ, we have that ∂F ∗(ϑ) is a singleton. In other words, F ∗ is differentiable in ϑ and

(20) ∇F ∗(ϑ) = x1 ∈ DF .

First, the above (20) proves property (ii). Second, this equality combined with the equality from
(19) gives the second identity from property (iv). Third, this proves that ∇F ∗(Rn) ⊂ DF .

It remains to prove the reverse inclusion to get property (iii). Let x ∈ DF . By property (ii) from
Definition 2.1, F is differentiable in x. Consider

(21) ϑ := ∇F (x),

and all the above holds with this special point ϑ. In particular, x1 = x by uniqueness of x1.
Therefore (20) gives

(22) ∇F ∗(ϑ) = x,

and this proves ∇F ∗(Rn) ⊃ DF and thus property (iii). Combining (21) and (22) gives the first
identity from property (iv). �

Proof of Theorem 2.4. Let x0 ∈ DF . By definition of the mirror map, F is differentiable at x0.
Therefore, DF (x, x0) is well-defined for all x ∈ Rn.

For all real value α ∈ R, consider the sublevel set SX (α) of function x 7→ DF (x, x0) associated
with value α and restricted to X :

SX (α) := {x ∈ X |DF (x, x0) 6 α} .

Inheriting properties from F , function DF ( · , x0) is lower-semicontinuous and strictly convex: con-
sequentely, the sublevel sets SX (α) are closed and convex.

Let us also prove that the sublevel sets SX (α) are bounded. For each value α ∈ R, we write

SX (α) ⊂ SRn(α) := {x ∈ Rn |DF (x, x0) 6 α}

and aim at proving that the latter set is bounded. By contradiction, let us suppose that there
exists an unbounded sequence in SRn(α): let (xk)k>1 be such that 0 < ‖xk − x0‖ −−−−→

k→+∞
+∞ and

DF (xk, x0) 6 α for all k > 1. Using the Bolzano–Weierstrass theorem, there exists v 6= 0 and a
subsequence (xφ(k))k>1 such that

xφ(k) − x0
∥

∥xφ(k) − x0
∥

∥

−−−−→
k→+∞

v.
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The point x0+
xφ(k)−x0

‖xφ(k)−x0‖ being a convex combination of x0 and xφ(k), we can write the corresponding

convexity inequality for function DF ( · , x0):

DF

(

x0 + λk(xφ(k) − x0), x0
)

6 (1− λk)DF (x0, x0) + λkDF (xφ(k), x0)

6 λkα −−−−→
k→+∞

0,

where we used shorthand λk :=
∥

∥xφ(k) − x0
∥

∥

−1
. For the first above inequality, we used DF (x0, x0) =

0 and that DF (xφ(k), x0) 6 α by definition of (xk)k>1. Then, using the lower-semicontinuity of
DF ( · , x0) and the fact that x0 + λk(xφ(k) − x0) −−−−→

k→+∞
x0 + v, we have

DF (x0 + v, x0) 6 lim inf
k→+∞

DF (x0 + λk(xφ(k) − x0), x0) 6 lim inf
k→+∞

λkα = 0.

The Bregman divergence of a convex function being nonnegative, the above implies DF (x0+v, x0) =
0. Thus, function DF ( · , x0) attains its minimum (0) at two different points (at x0 and at x0 + v):
this contradicts its strong convexity. Therefore, sublevel sets SX (α) are bounded and thus compact.

We now consider the value αinf defined as

αinf := inf {α |SX (α) 6= ∅} .
In other words, αinf is the infimum value of DF ( · , x0) on X , and thus the only possible value for
the minimum (if it exists). We know that αinf > 0 because the Bregman divergence is always
nonnegative. From the definition of the sets SX (α), it easily follows that:

SX (αinf) =
⋂

α>αinf

SX (α).

Naturally, the sets SX (α) are increasing in α with respect to the inclusion order. Therefore, SX (αinf)
is the intersection of a nested sequence of nonempty compact sets. It is thus nonempty as well by
Cantor’s intersection theorem. Consequentely, DF ( · , x0) does admit a minimum on X , and the
minimizer is unique because of the strong convexity.

Let us now prove that the minimizer x∗ := argminx∈X DF (x, x0) also belongs to DF . Let us
assume by contradiction that x∗ ∈ X \ DF . By definition of the mirror map, X ∩DF is nonempty;
let x1 ∈ X ∩ DF . The set DF being open by definition, there exists ε > 0 such that the closed
Euclidean ball B(x1, ε) centered in x1 and of radius ε is a subset of DF . We consider the convex
hull

C := co
(

{x∗} ∪B(x1, ε)
)

,

which is clearly is a compact set.
Consider function G defined by:

G(x) := DF (x, x0) = F (x)− F (x0)− 〈∇F (x0)|x− x0〉 ,
so that x∗ is the minimizer of G on X . In particular, G is finite in x∗. G inherits strict convexity,
lower-semicontinuity, and differentiability on DF from function F . G is continous on the compact
set B(x1, ε) because G is convex on the open set DF ⊃ B(x1, ε). Therefore, G is bounded on
B(x1, ε). Let us prove that G is also bounded on C. Let x ∈ C. By definition of C, there exists
λ ∈ [0, 1] and x′ ∈ B(x1, ε) such that x = λx∗ + (1− λ)x′. By convexity of G, we have:

G(x) 6 λG(x∗) + (1− λ)G(x′) 6 G(x∗) +G(x′).

