
HAL Id: hal-02789968
https://hal.inrae.fr/hal-02789968

Preprint submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Disentangling group specific QTL allele effects from
genetic background epistasis using admixed individuals

in GWAS: an application to maize flowering
Simon Rio, Tristan Mary-Huard, Laurence Moreau, Cyril Bauland, Carine

Palaffre, Delphine Madur, Valerie Combes, Alain Charcosset

To cite this version:
Simon Rio, Tristan Mary-Huard, Laurence Moreau, Cyril Bauland, Carine Palaffre, et al.. Disentan-
gling group specific QTL allele effects from genetic background epistasis using admixed individuals in
GWAS: an application to maize flowering. 2019. �hal-02789968�

https://hal.inrae.fr/hal-02789968
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Disentangling group specific QTL allele effects from genetic
background epistasis using admixed individuals in GWAS: an
application to maize flowering

Rio Simon1, Mary-Huard Tristan12, Moreau Laurence1, Bauland Cyril1, Palaffre
Carine3, Madur Delphine1, Combes Valérie1, Charcosset Alain1*,

1 GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université
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Abstract

When handling a structured population in association mapping, group-specific allele
effects may be observed at quantitative trait loci (QTLs) for several reasons: (i) a
different linkage disequilibrium (LD) between SNPs and QTLs across groups, (ii)
group-specific genetic mutations in QTL regions, and/or (iii) epistatic interactions
between QTLs and other loci that have differentiated allele frequencies between groups.
We present here a new genome-wide association (GWAS) approach to identify QTLs
exhibiting such group-specific allele effects. We developed genetic materials including
admixed progeny from different genetic groups with known genome-wide ancestries
(local admixture). A dedicated statistical methodology was developed to analyze pure
and admixed individuals jointly, allowing one to disentangle the factors causing the
heterogeneity of allele effects across groups. This approach was applied to maize by
developing an inbred ”Flint-Dent” panel including admixed individuals that was
evaluated for flowering time. Several associations were detected revealing a wide range
of configurations of allele effects, both at known flowering QTLs (Vgt1, Vgt2 and Vgt3 )
and new loci. We found several QTLs whose effect depended on the group ancestry of
alleles while others interacted with the genetic background. The existence of directional
epistasis was highlighted by comparing admixed with pure individuals and was
consistent with epistatic interactions identified at the level of QTLs. Our GWAS
approach provides useful information on the stability of QTL effects across genetic
groups and can be applied to a wide range of species.

Author summary

Identification of genomic regions involved in genetic architecture of traits has become
commonplace in quantitative genetics studies. Genetic structure is a common feature in
human, animal and plant species and most current methods target genomic regions
whose effects on traits are conserved between genetic groups. However, a heterogeneity
of allele effects may be observed due to different factors: a group-specific correlation
between the alleles of the tagged marker and those of the causal variant, a
group-specific mutation at the causal variant or an epistatic interaction between the
causal variant and the genetic background. We propose a new method adapted to
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structured populations including admixed individuals, which aims to identify these
genomic regions and to unravel the previous factors. method was applied to a maize
inbred diversity panel including lines from the dent and the flint genetic groups, as well
as admixed lines, evaluated for flowering time. Several genomic regions were detected
with various configurations of allele effects, with evidence of epistatic interactions
between some of the loci and the genetic background.

Introduction 1

Quantitative traits are genetically determined by numerous regions of the genome, also 2

known as quantitative trait loci (QTLs). The advent of high density genotyping of 3

single nucleotide polymorphism (SNPs) has opened the way to the identification of 4

QTLs in diversity panels. These studies, referred to as genome-wide association studies 5

(GWAS), use the linkage disequilibrium (LD) between the SNPs and the QTLs 6

underlying the traits of interest. The panels evaluated in GWAS often include sets of 7

individuals with complex pedigrees or genetic structure [1]. The latter is a common 8

feature in human, animal and plant species and arises when groups of individuals cease 9

to mate with each other and start to be subjected to different evolutionary forces. 10

