Y. Adam, G. Cecchi, P. M. Kgori, T. Marcotty, C. I. Mahama et al., The sequential aerosol technique: a major component in an integrated strategy of intervention against riverine tsetse in Ghana, PLoS Negl Trop Dis, vol.7, p.2135, 2013.

A. Adamou, A. Dao, S. Timbine, Y. Kassogue, A. S. Yaro et al., The contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in the Sahel, Malaria Journal, vol.10, 2011.

Z. N. Adelman and Z. J. Tu, Control of mosquito-borne infectious diseases: sex and gene drive, Trends Parasitol, vol.32, pp.219-229, 2016.

. Afsset, Avis de I'Agence française de sécurité sanitaire de I'environnement et du travail relatif à l'évaluation comparée des risques et de I'efficacité des produits de lutte antivectorielle adulticide dans le cadre de la lutte contre l'épidémie de chikungunya, Saisine Afsset, p.2, 2006.

. Afsset, Avis de l'Agence française de sécurité sanitaire de l'environnement et du travail relatif à l'évaluation comparée des risques et de l'efficacité des produits de lutte antivectorielle larvicide dans le cadre de la lutte contre l'épidémie de chikungunya, Saisine Afsset, p.8, 2006.

T. B. Ageep, D. Damiens, B. Alsharif, A. Ahmed, E. H. Salih et al., Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan, Malaria Journal, vol.13, 2014.

O. S. Akbari, H. J. Bellen, E. Bier, S. L. Bullock, A. Burt et al., Safeguarding gene drive experiments in the laboratory, Science, vol.349, pp.927-929, 2015.

M. T. Aliota, S. A. Peinado, I. D. Velez, and J. E. Osorio, The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti, Scientific Reports, vol.6, 2016.

M. L. Allen and B. M. Christensen, Flight muscle-specific expression of act88F: GFP in transgenic Culex quinquefasciatus Say (Diptera: Culicidae), Parasitol Int, vol.53, pp.307-314, 2004.

M. L. Allen, D. A. O'brochta, P. W. Atkinson, and C. S. Levesque, Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae), J Med Entomol, vol.38, pp.701-710, 2001.

H. Alout, N. T. Ndam, M. M. Sandeu, I. Djegbe, F. Chandre et al., Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates, PLoS One, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02653010

L. Alphey, Genetic control of mosquitoes, Annu Rev Entomol, vol.59, pp.205-224, 2014.

. Anonymous, The feasibility of eradicating Aedes aegypti in the Americas, Rev Panam Salud Publica, vol.1, 1997.

. Anses, Avis relatif à la recherche d'insecticides potentiellement utilisables en lutte antivectorielle. Saisine n° 2009-SA-0338, 2011.

. Anses, Avis relatif à la recherche d'insecticides potentiellement utilisables en lutte antivectorielle (Classement des 32 substances actives sélectionnées par l'analyse multicritère SIRIS en trois classes selon le niveau de connaissances sur leur efficacité contre les moustiques), Saisine n°, 2013.

. Anses, Avis relatif à l'actualisation de substances actives et produits biocides potentiellement intéressants pour une utilisation en lutte anti-vectorielle (LAV), Saisine n° 2015-SA-0169, 2016.

N. Arunachalam, C. , and C. F. , Integration of radiation with cytoplasmic incompatibility for genetic control in the Culex pipiens complex (Diptera: Culicidae), J Med Entomol, vol.22, pp.648-653, 1985.

C. M. Atyame, J. Cattel, C. Lebon, O. Flores, J. S. Dehecq et al.,

, Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions, PLoS One, vol.10

C. M. Atyame, P. Labbe, E. Dumas, P. Milesi, S. Charlat et al., Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens, PLoS One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01938100

C. M. Atyame, N. Pasteur, E. Dumas, P. Tortosa, M. L. Tantely et al., Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean, PLoS Negl Trop Dis, vol.5, 1440.
URL : https://hal.archives-ouvertes.fr/hal-01274608

L. Bagny, Caractérisation de l'invasion d'Aedes albopictus en présence d'Aedes aegypti à la Réunion et à Mayotte, 2009.

L. Bagny, H. Delatte, S. Quilici, and D. Fontenille, Progressive decrease in Aedes aegypti distribution in Reunion Island since the 1900s, J Med Entomol, vol.46, pp.1541-1545, 2009.

F. Baldacchino, B. Caputo, F. Chandre, A. Drago, A. Della-torre et al., Control methods against invasive Aedes mosquitoes in Europe: a review, vol.71, pp.1471-1485, 2015.

L. Baldo, J. C. Hotopp, K. A. Jolley, S. R. Bordenstein, S. A. Biber et al., Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl Environ Microbiol, vol.72, pp.7098-7110, 2006.

I. Bargielowski, L. Alphey, and J. C. Koella, Cost of mating and insemination capacity of a genetically modified mosquito Aedes aegypti OX513A compared to its wild type counterpart, PLoS One, vol.6, 2011.

L. A. Baton, E. C. Pacidonio, D. D. Goncalves, and L. A. Moreira, wFlu: characterization and evaluation of a native Wolbachia from the mosquito Aedes fluviatilis as a potential vector control agent, PLoS One, vol.8, 2013.

, Biosafety Clearing-House, Secretariat to the Convention on Biological Diversity: Guidance on risk assessment of living modified organisms. Montreal, QC. Available at, 2012.

N. Becker, S. Schon, A. M. Klein, I. Ferstl, A. Kizgin et al., First mass development of Aedes albopictus (Diptera: Culicidae) -its surveillance and control in Germany, Parasitol Res, vol.116, pp.847-858, 2017.

J. F. Beckmann, J. A. Ronau, and M. Hochstrasser, A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nature Microbiol, vol.2, pp.17007-17007, 2017.

M. Belfort and R. J. Roberts, Homing endonucleases: keeping the house in order, Nucleic Acids Res, vol.25, pp.3379-3388, 1997.

R. Bellini, A. Medici, A. Puggioli, F. Balestrino, and M. Carrieri, Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas, J Med Entomol, vol.50, pp.317-325, 2013.

E. Ben-dov, Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins, Toxins, vol.6, pp.1222-1243, 2014.

M. Q. Benedict, R. , and A. S. , The first releases of transgenic mosquitoes: an argument for the sterile insect technique, Trends Parasitol, vol.19, pp.349-355, 2003.

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

G. W. Bian, D. Joshi, Y. M. Dong, P. Lu, G. L. Zhou et al., Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection, vol.340, pp.748-751, 2013.

J. Bischof, R. K. Maeda, M. Hediger, F. Karch, and K. Basler, An optimized transgenesis system for Drosophila using germ-line-specific phi C31 integrases, Proc Natl Acad Sci, vol.104, pp.3312-3317, 2007.

S. Blanford, B. H. Chan, N. Jenkins, D. Sim, R. J. Turner et al., Fungal pathogen reduces potential for malaria transmission, Science, vol.308, pp.1638-1641, 2005.

J. Boisvert and J. O. Lacoursière, Le Bacillus thuringiensis israelensis et le contrôle des insectes piqueurs au Québec. Québec, ministère de l'Environnement, Document préparé par l, p.101, 2004.

