

Inactivation of enzymes challenges the current view of temperature response of enzymatic reactions

Sébastien Fontaine, Gaël Alvarez

▶ To cite this version:

Sébastien Fontaine, Gaël Alvarez. Inactivation of enzymes challenges the current view of temperature response of enzymatic reactions. 6th International Workshop Advances in Science and Technology of Bioressources., Universidad de la Frontera. Temuco, CHL., Nov 2017, Pucon, Chile. hal-02789779

HAL Id: hal-02789779 https://hal.inrae.fr/hal-02789779

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inactivation of enzymes challenges the current view of temperature response of enzymatic reactions

Sébastien FONTAINE & Gaël ALVAREZ INRA Clermont-Ferrand sebastien.fontaine@inra.fr

Extreme environments

• What does it mean extreme environments?

A concept a bit anthropocentric .

Extreme environments are not exceptions but their understanding requires a fine knowledge of the response of biological processes to environmental factors (T°C...)

Impact of temperature on microbial degradation: current theory

Describes decomposition as a substrate-limited process

 Thermo-dependence is embedded in the rate constant k

(Arrhenius equation)

VetAaro Sup

In the short-term (hours to days) warming accelerates C decomposition

Gaël ALVAREZ

Attenuation of warming effect with time

Harvard Forest, soil warming +5°C (10 years)

• Discrepancy **short vs. long term response**

Re-analysis of thermo-dependence of enzymatic reactions

Velocity of enzyme reactions is co-limited by substrate concentration and enzyme pool

Michaelis-Menten equation

V

VetAaro Sup

Let us to consider the case of excess of substrate

 \bigcirc

Active enzyme pool controlled by microbial production and enzyme inactivation

Enzyme Production (T) Enzyme Inactivation (T)

Thermal inactivation of enzymes

A well-known process by enzymologists

Induced by the Brownian movement and collisions between molecules

=> loss of protein conformational structure and active sites

• Continuous process acting at all temperature (+/- process of ageing)

• Intensifying with temperature

Objective

Describing the temperature response of enzymatic activity by accounting for the thermo-dependence of enzyme pool

 Substrate degradation

Enzyme pool dynamics

VetAgro Sup

Constant flux of enzyme (might depend on T)

continuous enzyme inactivation

Analysis of the theory

1. Batch reactor (\Box = 0) : effect of a pool of enzyme

2. Enzyme flow reactor : with enzyme production

Batch reactor – Vmax

The reaction velocity (Vmax) mediated by a pool of enzyme is given by:

For a given time, Vmax shows an optimum

V

T optimums shift with time towards lower values

CIFNCF & IMPAC

=> Temperature response of *Vmax* changes

with time and can be opposite.

V

Batch reactor – Reaction yield

To capture the long-term temperature response of enzymatic activities we need to consider the cumulative enzyme activity:

- Reaction Yield
- Total amount of substrates degraded by the enzyme pool until its complete inactivation (Integration of RY with $t \rightarrow +\infty$)

RY∞ per unit of E0

VetAgro Sup

Batch reactor – Reaction yield

RY∞ per unit of E0

Temperature response of Epower

V

VetAgro Sup

20-22 Nov. 2017

Meta-analysis of EAs for catalysis and thermal inactivation

	Catalysis	Inact.	
Enzyme	EAcat	EAinact	References
	(kJ.mol-1)	(kJ.mol-1)	
Dihydrofolate reductase	67	93	Daniel et al., 2008
Alkaline phosphatase	55	90	Daniel et al., 2008
Acid Phosphatase	79	95	Daniel et al., 2008
β-Glucosidase	63	95	Daniel et al., 2008
3-isopropylmalate dehydrogenase	72	100	Daniel et al., 2008
Ammonia-Lyases	80	97	Daniel et al., 2008
ATPase	74	92	Daniel et al., 2008
α-Glucosidase	71	0	Daniel et al., 2008
3-isopropylmalate dehydrogenase	73	94	Daniel et al., 2008
Dihydrofolate reductase	66	90	Daniel et al., 2008
Glutamate dehydrogenase	57	94	Daniel et al., 2008
Malate dehydrogenase	53	85	Daniel et al., 2008
Alkaline phosphatase	57	97	Daniel et al., 2008
Fumarase	60	92	Daniel et al., 2008
γ-Glutamyl transferase	63	98	Daniel et al., 2008
Glutamate dehydrogenase	63	93	Daniel and Danson, 2013
Malate dehydrogenase	55	96	Daniel et al., 2008
α-Glucosidase	64	96	Daniel et al., 2008
Dihydrofolate reductase	67	97	Daniel et al., 2008
α-Glucosidase	88	103	Daniel et al., 2008
3-isopropylmalate dehydrogenase	76	101	Daniel et al., 2008
β-Glucosidase	81	98	Daniel et al., 2008
Citrate synthetase	88	103	Daniel and Danson, 2013
Alkaline phosphatase	72	99	Daniel et al., 2008
Catalase	18	230	Sizer, 1944
Tannase	17	85	Nie et al., 2012
Tannase	23	69	Yu and Li, 2006
Xylanase	32	311	Cobos and Estrada, 2003
5-lipoxygenase	28	110	Lagutina et al., 1990
Lipase	13	79	Bhatti and Amin, 2013

VetAgro Sup

SCIENCE & IMPACT

Universal pattern of enzyme

thermodynamic properties

Enzyme inactivation is more sensitive to T than enzyme EAinact > EAcat

The cumulated amount of degraded substrate decreases with temperature

Over the long-term, T has negative effect on enzymatic activities

Enzyme flow reactor - Steady-state analysis

Consider a pool of enzymes replenished by an enzyme production

Enzyme production

inactivation

Enzyme flow reactor - Steady-state analysis

Consider a pool of enzymes replenished by an enzyme production

When enzyme production compensates for enzyme inactivation, **the pool of active enzymes is at steady-state**

 Reaction velocity at steady-state

 Reaction velocity at steady-state

Similar to batch reactor,

Epower decreases with T

(

Epo

Dynamic response of reaction velocity - 5°C warming

If enzyme production remains constant ...

- 1. Instantaneous positive response of *kcat* after warming
- 2. Thermal inactivation decreases *Vmax* with time

Dynamic response of decay rate (5°C warming)

40% increase of enzyme production with warming ...

 \bigcirc

- Enzymes do not have optimum temperature.
- *Epower* is a relevant enzyme trait to characterize T effect on enzyme activities
- Cold temperature can promote enzyme activities
- The enzyme inactivation may explain the temporal change in T response of microbial degradation of soil C

% of control

Conclusions & implications

- The universal pattern *EAinact* > *EAcat* indicates that the Epower systematically decrease with T
 - \checkmark What evolutionary process can explain this pattern?
 - ✓ What are the consequences for cell physiology and flux of matter?
 - How can microorganisms adapt to the lower Epower of their enzymes in warm environment ?

These questions could be assessed in NEXER of Franciso Matus :

Characterisation of soil enzymes activities & their thermodynamics properties Extraction of microorganisms & characterisation of their physiological and enzymes traits

Thank you for your attention

Gaël ALVAREZ

20-22 Nov. 2017