We know that G(x∗) is finite and that G(x′) is bounded for x′ ∈ B(x1, ε). Therefore G is bounded
on C: let us denote Gmax and Gmin some upper and lower bounds for the value of G on C.
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•x∗ •
xλ

•x1

•x1 + εu

ε

•xλ + λεu

•xλ + λhu

Because X is a convex set, the segment [x∗, x1] (in other words the convex hull of {x∗, x1}) is a
subset of X . Besides, let us prove that the set

(x∗, x1] := {(1− λ)x∗ + λx1 |λ ∈ (0, 1]}
is a subset of DF . Let xλ := (1 − λ)x∗ + λx1 (with λ ∈ (0, 1]) a point in the above set, and let
us prove that it belongs to DF . By definition of the mirror map, we have X ⊂ clDF , and besides
x∗ ∈ X by definition. Therefore, there exists a sequence (xk)k>1 in DF such that xk → x∗ as
k → +∞. Then, we can write

xλ = (1− λ)x∗ + λx1

= (1− λ)xk + (1− λ)(x∗ − xk) + λx1

= (1− λ)xk + λ

(

x1 +
1− λ

λ
(x∗ − xk)

)

.

Since xk → x∗, for high enough k, the point x1 + (1 − λ)λ−1(x∗ − xk) belongs to B(x1, ε) and
therefore to DF . Then, the point xλ belongs to the convex set2 DF as the convex combination of
two points in DF . Therefore, (x∗, x1] is indeed a subset of DF .

G being differentiable on DF by definition of the mirror map, the gradient of G exists at each
point of (x∗, x1]. Let us prove that ∇G is bounded on (x∗, x1]. Let xλ ∈ (x∗, x1], where λ ∈ (0, 1]
is such that

xλ = (1− λ)x∗ + λx1,

and let u ∈ Rn such that ‖u‖2 = 1. The point x1 + εu belongs to C because it belongs to B(x1, ε).
The following point also belongs to convex set C as the convex combination of x∗ and x1+ εu which
both belong to C:

(23) xλ + λεu = (1− λ)x∗ + λ(x1 + εu) ∈ C.
Let h ∈ (0, ε]. The following point also belongs to C as a convex combination of xλ and the above
point xλ + λεu:

(24) xλ + λhu =

(

1− h

ε

)

xλ +
h

ε
(xλ + λεu) ∈ C.

2The domain of a convex function is convex, and therefore DF = int domF is convex as the interior of a convex
set.
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Now using for G the convexity inequality associated with the convex combination from (24), we
write:

G(xλ + hλu)−G(xλ) 6
h

ε
(G(xλ + λεu)−G(xλ))

=
h

ε
(G(xλ + λεu)−G(x∗) +G(x∗)−G(xλ))

6
h

ε
(G(xλ + λεu)−G(x∗)) ,

(25)

where for the last line we used G(x∗) 6 G(xλ) which is true because xλ belongs to X and x∗ is
by definition the minimizer of G on X . Using the convexity inequality associated with the convex
combination from (23), we also write

G(xλ + λεu)−G(x∗) 6 λ (G(x1 + εu)−G(x∗))

6 λ (Gmax −Gmin) .
(26)

Combining (25) and (26) and dividing by hλ, we get

G(xλ + hλu)−G(xλ)

hλ
6

Gmax −Gmin

ε
.

Taking the limit as h → 0+, we get that 〈∇G(xλ)|u〉 6 (Gmax − Gmin)/ε. This being true for all
vector u such that ‖u‖2 = 1, we have

‖∇G(xλ)‖2 = max
‖u‖2=1

〈∇G(xλ)|u〉 6
Gmax −Gmin

ε
.

As a result, ∇G is bounded on (x∗, x1].
Let us deduce that ∂G(x∗) is nonempty. The sequence (∇G(x1/k))k>1 is bounded. Using the

Bolzano–Weierstrass theorem, there exists a subsequence (∇G(x1/φ(k)))k>1 which converges to some
vector ϑ∗ ∈ Rn. For each k > 1, the following is satisfied by convexity of G:

〈

∇G(x1/φ(k))
∣

∣x− x1/φ(k)
〉

6 G(x)−G(x1/φ(k)), x ∈ Rn.

Taking the limsup on both sides for each x ∈ Rn as k → +∞, we get (because obviously x1/φ(k) →
x∗):

〈ϑ∗|x− x∗〉 6 G(x) − lim inf
k→+∞

G(x1/φ(k)) 6 G(x)−G(x∗), x ∈ Rn,

where the second inequality follows from the lower-semicontinuity of G. Consequently, ϑ∗ belongs
to ∂G(x∗).