Applying GWAS in a diversity panel including individuals from different groups 11

raises the issue of spurious associations. The stratification of a population into genetic 12

groups generates LD between loci that are differentiated between groups but not 13

necessarily genetically linked. When a given trait is characterized by contrasted 14

group-specific means, all these SNPs will correlate to it and may be detected as false 15

positives. An efficient control of these spurious associations can be done by taking 16

structure and kinship into account in the statistical model [1, 2]. This procedure will 17

however limit the statistical power at differentiated SNPs, making them difficult to 18

detect in multi-group GWAS, especially in case of rare alleles [3]. 19

In a structured population, group-specific allele effects can be observed at SNPs, and 20

testing an overall effect using a standard GWAS model may not be effective if the QTL 21

effect is of opposite sign in the different groups. Such effects can result from group 22

differences in LD between SNPs and QTLs across genetic groups. A different LD extent 23

or linkage phase between linked loci can be explained by specific dynamics of population 24

size such as bottlenecks or expansions [4, 5]. Such patterns of LD were identified in 25

numerous species including human [6, 7], dairy and beef cattle [8, 9], pig [10], wheat [11] 26

and maize [12–15]. A genetic mutation appearing in a QTL region may also lead to 27

group-specific allele effects if it occurred in a founder specific of the genetic group. 28

Several Mendelian syndromes of obesity where shown to result from mutation within 29

specific ethnicities in human [16]. Another possibility consists in QTLs interacting with 30

other loci that have differentiated allele frequencies between groups (i.e. interacting 31

with the genetic background). In human, this possibility was discussed for a candidate 32

gene associated with a higher risk of myocardial infarction in African American than in 33

European populations [17,18]. Another example is a SNP in the promoter region of 34

HNF4A gene which was associated with a higher risk of developing type 2 diabetes in 35

Askenazi compared to United Kingdom populations [19]. This locus was later proven to 36

be interacting with another gene in the Askenazi population [20]. In maize, evidences of 37

QTLs with group-specific allele effects can also be found, even though the cause of these 38

differences remains unclear. The presence of allelic series has been demonstrated for 39

QTLs associated with flowering time, including Vgt1 [21]. A QTL with group-specific 40

allele effects was also identified in a maize diversity panel for a phenology trait [22]. 41

More generally, studying the stability of QTL allele effects across genetic backgrounds is 42

an important issue. In human, it determines the ability of a genetic marker to predict 43

the predisposition of an individual to develop a genetic disease across ethnic groups. In 44
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plant or animal breeding, it conditions the success of introgressing a favorable allele 45

coming from a source of diversity into an elite genetic material. 46

Different GWAS strategies were adopted to address this issue depending on the 47

species. In human, GWAS mostly focused on a specific genetic group, and these 48

group-specific studies were compared later through meta-analyses [23,24]. Some of these 49

meta-analyses revealed highly conserved effects between populations [25, 26] while other 50

put in evidence more differences [27]. In dairy cattle, the first GWAS studies focused on 51

a specific breed [28–30]. More recently, multi-breed GWAS were conducted to refine 52

QTLs locations by taking advantage of the low LD extent observed in such composite 53

populations [31–33]. In maize, the possibility to use seeds from different origins and 54

generations led geneticists to assemble GWAS panel with a broad range of genetic 55

materials [34–36]. These panels often include a limited proportion of admixed 56

individuals that were derived from crosses between individuals from different genetic 57

groups. The genomes of these admixed individuals consist in mosaics of fragments with 58

different ancestries. Admixture events are a common feature in living species and can 59

contribute to the successful colonization of new environments [37,38]. In plants, 60

innovative admixed genetic materials were created to enable high statistical power of 61

QTL detection along with a wide spectrum of genetic diversity studied, such as nested 62

association mapping (NAM) [39] or multi-parent advanced generation inter-cross 63

(MAGIC) [40]. Both NAM and MAGIC populations are of great interest to study the 64

stability of QTL effects in a wide range of genetic backgrounds. However, they generally 65

include a limited number of founders and do not address the stability of QTL allele 66

effects across genetic groups. 67

This study aimed at evaluating the interest of producing admixed individuals, 68

derived from a large set of parents, in order to decipher the genetic architecture of a 69

trait using innovative GWAS models. The objectives were (i) to demonstrate the 70

interest of multi-group analyses to identify new QTLs, (ii) to highlight the interest of 71

applying multi-group GWAS models to identify group-specific allele effects at QTLs and 72