M. Boisvert and J. Boisvert, Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments, Biocontrol Sci Technol, vol.10, pp.517-561, 2000.

S. R. Bordenstein and S. R. Bordenstein, Eukaryotic association module in phage WO genomes from Wolbachia, Nature Communications, vol.7, 2016.

K. Bourtzis, S. L. Dobson, Z. Y. Xi, J. L. Rasgon, M. Calvitti et al., Harnessing mosquito-Wolbachia symbiosis for vector and disease control, Acta Trop, vol.132, pp.150-163, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02522213

K. Bourtzis, R. S. Lees, J. Hendrichs, and M. J. Vreysen, More than one rabbit out of the hat: radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations, Acta Trop, vol.157, pp.115-130, 2016.

J. Bouyer, F. Chandre, J. Gilles, and T. Baldet, Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed, Lancet Global Health, vol.4, pp.364-364, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594951

J. Bouyer and T. Lefrançois, Boosting the sterile insect technique to control mosquitoes, Trends Parasitol, vol.30, pp.271-273, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02632373

J. Bouyer, M. T. Seck, S. Pagabeleguem, A. A. Sall, M. Lo et al., Study of the competitiveness of allochtonous sterile males during the tsetse eradication campaign in Senegal, 18th E-SOVE Conference, 2012.

J. Bouyer, M. T. Seck, and B. Sall, Misleading guidance for decision making on tsetse eradication: response to, Prev Vet Med, vol.112, pp.443-446, 2013.

L. R. Bowman, S. Runge-ranzinger, and P. J. Mccall, Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence, PLoS Negl Trop Dis, vol.8, 2014.

S. Boyer, C. Toty, M. Jacquet, G. Lemperiere, and D. Fontenille, Evidence of multiple inseminations in the field in Aedes albopictus, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01274602

O. J. Brady, P. W. Gething, S. Bhatt, J. P. Messina, J. S. Brownstein et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLoS Negl Trop Dis, vol.6, 1760.

C. L. Brelsfoard, Y. Sechan, and S. L. Dobson, Interspecific hybridization yields strategy for South Pacific filariasis vector elimination, PLoS Negl Trop Dis, vol.2, p.129, 2008.

C. L. Brelsfoard, W. St-clair, and S. L. Dobson, Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach, Parasit Vectors, vol.2, 2009.

J. C. Brownlie, B. N. Cass, M. Riegler, J. J. Witsenburg, I. Iturbe-ormaetxe et al., Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress, 2009.

L. Bruce-chwatt, D. Zulueta, and J. , The rise and fall of malaria in Europe: a historicoepidemiological study, 1980.

L. P. Buchatski?, M. A. Kuznetsova, N. N. Lebedinets, and A. G. Kononko, Development and basic properties of the viral preparation viroden, Vopr Virusol, vol.32, pp.729-733, 1986.

A. Burt, Site-specific selfish genes as tools for the control and genetic engineering of natural populations, Proc Biol Sci, vol.270, pp.921-928, 2003.

A. Burt and R. Trivers, Genes in conflict: the biology of selfish genetic elements, 2006.

R. C. Bushland, A. W. Lindquist, and E. F. Knipling, Eradication of screw-worms through release of sterilized males, Science, vol.122, pp.287-288, 1955.

S. Butail, N. C. Manoukis, M. Diallo, J. M. Ribeiro, and D. A. Paley, The dance of male Anopheles gambiae in wild mating swarms, J Med Entomol, vol.50, pp.552-559, 2013.

M. Calvitti, F. Marini, A. Desiderio, A. Puggioli, and R. Moretti, Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: concerns with using artificial Wolbachia infection as a vector suppression tool, PLoS One, vol.10, 2015.

M. Calvitti, R. Moretti, E. Lampazzi, R. Bellini, and S. L. Dobson, Characterization of a new Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the wPip strain from Culex pipiens (Diptera: Culicidae), J Med Entomol, vol.47, pp.179-187, 2010.

B. Caputo, A. Lenco, D. Cianci, M. Pombi, V. Petrarca et al., The ''Auto-Dissemination'' Approach: A Novel Concept to Fight Aedes albopictus in Urban Areas, PloS Negl Trop Dis, vol.6, 1793.

E. P. Caragata, H. L. Dutra, and L. A. Moreira, Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia, Trends Parasitol, vol.32, pp.207-218, 2016.

G. Carissimo, E. Pondeville, M. Mcfarlane, I. Dietrich, C. Mitri et al., Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota, Proc Natl Acad Sci, vol.112, pp.176-185, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01103895

J. Carlson, E. Suchman, and L. Buchatsky, Densoviruses for control and genetic manipulation of mosquitoes, Insect Viruses: Biotechnological Applications (Advances in Virus Research), pp.361-392, 2006.

D. O. Carvalho, A. R. Mckemey, L. Garziera, R. Lacroix, C. A. Donnelly et al., Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes, PLoS Negl Trop Dis, vol.9, p.3864, 2015.

D. O. Carvalho, D. Nimmo, N. Naish, A. R. Mckemey, P. Gray et al., Mass production of genetically modified Aedes aegypti for field releases in Brazil, J Vis Exp, p.3579, 2014.

F. Catteruccia, T. Nolan, T. G. Loukeris, C. Blass, C. Savakis et al., , 2000.

, Stable germline transformation of the malaria mosquito Anopheles stephensi, Nature, vol.405, pp.959-962

G. Chandra, I. Bhattacharjee, S. N. Chatterjee, and A. Ghosh, Mosquito control by larvivorous fish, Indian J Med Res, vol.127, pp.13-27, 2008.

G. Chandra, A. Ghosh, I. Bhattacharjee, and S. K. Ghosh, Use of larvivorous fish in biological and environmental control of disease vectors, Biological and Environmental Control of Disease Vectors (Wallingford, CAB International), pp.25-41, 2013.

X. G. Chen, X. T. Jiang, J. B. Gu, M. Xu, Y. Wu et al., Genome sequence of the Asian tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution, Proc Natl Acad Sci, vol.112, pp.5907-5915, 2015.

D. L. Cochran-stafira and C. N. Von-ende, Integrating bacteria into food webs: studies with Sarracenia purpurea inquilines, Ecology, vol.79, pp.880-898, 1998.

F. H. Collins and S. M. Paskewitz, Malaria: current and future prospects for control, Annu Rev Entomol, vol.40, pp.195-219, 1995.

C. Concha, A. Palavesam, F. D. Guerrero, A. Sagel, F. Li et al., A transgenic male-only strain of the New World screwworm for an improved control program using the sterile insect technique, BMC Biol, vol.14, 2016.

C. Costantini, S. G. Li, A. D. Torre, N. F. Sagnon, M. Coluzzi et al., Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village, Med Vet Entomol, vol.10, pp.203-219, 1996.

F. R. Cross, R. R. Jackson, and S. D. Pollard, How blood-derived odor influences mate-choice decisions by a mosquito-eating predator, Proc Natl Acad Sci, vol.106, pp.19416-19419, 2009.

L. E. Culler, M. P. Ayres, and R. A. Virginia, In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster, Proc R Soc B, vol.282, 2015.