But by definition of the mirror map ∇F takes all possible values and so does ∇G, because it
follows from the definition of G that ∇G = ∇F −∇F (x0). Therefore, there exists a point x̃ ∈ DF

(thus x̃ 6= x∗) such that ∇G(x̃) = ϑ∗. Considering the point xmid = 1
2(x∗ + x̃), we can write the

following convexity inequalities:

〈ϑ∗|xmid − x∗〉 6 G(xmid)−G(x∗)

〈ϑ∗|xmid − x̃〉 6 G(xmid)−G(x̃).

We now add both inequalities and use the fact that xmid − x̃ = x∗ − xmid by definition of xmid to
get 0 6 2G(xmid)−G(x∗)−G(x̃), which can also be written

G

(

x∗ + x̃

2

)

>
G(x∗) +G(x̃)

2
,

which contradicts the strong convexity of G. We conclude that x∗ ∈ DF . �

Proof of Proposition 3.2. Let ϑ ∈ Rn. For each of the three assumptions, let us prove that h∗(ϑ) is
finite. This will prove that domh∗ = Rn.
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(i) Because cl domh = X by definition of a pre-regularizer, we have:

h∗(ϑ) = max
x∈Rn

{〈ϑ|x〉 − h(x)} = max
x∈X

{〈ϑ|x〉 − h(x)} .

Besides, the function x 7→ 〈ϑ|x〉 − h(x) is upper-semicontinuous and therefore attains a maxi-
mum on X because X is assumed to be compact. Therefore h∗(ϑ) < +∞.

(ii) Because ∇h(Dh) = Rn by assumption, there exists x ∈ Dh such that ∇h(x) = ϑ. Then, by
Proposition A.2, h∗(ϑ) = 〈ϑ|x〉 − h(x) < +∞.

(iii) The function x 7→ 〈ϑ|x〉 − h(x) is strongly concave on Rn and therefore admits a maximum.
Therefore, h∗(ϑ) < +∞.

�

Proof of Proposition 3.3. Let ϑ ∈ Rn. Because domh∗ = Rn, the subdifferential ∂h∗(ϑ) is
nonempty—see e.g. [49, Theorem 23.4]. By Proposition A.2, ∂h∗(ϑ) is the set of maximizers of
function x 7→ 〈ϑ|x〉 − h(x), which is strictly concave. Therefore, the maximizer is unique and h∗ is
differentiable at ϑ by Proposition A.3. �

Proof of Proposition 3.4. h is strictly convex as the sum of two convex functions, one of which (F )
is strictly convex. h is lower-semicontinuous as the sum of two lower-continuous functions.

Let us now prove that cl domh = X . First, we write

domh = dom(F + IX ) = domF ∩ dom IX = domF ∩ X .

Let x ∈ cl domh = cl(domF ∩X ). There exists a sequence (xk)k>1 in domF ∩X such that xk → x.
In particular, each xk belongs to closed set X , and so does the limit: x ∈ X .

Conversely, let x ∈ X and let us prove that x ∈ cl(domF ∩X ) by constructing a sequence (xk)k>1

in domF ∩ X which converges to x. By definition of the mirror map, we have X ⊂ clDF , where
DF := int domF . Therefore, there exists a sequence (x′l)l>1 in DF such that x′l → x as l → +∞.
From the definition of the mirror map, we also have that X∩DF 6= ∅. Let x0 ∈ X∩DF . In particular,
x0 belongs DF which is an open set by definition. Therefore, there exists a neighbourhood U ⊂ DF

of point x0. We now construct the sequence (xk)k>1 as follows:

xk :=

(

1− 1

k

)

x+
1

k
x0, k > 1.

xk belongs to X as the convex combination of two points in the convex set X , and obviously
converges to x. Besides, xk can also be written, for any k, l > 1,

xk =

(

1− 1

k

)

x′l +

(

1− 1

k

)

(x− x′l) +
1

k
x0

=

(

1− 1

k

)

x′l +
1

k

(

x0 + (k − 1)(x − x′l)
)

=

(

1− 1

k

)

x′l +
1

k
x
(kl)
0 ,

where we set x
(kl)
0 := x0+(k−1)(x−x′l). For a given k > 1, we see that x

(kl)
0 → x0 as l → +∞ because

x′l → x by definition of (x′l)l>1. Therefore, for large enough l, x
(kl)
0 belongs to the neighbourhood

U and therefore to DF . xk then appears as the convex combination of x′l and x
(kl)
0 which both

belong to the convex set DF ⊂ domF . (xk) is thus a sequence in domF ∩X which converges to x.
Therefore, x ∈ cl(domF ∩ X ) and h is a X -pre-regularizer.

Finally, we have F 6 h by definition of h. One can easily check that this implies h∗ 6 F ∗ and
we know from Proposition 2.2 that domF ∗ = Rn, in other words that F ∗ only takes finite values.
Therefore, so does h∗ and h is a X -regularizer. �
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