(iii) to show how admixed individuals can help to disentangle the factors causing the 73

heterogeneity of allele effects across groups: local genomic differences or epistatic 74

interactions between QTLs and the genetic background. To our knowledge, no method 75

has been proposed in the literature to address the last objective. This method was 76

applied to a maize inbred population evaluated for flowering traits, including dent, flint 77

and admixed lines. Maize flowering time is an interesting trait to analyze in 78

quantitative genetics studies. It is considered as a major adaptive trait by tailoring 79

vegetative and reproductive growth phases to local environmental conditions. Admixed 80

individuals were also used to investigate the existence of directional epistasis using a 81

test based on the mean of admixed individuals relative to that of their progenitors. 82

Materials and methods 83

Genetic material and genotypic data 84

Genetic material consisted in a panel of 970 maize inbred lines assembled within the 85

”Amaizing” project. It gathered 300 dent lines, 304 flint lines and 366 admixed doubled 86

haploids, further referred to as admixed lines. The dent lines were those included in the 87

”Amaizing Dent” panel [41] and the flint lines were those included in the ”CF-Flint” 88

panel [15]. The dent and flint lines aimed at representing the diversity of their respective 89

heterotic group used in European breeding and included several breeding generations. 90

The admixed lines were derived from 206 hybrids between flint and dent lines, mated 91

according to a sparse factorial design (Fig 1), followed by in situ gynogenesis [42] to 92

produce fixed admixed inbred lines. Each dent or flint line was involved in 0 to 11 93
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hybrids (1.21 in average), each leading to 1 to 4 admixed lines (1.77 in average). In 94

total, 171 dent lines and 172 flint lines were involved as parents of admixed lines. 95

Fig 1. Diagram of admixed lines production from hybrids obtained by mating dent and
flint lines according to a sparse factorial design

All the flint and dent lines were genotyped using the 600K Affymetrix Maize 96

Genotyping Array [43]. Residual heterozygous data was treated as missing and all 97

missing values were imputed independently within each group using Beagle v.3.3.2 and 98

default parameters (Browning and Browning 2009). The admixed lines were genotyped 99

with a 15K chip provided by the private company Limagrain which included a reduced 100

set of SNPs from the 50K Illumina MaizeSNP50 BeadChip [44]. Eight check lines were 101

included in both datasets to standardize the allele coding (0/1) on the common SNPs 102

(around 9,000). The following procedure to impute admixed genotypes up to 600K 103

SNPs is illustrated in S1 Fig. The positions of recombination breakpoints and the 104

parental origin of the alleles for admixed lines were determined with these common 105

SNPs. A smoothing of parental allele origins was performed for the few SNPs indicating 106

discordant information with respect to the chromosome block in which they were 107

located. In this case, we considered the underlying genotypic datapoint as missing. 108

Parental origins of alleles in admixed lines were imputed up to 600K using adjacent SNP 109

information. If a set of SNPs to be imputed was located within a recombination interval, 110

the new position of the breakpoint was positioned at half of that ordered set, according 111

to the physical position of the SNPs along the chromosome. Alleles at SNPs were then 112

imputed based on their origin using parental genotypic data. The MITE associated with 113

the flowering QTL Vgt1 [45, 46] was also genotyped for all the individuals (0: absence, 114

1: presence). There was a total of 482,013 polymorphic SNPs in this dataset, for which 115

we had information for each individual concerning the SNP allele (0/1), its ancestry 116

(dent/flint) and the genetic background (dent/flint/admixed) in which it was observed. 117

The dent genome proportion of the admixed lines ranged from 0.16 to 0.86 with a 118

mean equal to 0.51 (S2 Fig). Possible selection biases were studied along the genome by 119

comparing the observed allele frequencies with the expected allele frequencies given the 120

pedigree. No major pattern was observed, suggesting no or minor selection biases among 121

the admixed lines (S3 Fig). A PCoA was performed on genetic distances computed as 122