L. E. Culler and W. O. Lamp, Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands, Freshwat Biol, vol.54, 2003.

C. F. Curtis, Possible use of translocations to fix desirable genes in insect pest populations, Nature, vol.218, pp.368-369, 1968.

D. Damiens, C. Lebon, D. A. Wilkinson, D. Dijoux-millet, G. Le-goff et al., Cross-mating compatibility and competitiveness among Aedes albopictus strains from distinct geographic origins -implications for future application of SIT programs in the South West Indian Ocean islands, PLoS One, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452883

P. J. De-barro, B. Murphy, C. C. Jansen, M. , and J. , The proposed release of the yellow fever mosquito, Aedes aegypti containing a naturally occurring strain of Wolbachia pipientis, a question of regulatory responsibility, J Verbrauch Lebensm, vol.6, pp.33-40, 2011.

H. Delatte, G. Gimonneau, A. Triboire, and D. Fontenille, Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean, J Med Entomol, vol.46, pp.33-41, 2009.

J. Demaio, C. B. Pumpuni, M. Kent, and J. C. Beier, The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes, Am J Trop Med Hyg, vol.54, pp.219-223, 1996.

G. J. Devine, E. Z. Perea, G. F. Killeen, J. D. Stancil, and S. J. Clark, Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats, Proc Natl Acad Sci U S A, vol.106, pp.11530-11534, 2009.

S. L. Dobson, S. R. Bordenstein, and R. I. Rose, Wolbachia mosquito control: regulated, Science, vol.352, p.526, 2016.

B. L. Dodson, G. L. Hughes, O. Paul, A. C. Matacchiero, L. D. Kramer et al., , 2014.

, Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis, PLoS Negl Trop Dis, vol.8, 2965.

Z. Dowling, P. Armbruster, S. L. Ladeau, M. Decotiis, J. Mottley et al., Linking mosquito infestation to resident socioeconomic status, knowledge, and source reduction practices in suburban Washington, DC. EcoHealth, vol.10, pp.36-47, 2013.

C. Duchet, E. Franquet, L. Lagadic, and C. Lagneau, Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands, Ecotoxicol Environ Saf, vol.115, pp.272-278, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01444843

V. Duong, L. Lambrechts, R. E. Paul, S. Ly, R. S. Lay et al., Asymptomatic humans transmit dengue virus to mosquitoes, Proc Natl Acad Sci, vol.112, pp.14688-14693, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01239113

O. Duron, J. Lagnel, M. Raymond, K. Bourtzis, P. Fort et al., Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination, Mol Ecol, vol.14, pp.1561-1573, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01946039

H. L. Dutra, L. M. Santos, E. P. Caragata, J. B. Silva, D. A. Villela et al., From lab to field: the influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Negl Trop Dis, vol.9, p.3689, 2015.

H. L. Dutra, M. N. Rocha, F. B. Dias, S. B. Mansur, E. P. Caragata et al., , 2016.

, Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes, Cell Host & Microbe, vol.19, pp.771-774

G. Duvallet, N. Boulanger, F. Chandre, N. C. De-verdiere, P. H. Consigny et al., Personal protection against biting insects and ticks (PPAV working groups), Parasite, vol.18, pp.93-111, 2011.

P. Echaubard, O. Duron, P. Agnew, C. Sidobre, V. Noel et al., Rapid evolution of Wolbachia density in insecticide resistant Culex pipiens, Heredity, vol.104, pp.15-19, 2010.
URL : https://hal.archives-ouvertes.fr/halsde-00567084

. Efsa, Guidance on the environmental risk assessment of genetically modified animals, EFSA Journal, vol.11, issue.5, p.3200, 0190.

R. W. El-sabaawi, T. C. Frauendorf, P. S. Marques, R. A. Mackenzie, L. R. Manna et al., Biodiversity and ecosystem risks arising from using guppies to control mosquitoes, Biol Lett, vol.12, 2016.

W. Enkerlin, J. M. Gutierrez-ruelas, A. V. Cortes, E. C. Roldan, D. Midgarden et al., Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): a review of over 30 years of a successful containment program using an integrated area-wide SIT approach, Fla Entomol, vol.98, pp.665-681, 2015.

K. M. Esvelt, A. L. Smidler, F. Catteruccia, and G. M. Church, Concerning RNA-guided gene drives for the alteration of wild populations, vol.3, p.3401, 2014.

L. Facchinelli, L. Valerio, J. M. Ramsey, F. Gould, R. K. Walsh et al., Field cage studies and progressive evaluation of geneticallyengineered mosquitoes, PLoS Negl Trop Dis, vol.7, 2001.

. Fao, NIMP 5 : Glossaire des termes phytosanitaires, Normes internationales pour les mesures phytosanitaires, 2015.

. Fao, NIMP 3 : Directives pour l'exportation, l'expédition, l'importation et le lâcher d'agents de lutte biologique et autres organismes utiles, Normes internationales pour les mesures phytosanitaires (Rome, Organisation des Nations unies pour l'alimentation et l'agriculture), p.16, 2016.

A. Farajollahi, D. M. Fonseca, L. D. Kramer, and A. M. Kilpatrick, Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology, Infection Genetics and Evolution, vol.11, pp.1577-1585, 2011.

M. Farenhorst, J. C. Mouatcho, C. K. Kikankie, B. D. Brooke, R. H. Hunt et al., Fungal infection counters insecticide resistance in African malaria mosquitoes, Proc Natl Acad Sci, vol.106, pp.17443-17447, 2009.

G. Favia, Asaia paratransgenesis in mosquitoes, Transgenic Insects: Techniques and Applications, pp.227-238, 2014.

. Fda, Environmental assessment for investigational use of Aedes aegypti OX513A in support of a proposed field trial of genetically engineered (GE) male Ae. aegypti mosquitoes of the line OX513A in Key Haven, 2016.

U. Feldmann and J. Hendrichs, Integrating the sterile insect technique as a key component of area-wide tsetse and trypanosomiasis intervention, In PAAT Technical and Scientific Series, vol.3, 2001.

S. Flores, S. Campos, A. Villaseñor, Á. Valle, W. Enkerlin et al., Sterile males of Ceratitis capitata (Diptera: Tephritidae) as disseminators of Beauveria bassiana conidia for IPM strategies, Biocontrol Science and Technology, vol.23, pp.1186-1198, 2013.

D. A. Focks, R. J. Brenner, J. Hayes, and E. Daniels, Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts, Am J Trop Med Hyg, vol.62, pp.11-18, 2000.

D. Fontenille, C. Lagneau, S. Lecollinet, R. Lefait-robin, M. Setbon et al., La lutte antivectorielle en France. Disease vector control in France, 2009.
URL : https://hal.archives-ouvertes.fr/halshs-00404787

B. T. Fossog, C. Antonio-nkondjio, P. Kengne, F. Njiokou, N. J. Besansky et al., Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae, BMC Ecol, vol.13, 2013.

G. A. Foster and E. D. Walker, Mosquitoes (Culicidae), In Medical and Veterinary Entomology, pp.203-262, 2002.

A. Fraval, Elles aussi, elles aiment les insectes, Les Gambusies. Insectes, vol.125, pp.14-16, 2002.

F. D. Frentiu, T. Zakir, T. Walker, J. Popovici, A. T. Pyke et al., Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Negl Trop Dis, vol.8, 2014.

A. D. Gaio, D. S. Gusmao, A. V. Santos, M. A. Berbert-molina, P. F. Pimenta et al., Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.), 2011.

R. Galizi, L. A. Doyle, M. Menichelli, F. Bernardini, A. Deredec et al., A synthetic sex ratio distortion system for the control of the human malaria mosquito, Nature Communications, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02634336

V. M. Gantz and E. Bier, The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations, Science, vol.348, pp.442-444, 2015.

V. M. Gantz, N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias et al., Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc Natl Acad Sci, vol.112, pp.6736-6743, 2015.

M. Gendrin, F. H. Rodgers, R. S. Yerbanga, J. B. Ouedraogo, M. Basanez et al., Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nature Communications, vol.6, 2015.

T. Giacomini and L. Brumpt, Dissémination passive d'Anophèles par les moyens de transport ; son rôle dans la transmission du paludisme (revue historique). Revue d'histoire de la pharmacie 77? année n°281-282, pp.163-174, 1989.

J. R. Gilles, M. F. Schetelig, F. Scolari, F. Marec, M. L. Capurro et al., Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes, Acta Trop, vol.132, pp.178-187, 2014.

G. Gimonneau, M. T. Tchioffo, L. Abate, A. Boissiere, P. H. Awono-ambene et al., Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages, Infection Genetics and Evolution, vol.28, pp.715-724, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01546167

C. Gkenas, A. Oikonomou, A. Economou, F. Kiosse, and I. Leonardos, Life history pattern and feeding habits of the invasive mosquitofish, Gambusia holbrooki, Journal of Biological Research-Thessaloniki, vol.17, pp.121-136, 2012.

J. R. Gorham, Orchid pollination by Aedes mosquitoes in Alaska, Am Midl Nat, vol.95, pp.208-210, 1976.

K. Gorman, J. Young, L. Pineda, R. Màrquez, N. Sosa et al., Short-term suppression of Aedes aegypti using genetic control does not facilitate Aedes albopictus, Pest Manage Sci, vol.72, pp.618-628, 2016.

T. J. Gray and C. E. Webb, A review of the epidemiological and clinical aspects of West Nile virus, International Journal of General Medicine, vol.7, pp.193-203, 2014.

A. Green, Yellow fever continues to spread in Angola, Lancet, vol.387, pp.2493-2493, 2016.

G. L. Grossman, C. S. Rafferty, J. R. Clayton, T. K. Stevens, O. Mukabayire et al., , 2001.

, Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element, Insect Mol Biol, vol.10, pp.597-604

A. B. Hall, S. Basu, X. F. Jiang, Y. M. Qi, V. A. Timoshevskiy et al., A male-determining factor in the mosquito Aedes aegypti, Science, vol.348, pp.1268-1270, 2015.

A. Hammond, R. Galizi, K. Kyrou, A. Simoni, C. Siniscalchi et al., A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat Biotechnol, vol.34, pp.78-83, 2016.

A. Hammond, N. , and T. , Sex-, tissue-and stage-specific transgene expression, Transgenic Insects: Techniques and, 2014.

M. C. Hardstone, C. A. Leichter, and J. G. Scott, Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes, J Evol Biol, vol.22, pp.416-423, 2009.

A. F. Harris, A. R. Mckemey, D. Nimmo, Z. Curtis, I. Black et al., Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes, Nat Biotechnol, vol.30, pp.828-830, 2012.

A. F. Harris, D. Nimmo, A. R. Mckemey, N. Kelly, S. Scaife et al., Field performance of engineered male mosquitoes, Nat Biotechnol, vol.29, pp.1034-1037, 2011.

I. M. Hastings, Selfish DNA as a method of pest control, Philos Trans R Soc Lond Ser B-Biol Sci, vol.344, pp.313-324, 1994.

M. B. Hertlein, C. Mavrotas, C. Jousseaume, M. Lysandrou, G. D. Thompson et al., A review of spinosad as a natural product for larval mosquito control, J Am Mosq Control Assoc, vol.26, pp.67-87, 2010.

A. A. Hoffmann, I. Iturbe-ormaetxe, A. G. Callahan, B. Phillips, K. Billington et al., Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Negl Trop Dis, vol.8, p.3115, 2014.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, pp.454-457, 2011.

J. C. Hotopp, M. E. Clark, D. Oliveira, J. M. Foster, P. Fischer et al., Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes, Science, vol.317, pp.1753-1756, 2007.

A. F. Howard, Control with arthropods In Biological and Environmental Control of Disease Vectors, pp.10-24, 2013.

G. L. Hughes, B. L. Dodson, R. M. Johnson, C. C. Murdock, H. Tsujimoto et al., Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes, Proc Natl Acad Sci, vol.111, pp.12498-12503, 2014.

G. L. Hughes and J. L. Rasgon, Transinfection: a method to investigate Wolbachia-host interactions and control arthropod-borne disease, Insect Mol Biol, vol.23, pp.141-151, 2014.

M. Hussain, F. D. Frentiu, L. A. Moreira, S. L. O'neill, A. et al., Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti, Proc Natl Acad Sci, vol.108, pp.9250-9255, 2011.

A. T. Isaacs, N. Jasinskiene, M. Tretiakov, I. Thiery, A. Zettor et al., , 2012.

, Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development, Proc Natl Acad Sci, vol.109, pp.1922-1930

N. Jasinskiene, C. J. Coates, M. Q. Benedict, A. J. Cornel, C. S. Rafferty et al., Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly, Proc Natl Acad Sci, vol.95, pp.3743-3747, 1998.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

S. A. Juliano, Species interactions among larval mosquitoes: context dependence across habitat gradients, In Annu Rev Entomol, pp.37-56, 2009.

N. Jupatanakul, S. Sim, Y. I. Anglero-rodriguez, J. Souza-neto, S. Das et al., Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus, PLoS Negl Trop Dis, vol.11, p.5187, 2017.

B. Kay, N. , and V. S. , New strategy against Aedes aegypti in Vietnam, Lancet, vol.365, pp.613-617, 2005.

P. Kittayapong, U. Chansang, C. Chansang, and A. Bhumiratana, Community participation and appropriate technologies for dengue vector control at transmission foci in Thailand, J Am Mosq Control Assoc, vol.22, pp.538-546, 2006.

L. Klasson, Z. Kambris, P. E. Cook, T. Walker, and S. P. Sinkins, Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti, BMC Genomics, vol.10, 2009.

L. Klasson, N. Kumar, R. Bromley, K. Sieber, M. Flowers et al., Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae, BMC Genomics, vol.15, 2014.

B. P. Kleinstiver, V. Pattanayak, M. S. Prew, S. Q. Tsai, N. T. Nguyen et al., , 2016.

, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, vol.529, pp.490-495

D. L. Kline, Semiochemicals, traps/targets and mass trapping technology for mosquito management, J Am Mosq Control Assoc, vol.23, pp.241-251, 2007.