Di,j = 1−Ki,j , with Ki,j being the kinship coefficient between lines i and j computed 123

following Eq (2, see below). The flint and dent lines are clearly distinguished on the two 124
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principal components, with a small overlapping region in the center of the graph, while 125

the admixed lines fill the genetic space between the two groups (Fig 2). 126

Fig 2. PCoA on genetic distances with coloration of individuals depending on their
type: dent, flint or admixed lines

LD between pairs of loci was estimated separately in the dent and the flint datasets 127

using two estimators. The first was the standard measure of LD, computed as the 128

square correlation between pairs of loci r2. The second was the estimator r2
K proposed 129

by [47], accounting for relatedness estimated using Eq (2). We only considered SNPs for 130

which at least ten individuals carried the minor allele in both dent and flint datasets. 131

LD extent was compared between groups using both estimators. A sliding window of 132

1Kbp up to 2 Mbp was used to group pairs of loci with similar physical distances. The 133

average LD was computed within each group-specific windows and revealed a higher LD 134

extent in the dent than in the flint genetic group (S4 Fig), which was consistent with 135

previous studies [12–15]. As suggested by [8], the persistence of LD linkage phases 136

across flint and dent genetic groups was evaluated by computing the correlation between 137

the r (and rK) estimated in each group using a sliding window of 1Kbp up to 2 Mbp. 138

We also studied the consistency of marker phases between groups by computing, for 139

each LD estimator, the correlation between their signs in the two groups. LD phases 140

were very consistent over short physical distances but began to diverge dramatically 141

when the loci were distant by more than 100-200 Kbp (S5 Fig). 142

Phenotypic data 143

All the lines were evaluated per se at Saint-Martin-de-Hinx (France) in 2015 and 2016 144

for male flowering (MF) and female flowering (FF), in calendar days after sowing. Each 145

plot consisted in a row of 25 plants. MF and FF were measured as a median value 146

within the whole plot. Each trial was a latinized alpha design where every line was 147
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evaluated two times on average. Field trials were divided into blocks of 36 plots each. 148

To avoid competition between genetic backgrounds, dent, flint and admixed lines were 149

sown in different blocks. Three check individuals were repeated in all blocks (B73, F353 150

and UH007). 151

Variance components were estimated using model:

Yjklrc = µ+ βj + αk +Glk + (G× β)lkj +Xrj + Zcj + Ejklrc

Glk ∼ N
(
0, σ2

Gk

)
independent

(G× β)lkj ∼ N
(

0, σ2
(G×β)jk

)
independent

Ejklrc ∼ N (0, σ2
Ej

) independent,

where Yjklrc is the phenotype, µ is the intercept, βj is the fixed effect of trial j, αk is 152

the fixed effect of genetic background k (dent, flint, admixed, or the different checks: 153

B73, F353 and UH007), Glk is the random genotype effect of line l in genetic 154

background k (not for checks) with σ2
Gk

being the genotypic variance in genetic 155

background k, (G× β)lkj is the random Genotype x Environment (GxE) interaction of 156

line l in genetic background k for trial j, with σ2
(G×β)jk

being the GxE variance in the 157

genetic background k for trial j, Ejklrc is the error with σ2
Ej

being the error variance for 158

trial j, Xrj and Zcj are the row and column random effects in trial j respectively, as 159

defined by the field design. All random effects are independent of each other. The row 160

and column effects were modeled as independent or using an autoregressive model 161

(AR1), as determined based on the AIC criterion (S1 Table). Least squares means, 162

further referred to as phenotypes, were computed over the whole design using the same 163

model, with genotypes as fixed effects. Model parameters were estimated using 164