E. F. Knipling, Possibilities of insect control or eradication through the use of sexually sterile males, J Econ Entomol, vol.48, pp.459-462, 1955.

A. C. Komor, A. H. Badran, and D. R. Liu, CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, vol.168, pp.20-36, 2017.

M. U. Kraemer, M. E. Sinka, K. A. Duda, A. Mylne, F. M. Shearer et al., The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data, vol.2, p.150035, 2015.

V. Krivan, The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, Am Nat, vol.170, pp.771-782, 2007.

E. Krzywinska, N. J. Dennison, G. J. Lycett, and J. Krzywinski, A maleness gene in the malaria mosquito Anopheles gambiae, Science, vol.353, pp.67-69, 2016.

K. Kupferschmidt, Yellow fever outbreak triggers vaccine alarm, Science, vol.352, pp.128-129, 2016.

G. M. Labbé, D. D. Nimmo, A. , and L. , piggybac-and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse), PLoS Negl Trop Dis, vol.4, 2010.

P. Labbé, H. Alout, L. Djogbénou, N. Pasteur, and M. Weill, Evolution of resistance to insecticide in disease vectors, Genetics and Evolution of Infectious Disease, M. Tibayrenc, pp.363-409, 2011.

G. Lacour, L. Chanaud, G. L'ambert, and T. Hance, Seasonal synchronization of diapause phases in Aedes albopictus (Diptera: Culicidae), PLoS One, p.10, 2015.

R. Lacroix, A. R. Mckemey, N. Raduan, L. K. Wee, W. H. Ming et al., Open field release of genetically engineered sterile male Aedes aegypti in Malaysia, PLoS One, vol.7, 2012.

L. Lagadic, R. B. Schafer, M. Roucaute, E. Szocs, S. Chouin et al., No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands, Sci Total Environ, vol.553, pp.486-494, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01444678

C. Lahondère and C. R. Lazzari, Mosquitoes cool down during blood feeding to avoid overheating, Curr Biol, vol.22, pp.40-45, 2012.

L. Lambrechts, J. C. Koella, and C. Boëte, Can transgenic mosquitoes afford the fitness cost?, Trends Parasitol, vol.24, pp.4-7, 2008.

D. J. Lampe and N. J. Bongio, Paratransgenesis in mosquitoes and other insects: microbial ecology and bacterial genetic considerations, Transgenic Insects: Techniques and, pp.208-226, 2014.

H. Laven, Eradication of Culex pipiens fatigans through cytoplasmic incompatibility, Nature, vol.216, pp.383-384, 1967.

H. L. Lee, S. Vasan, N. W. Ahmad, I. Idris, N. Hanum et al., Mating compatibility and competitiveness of transgenic and wild type Aedes aegypti (L.) under contained semi-field conditions, Transgenic Res, vol.22, pp.47-57, 2013.

R. S. Lees, J. R. Gilles, J. Hendrichs, M. J. Vreysen, and K. Bourtzis, Back to the future: the sterile insect technique against mosquito disease vectors, Current Opinion in Insect Science, vol.10, pp.156-162, 2015.

T. Lehmann, A. Dao, A. S. Yaro, A. Adamou, Y. Kassogue et al., Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel, Am J Trop Med Hyg, vol.83, pp.601-606, 2010.

C. Lengeler, Insecticide-treated bed nets and curtains for preventing malaria, Cochrane Database of Systematic Reviews, 2004.

D. P. Lepage, J. A. Metcalf, S. R. Bordenstein, J. M. On, J. I. Perlmutter et al., Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility, Nature, vol.543, pp.243-247, 2017.

T. N. Lima-camara, C. T. Codeco, N. A. Honorio, R. V. Bruno, A. A. Peixoto et al., Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females, Mem Inst Oswaldo Cruz, vol.108, pp.18-25, 2013.

H. Lin, J. Mcgrath, P. Wang, and T. Lee, Cellular toxicity induced by SRF-mediated transcriptional squelching, Toxicol Sci, vol.96, pp.83-91, 2007.

A. K. Lindholm, K. A. Dyer, R. C. Firman, L. Fishman, W. Forstmeier et al., The ecology and evolutionary dynamics of meiotic drive, Trends Ecol Evol, vol.31, pp.315-326, 2016.

L. P. Lounibos, Invasions by insect vectors of human disease, Annu Rev Entomol, vol.47, pp.233-266, 2002.

J. O. Lundstrom, M. L. Schafer, E. Petersson, T. Z. Vinnersten, J. Landin et al., Production of wetland Chironomidae (Diptera) and the effects of using Bacillus thuringiensis israelensis for mosquito control, Bull Entomol Res, vol.100, pp.117-125, 2010.

O. Madakacherry, R. S. Lees, and J. R. Gilles, Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness, Acta Trop, vol.132, pp.124-129, 2014.

J. W. Mains, C. L. Brelsfoard, R. I. Rose, and S. L. Dobson, Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes, Scientific Reports, vol.6, 2016.

P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell et al., , 2013.

, RNA-guided human genome engineering via Cas9, Science, vol.339, pp.823-826

S. Marcombe, F. Darriet, M. Tolosa, P. Agnew, S. Duchon et al., Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean), PLoS Negl Trop Dis, vol.5, p.1202, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02080545

J. M. Marshall, Commentary: The Cartagena Protocol in the context of recent releases of transgenic and Wolbachia-infected mosquitoes, AsPac J Mol Biol Biotechnol, vol.19, pp.93-100, 2011.

G. G. Marten, R. , and J. W. , Cyclopoid copepods, J Am Mosq Control Assoc, vol.23, pp.65-92, 2007.

D. G. Mayer, M. G. Atzeni, M. A. Stuart, K. A. Anaman, and D. G. Butler, Mating competitiveness of irradiated flies for screwworm fly eradication campaigns, Prev Vet Med, vol.36, pp.1-9, 1998.

E. A. Mcgraw and S. L. Neill, Beyond insecticides: new thinking on an ancient problem, Nature Reviews Microbiology, vol.11, pp.181-193, 2013.

D. O. Mcinnis, D. R. Lance, J. , and C. G. , Behavioral resistance to the sterile insect technique by Mediterranean fruit fly (Diptera: Tephritidae) in Hawaii, Ann Entomol Soc Am, vol.89, pp.739-744, 1996.

C. J. Mcmeniman, R. V. Lane, B. N. Cass, A. W. Fong, M. Sidhu et al., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, 2009.

, Science, vol.323, pp.141-144

J. M. Medlock and K. R. Snow, Natural predators and parasites of British mosquitoes -a review, European Mosquito Bulletin, vol.25, pp.1-11, 2008.

J. M. Meredith, S. Basu, D. D. Nimmo, I. Larget-thiery, E. L. Warr et al., Site-specific integration and expression of an antimalarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections, PLoS One, vol.6, 2011.

J. M. Meredith, A. Underhill, C. C. Mcarthur, and P. Eggleston, Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase, PLoS One, vol.8, p.59264, 2013.

J. Min, C. Noble, D. Najjar, and K. Esvelt, Daisy quorum drives for the genetic restoration of wild populations. bioRxiv, 2017.

J. Min, C. Noble, D. Najjar, and K. M. Esvelt, Daisyfield gene drive systems harness repeated genomic elements as a generational clock to limit spread. bioRxiv, 2017.

N. Moiroux, M. B. Gomez, C. Pennetier, E. Elanga, A. Djenontin et al., Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin, J Infect Dis, vol.206, pp.1622-1629, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00742218

R. M. Moll, W. S. Romoser, M. C. Modrzakowski, A. C. Moncayo, and K. Lerdthusnee, , 2001.

, Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis, J Med Entomol, vol.38, pp.29-32

L. A. Moreira, I. Iturbe-ormaetxe, J. A. Jeffery, G. J. Lu, A. T. Pyke et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium, Cell, vol.139, pp.1268-1278, 2009.

R. L. Mubarqui, R. C. Perez, R. Angulo-kladt, J. L. Zavala-lopez, A. Parker et al., The smart aerial release machine, a universal system for applying the sterile insect technique, Plos ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641162

C. C. Murdock, S. Blanford, G. L. Hughes, J. L. Rasgon, and M. B. Thomas, Temperature alters Plasmodium blocking by Wolbachia, 2014.

R. N'guessan, V. Corbel, M. Akogbeto, R. , and M. , Reduced efficacy of insecticidetreated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerging Infect Dis, vol.13, pp.199-206, 2007.

V. S. Nam, N. T. Yen, H. M. Due, T. C. Tu, V. T. Thang et al., Community-based control of Aedes aegypti by using Mesocyclops in Southern Vietnam, Am J Trop Med Hyg, vol.86, pp.850-859, 2012.

R. Nauen, Insecticide resistance in disease vectors of public health importance, Pest Manage Sci, vol.63, pp.628-633, 2007.

D. E. Neafsey, R. M. Waterhouse, M. R. Abai, S. S. Aganezov, M. A. Alekseyev et al., Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes, Science, vol.347, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02315921

X. J. Nelson, J. , and R. R. , A predator from East Africa that chooses malaria vectors as preferred prey, PLoS One, vol.1, 2006.

J. Nesme, S. Cecillon, T. O. Delmont, J. M. Monier, T. M. Vogel et al., Large-scale metagenomic-based study of antibiotic resistance in the environment, Curr Biol, vol.24, pp.1096-1100, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988678

T. H. Nguyen, H. Le-nguyen, T. Y. Nguyen, S. N. Vu, N. D. Tran et al., Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, 2015.

M. L. Niebylski, C. Jr, and G. B. , Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri, J Am Mosq Control Assoc, vol.10, pp.339-343, 1994.

D. D. Nimmo, L. Alphey, J. M. Meredith, and P. Eggleston, High efficiency site-specific genetic engineering of the mosquito genome, Insect Mol Biol, vol.15, pp.129-136, 2006.

C. Noble, J. Min, J. Olejarz, J. Buchthal, A. Chavez et al., Daisy-chain gene drives for the alteration of local populations, p.57307, 2016.

D. A. O'brochta, K. George, and H. Xu, Transposon-based technologies for insects, Transgenic Insects: Techniques and Applications, pp.18-28, 2014.

D. A. O'brochta, K. George, and H. Xu, Transposons for insect transformation, Transgenic Insects: Techniques and Applications, pp.1-17, 2014.

L. O'connor, C. Plichart, A. C. Sang, C. L. Brelsfoard, H. C. Bossin et al., Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment, PLoS Negl Trop Dis, vol.6, 1797.

C. F. Oliva, M. Jacquet, J. Gilles, G. Lemperiere, P. O. Maquart et al., The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01285450

C. F. Oliva, M. J. Maier, J. Gilles, M. Jacquet, G. Lemperiere et al., Effects of irradiation, presence of females, and sugar supply on the longevity of sterile males Aedes albopictus (Skuse) under semi-field conditions on Reunion Island, Acta Trop, vol.125, pp.287-293, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01274583

K. A. Oye, K. Esvelt, E. Appleton, F. Catteruccia, G. Church et al., Regulating gene drives, Science, vol.345, pp.626-628, 2014.

M. L. Pace, J. J. Cole, S. R. Carpenter, and J. F. Kitchell, Trophic cascades revealed in diverse ecosystems, Trends Ecol Evol, vol.14, pp.483-488, 1999.

A. Parmakelis, M. A. Russello, A. Caccone, C. B. Marcondes, J. Costa et al., Short report: Historical analysis of a near disaster: Anopheles gambiae in Brazil, Am J Trop Med Hyg, vol.78, pp.176-178, 2008.

O. P. Perera, R. A. Harrell, and A. M. Handler, Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBaclEGFP transposon vector is routine and highly efficient, Insect Mol Biol, vol.11, pp.291-297, 2002.

H. K. Phuc, M. H. Andreasen, R. S. Burton, C. Vass, M. J. Epton et al., Late-acting dominant lethal genetic systems and mosquito control, BMC Biol, vol.5, 2007.

D. Pleydell and J. Bouyer, The boosted sterile insect approach: a synergystic association for integrated vector eradication?, 2016.

B. Pluess, F. C. Tanser, C. Lengeler, and B. L. Sharp, Indoor residual spraying for preventing malaria, Cochrane Database of Systematic Reviews, 2010.

B. Pluskota, A. Jost, X. Augsten, L. Stelzner, I. Ferstl et al., Successful overwintering of Aedes albopictus in Germany, Parasitol Res, vol.115, pp.3245-3247, 2016.

E. Pondeville, N. Puchot, J. M. Meredith, A. Lynd, K. D. Vernick et al., Efficient Phi C31 integrase-mediated site-specific germline transformation of Anopheles gambiae, Nature Protocols, vol.9, pp.1698-1712, 2014.

A. Ponlawat and L. C. Harrington, Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand, J Med Entomol, vol.42, pp.844-849, 2005.

J. L. Ramirez, S. M. Short, A. C. Bahia, R. G. Saraiva, Y. M. Dong et al., Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities, 2014.

M. Raymond, D. G. Heckel, and J. G. Scott, Interactions between pesticide genes: model and experiment, Genetics, vol.123, pp.543-551, 1989.

L. Regis, M. H. Silva-filha, C. Nielsen-leroux, C. , and J. F. , Bacteriological larvicides of dipteran disease vectors, Trends Parasitol, vol.17, pp.377-380, 2001.

P. Reiter, M. A. Amador, R. A. Anderson, and G. G. Clark, Dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs, Am J Trop Med Hyg, vol.52, pp.177-179, 1995.

P. Rendon, D. Mcinnis, D. Lance, and J. Stewart, Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala, J Econ Entomol, vol.97, pp.1547-1553, 2004.

A. M. Richman, G. Dimopoulos, D. Seeley, and F. C. Kafatos, Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes, EMBO J, vol.16, pp.6114-6119, 1997.

F. Rivière, G. Pichon, J. Duval, R. Thiriel, and A. Toudic, Introduction de Toxorhynchites (Toxorhynchites) amboinensis (Doleschall, 1857) (Diptera, Culicidae) en Polynésie Française, Cah ORSTOM, sér Ent méd et Parasitol XVII, pp.225-234, 1979.

F. Rodhain, Le parasite, le moustique, l'Homme et les autres. Essai sur l'éco-épidémiologie des maladies à vecteurs, 2015.

F. Rodhain and C. Perez, Précis d'entomologie médicale et vétérinaire: notions d'épidémiologie des maladies à vecteurs (Maloine), 1985.

P. A. Ross, I. Wiwatanaratanabutr, J. K. Axford, V. L. White, N. M. Endersby-harshman et al., Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress, PLoS Path, vol.13, 2017.

P. Rossi, I. Ricci, A. Cappelli, C. Damiani, U. Ulissi et al., Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors, 2015.

G. M. Rubin and A. C. Spradling, Genetic transformation of Drosophila with transposable element vectors, Science, vol.218, pp.348-353, 1982.

F. Schaffner and A. Mathis, Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future, Lancet Infect Dis, vol.14, pp.1271-1280, 2014.

K. A. Senti and J. Brennecke, The piRNA pathway: a fly's perspective on the guardian of the genome, Trends Genet, vol.26, pp.499-509, 2010.

K. Servick, Brazil will release billions of lab-grown mosquitoes to combat infectious disease. Will it work?, Science, 2016.

W. R. Shaw, P. Marcenac, L. M. Childs, C. O. Buckee, F. Baldini et al., Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development, Nature Communications, vol.7, 2016.

T. E. Shelly, D. O. Mcinnis, C. Rodd, J. Edu, and E. Pahio, Sterile insect technique and Mediterranean fruit fly (Diptera: Tephritidae): assessing the utility of aromatherapy in a Hawaiian coffee field, J Econ Entomol, vol.100, pp.273-282, 2007.

M. Sicard, J. Dittmer, P. Greve, D. Bouchon, and C. Braquart-varnier, A host as an ecosystem: Wolbachia coping with environmental constraints, Environ Microbiol, vol.16, pp.3583-3607, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078483

M. E. Sinka, M. J. Bangs, S. Manguin, Y. Rubio-palis, T. Chareonviriyaphap et al., A global map of dominant malaria vectors, 2012.

S. P. Sinkins and S. L. Neill, Wolbachia as a vehicle to modify insect populations, Insect transgenesis: Methods and Applications, pp.271-287, 2000.

I. M. Slaymaker, L. Y. Gao, B. Zetsche, D. A. Scott, W. X. Yan et al., Rationally engineered Cas9 nucleases with improved specificity, Science, vol.351, pp.84-88, 2016.

F. L. Soper, Anopheles gambiae in Brazil, pp.1930-1940, 1943.

S. Sougoufara, S. M. Diedhiou, S. Doucoure, N. Diagne, P. M. Sembene et al., Biting by Anopheles funestus in broad daylight after use of longlasting insecticidal nets: a new challenge to malaria elimination, Malaria Journal, vol.13, 2014.

E. L. Suchman, J. Piper, M. W. De-valdez, B. Kleker, L. Neeper et al., Aedes aegypti densonucleosis virus amplifies, spreads, and reduces host populations in laboratory cage studies, J Med Entomol, vol.46, pp.909-918, 2009.

D. M. Suckling, P. C. Tobin, D. G. Mccullough, and D. A. Herms, Combining tactics to exploit Allee effects for eradication of alien insect populations, J Econ Entomol, vol.105, pp.1-13, 2012.

C. N. Taning, B. Van-eynde, N. Yu, S. Ma, and G. Smagghe, CRISPR/Cas9 in insects: applications, best practices and biosafety concerns, J Insect Physiol, vol.98, pp.245-257, 2017.

M. T. Tchioffo, A. Boissiere, L. Abate, S. E. Nsango, A. N. Bayibeki et al., Dynamics of bacterial community composition in the malaria mosquito's epithelia, 2016.

P. Tortosa, S. Charlat, P. Labbe, J. S. Dehecq, H. Barre et al., Wolbachia age-sexspecific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility?, PLoS One, vol.5, 2010.

A. Tran, F. Biteau-coroller, H. Guis, and F. Roger, Modélisation des maladies vectorielles, Epidémiol et santé anim, vol.47, pp.35-51, 2005.

Z. Tu and C. Coates, Mosquito transposable elements, Insect Biochem Mol Biol, vol.34, pp.631-644, 2004.

. Ue, Règlement (UE) n° 528/2012 du Parlement européen et du Conseil du 22 mai 2012 concernant la mise à disposition sur le marché et l'utilisation des produits biocides, Journal officiel de l'Union européenne, vol.167, pp.1-123, 2012.

R. L. Unckless, P. W. Messer, T. Connallon, C. , and A. G. , Modeling the manipulation of natural populations by the Mutagenic Chain Reaction, Genetics, vol.201, pp.425-431, 2015.

M. Vargas-teran, H. C. Hofmann, and N. E. Tweddle, Impact of screwworm eradication programmes using the sterile insect technique, Sterile Insect Technique: Principles and Practices in Area-Wide Integrated Pest Management, pp.629-650, 2005.

N. Vasilakis, J. Cardosa, K. A. Hanley, E. C. Holmes, and S. C. Weaver, Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health, Nature Reviews Microbiology, vol.9, pp.532-541, 2011.

I. P. Vaughan, C. Newberry, D. J. Hall, J. S. Liggett, and S. J. Ormerod, Evaluating large-scale effects of Bacillus thuringiensis var. israelensis on non-biting midges (Chironomidae) in a eutrophic urban lake, Freshwat Biol, vol.53, pp.2117-2128, 2008.

M. Vazeille, A. Yebakima, R. Lourenço-de-oliveira, B. Andriamahefazafy, A. Correira et al., Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses, Vector-Borne and Zoonotic Diseases, vol.13, pp.37-40, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01718215

R. Veronesi, M. Carrieri, B. Maccagnani, S. Maini, and R. Bellini, Macrocyclops albidus (Copepoda: Cyclopidae) for the biocontrol of Aedes albopictus and Culex pipiens in Italy, J Am Mosq Control Assoc, vol.31, pp.32-43, 2015.

J. F. Viel, C. Warembourg, G. Le-maner-idrissi, A. Lacroix, G. Limon et al., Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort, Environ Int, vol.82, pp.69-75, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162374

N. Vodovar, A. W. Bronkhorst, K. W. Van-cleef, P. Miesen, H. Blanc et al.,

, Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells, PLoS One, vol.7

G. Volohonsky, O. Terenzi, J. Soichot, D. A. Naujoks, T. Nolan et al., Tools for Anopheles gambiae transgenesis, vol.5, pp.1151-1163, 2015.

M. J. Vreysen, Monitoring sterile and wild insects in area-wide integrated pest management programmes, Sterile Insect Technique: Principles and Practices in Area-Wide Integrated Pest Management, pp.325-362, 2005.

M. J. Vreysen, K. M. Saleh, M. Y. Ali, A. M. Abdulla, Z. R. Zhu et al., Glossina austeni (Diptera: Glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique, J Econ Entomol, vol.93, pp.123-135, 2000.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, pp.450-453, 2011.

W. E. Walton, J. A. Henke, and A. M. Why, Gambusia affinis (Baird & Girard) and Gambusia holbrooki Girard (mosquitofish). In A Handbook of Global Freshwater Invasive Species, pp.261-273, 2012.

A. R. Weeks, M. Turelli, W. R. Harcombe, K. T. Reynolds, and A. A. Hoffmann, From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila, PLoS Biol, vol.5, pp.997-1005, 2007.

B. L. Weiss, A. , and S. , Tsetse paratransgenesis: a novel strategy for reducing the spread of African trypanosomiasis, Transgenic Insects: Techniques and Applications, pp.250-262, 2014.

S. M. White, P. Rohani, and S. M. Sait, Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics, J Appl Ecol, vol.47, pp.1329-1339, 2010.

, Global insecticide use for vector-borne disease control. A 10 year assessment, p.33, 2000.

, Handbook for Integrated Vector Management (Geneva, World Health Organization), WHO, p.78, 2012.

, Guidance framework for testing of genetically modified mosquitoes, WHO, p.159, 2014.

, Guidelines for the treatment of malaria, p.317, 2015.

S. P. Wijayanti, S. Sunaryo, S. Suprihatin, M. Mcfarlane, S. M. Rainey et al., Dengue in Java, Indonesia: relevance of mosquito indices as risk predictors, PLoS Negl Trop Dis, vol.10, p.4500, 2016.

N. Windbichler, M. Menichelli, P. A. Papathanos, S. B. Thyme, H. Li et al., A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, vol.473, pp.212-217, 2011.

P. Winskill, D. O. Carvalho, M. L. Capurro, L. Alphey, C. A. Donnelly et al., Dispersal of engineered male Aedes aegypti mosquitoes, PLoS Negl Trop Dis, vol.9, p.4156, 2015.

M. Woolfit, M. Algama, J. M. Keith, E. A. Mcgraw, and J. Popovici, Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis, PLoS One, vol.10, 2015.

B. Wu, L. Q. Luo, and X. J. Gao, Cas9-triggered chain ablation of cas9 as a gene drive brake, Nat Biotechnol, vol.34, pp.137-138, 2016.

J. H. Wyss, Screwworm eradication in the Americas, Tropical veterinary diseases: Control and prevention in the context of the New World order, pp.186-193, 2000.

H. Yamada, M. J. Vreysen, J. R. Gilles, G. Munhenga, and D. D. Damiens, The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages, Malaria Journal, vol.13, 2014.

D. S. Yamamoto, M. Sumitani, K. Kasashima, H. Sezutsu, and H. Matsuoka, Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells, PLoS Path, vol.12, 2016.

A. S. Yaro, A. I. Traore, D. L. Huestis, A. Adamou, S. Timbine et al., Dry season reproductive depression of Anopheles gambiae in the Sahel, J Insect Physiol, vol.58, pp.1050-1059, 2012.

H. L. Yeap, P. Mee, T. Walker, A. R. Weeks, S. L. O'neill et al., Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control, Genetics, vol.187, pp.583-595, 2011.

B. Zetsche, J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, vol.163, pp.759-771, 2015.

D. J. Zhang, R. S. Lees, Z. Y. Xi, K. Bourtzis, and J. R. Gilles, Combining the sterile insect technique with the incompatible insect technique: III-Robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions, PLoS One, vol.11, 2016.

D. J. Zhang, R. S. Lees, Z. Y. Xi, J. R. Gilles, and K. Bourtzis, Combining the sterile insect technique with Wolbachia-based approaches: II-A safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release, PLoS One, vol.10, 2015.

D. J. Zhang, X. Y. Zheng, Z. Y. Xi, K. Bourtzis, and J. R. Gilles, Combining the sterile insect technique with the incompatible insect technique: I-Impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus, PLoS One, vol.10, 2015.

R. Zug and P. Hammerstein, Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected, PLoS One, vol.7, 2012.

R. Zug and P. Hammerstein, Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts, Biological Reviews, vol.90, pp.89-111, 2015.

, Annexe 2 : Comité scientifique du HCB et élaboration de l'avis

L. Comité-scientifique, CS) du HCB est un comité pluridisciplinaire composé de personnalités scientifiques nommées au titre de leur(s) spécialité(s) en relation avec les missions du HCB

, Ayant évolué pendant les travaux du HCB, elle est précisée sur toute la durée de l'élaboration de cet avis : -composition en vigueur suite au décret de nomination des membres du HCB du 30 décembre, La composition du CS est indiquée ci-dessous par ordre alphabétique des noms de famille, 2014.

C. Bagnis, A. Bar-hen, M. Barny, P. Berny, Y. Bertheau-;-pascal et al., , 2017.

F. Angevin, C. Bagnis, A. Bar-hen, M. Barny, P. Boireau et al.,

, Ils sont également interrogés sur l'existence d'éventuels conflits d'intérêts avant l'examen de chaque dossier, Les membres du CS du HCB remplissent annuellement une déclaration publique d'intérêts

, Cet avis a été élaboré par le CS du HCB à partir du rapport d'un groupe de travail d'experts (voir Annexe 3) sous la présidence du Dr Jean-Christophe Pagès, la vice-présidence du Dr Pascal Boireau et du Dr Claudine Franche

, Les travaux du groupe de travail et le rapport en cours d'élaboration ont été discutés par le CS lors des séances du 24 mars, du 28 avril et du 22 juin 2016. Des points plus succints sur l'avancement du rapport ont été fournis lors des séances du 13 juillet et du 27 septembre. Le rapport en cours de finalisation a été présenté lors des séances du 27 octobre et du 15 décembre, 2017.

, Annexe 3 : Groupe de travail du CS et élaboration du rapport

. Le and H. Hcb-;-le, Le CNEV est une structure multidisciplinaire permettant de mobiliser rapidement et efficacement, dans une perspective d'aide à la décision, l'ensemble de l'expertise et des compétences françaises dans les domaines de l'entomologie médicale et vétérinaire, de la lutte antivectorielle et des sciences humaines et sociales appliquées à la lutte antivectorielle, sélectionnés pour leurs compétences dans les disciplines a priori requises pour le traitement de la saisine

C. Bourgouin, I. Pasteur-de, and P. ,

J. Bouyer, U. Cirad, and . Cirad-inra, Contrôle des Maladies Animales Exotiques et Emergentes, Chef de l'équipe vecteurs

F. Chandre and C. Centre, National d'Expertise sur les Vecteurs) et IRD, Directeur CNEV, Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle MIVEGEC

J. Gilles and . Fao-aiea-(l, Organisation des Nations unies pour l'alimentation et l'agriculture et l'Agence Internationale de l'énergie atomique), Chef de la section moustiques du laboratoire FAO-AIEA Insect Pest Control à Vienne Christophe Lagneau, EID Méditerranée : (Entente interdépartementale pour la démoustication du littoral méditerranéen, Directeur recherche & développement

, Réponse Immunitaire et Développement chez les Insectes

M. Weill,

. Co-rapporteurs,

P. Boireau, Vice-président du Comité scientifique du HCB

, Le groupe de travail a fait appel aux experts supplémentaires suivants à l'occasion du séminaire de lancement et pour compléter ses compétences au fur et à mesure que de nouvelles questions le nécessitaient

P. Gallian and . Efs, Référent activité Qualification Biologique du Don & Référent Virus Emergents