ASReml-R and restricted maximum likelihood (ReML) [48]. 165

Global assessment of directional epistasis 166

This panel allowed us to test for the existence of directional epistasis, which refers to 167

epistatic interactions that are biased toward high or low genetic values [49]. In the 168

presence of directional epistatic interactions and provided no selection, we can expect 169

the genetic mean of the admixed lines to be different from its expected value, obtained 170

by considering only additive effects (S1 Appendix). The existence of directional 171

epistasis was investigated using a test based on the comparison between the means of 172

the progeny and the parental populations. The following model was applied on the joint 173

dent, flint and admixed dataset: 174

Ykl = µ+ αk +Gkl + Ekl (1)

where Ykl is the phenotype (least squares means) of the line among the N individuals of 175

the sample, µ is the intercept, αk is the genetic background effect with k ∈ {D,F,A} 176

for dent, flint and admixed genetic background respectively. Gkl is the random genetic 177

value of the line where g is the vector of genetic values with g ∼ N (0,Kσ2
G), K is the 178

kinship matrix computed following Eq (2) using allele frequencies estimated on the joint 179

dent, flint and admixed dataset, σ2
G is the genetic variance, Ekl is the residual error of 180

the line where e is the vector of residuals with e ∼ N (0, Iσ2
E), I is the identity matrix 181

and σ2
E is the residual variance. For each trait, the linear combination 182

H0 : 1
2 (αD + αF )− αA = 0 was tested to identify directional epistasis. 183

The kinship between individuals i and j, Kij , was computed following [50]: 184

Kij =

∑M
m=1(Wim − fm)(Wjm − fm)∑M

m=1 fm(1− fm)
(2)
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where Wim is the genotype of individual i at locus m coded 0/1 and fm is the frequency 185

of allele 1 at locus m. 186

GWAS models 187

In this study, three GWAS models were applied to different population samples (Table 188

1). The GWAS strategies were (i) to analyze dent and flint lines separately using a 189

standard GWAS model M1, (ii) to analyze dent and flint lines jointly using a GWAS 190

model M2 accounting for allele ancestry (confounded with the genetic background) and 191

(iii) to analyze dent, flint and admixed lines in a GWAS model M3 accounting for both 192

allele ancestry and the genetic background of the individuals. All models aimed at 193

detecting a SNP effect, defined as a contrast effect between alleles 0 and 1 at a given 194

SNP. 195

Table 1. Population sample to which each GWAS model was applied with the
corresponding number of SNPs conserved for the analysis (at least 10 individuals
carrying the minor allelic state)

Dent Flint Dent + Flint Dent + Flint + Admixed
M1 3 (247,759) 3 (282,278) 7 7
M2 - - 3 (288,093) 7
M3 - - - 3(256,951)

3 : model was applied to the sample
7 : model was not applied to the sample but can theoretically be, provided the addition of a
genetic background effect
- : model cannot be applied to the sample or would simplify into another model

Note that the number of SNP in multi-group GWAS (M2, M3) is higher than the minimum
number of SNPs in single group GWAS (M1 (Dent)). SNPs carrying redundant information
within a single group were indeed reduced to a single SNP for M1 and may no longer carry
redundant information when datasets are pooled (M2, M3)

Standard GWAS model M1 196

The first GWAS model M1 [1] was applied separately to the dent and flint datasets.
For each SNP among the M loci, one has:

Yil = µ+ βmi +Gil + Eil

where βmi is the effect of the SNP allele i at locus m (Table 2). All other terms are 197

identical to those described Eq (1), and the kinship was computed following Eq (2) 198

using allele frequencies estimated for each dataset. The existence of a SNP effect was 199

tested using hypothesis H0 : ∆m = βm1 − βm0 = 0. 200

Multi-group GWAS model M2 201

We applied a multi-group GWAS model M2 jointly to the flint and dent datasets,
specifying the allele ancestry (confounded with the genetic background). For a given
SNP m, one has:

Yijl = µ+ βmij +Gijl + Eijl

where βmij is the effect of the SNP allele i with ancestry j at locus m, as defined in 202

Table 2. All other terms are identical to those described Eq. (1), and the kinship was 203

computed following Eq (2) using allele frequencies estimated on the joint dent and flint 204

dataset. At a given SNP, the following hypotheses were tested: 205
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Table 2. Allelic states observed in each GWAS model, resulting from a combination of SNP alleles,
their ancestry and the genetic background in which they are observed.

SNP Ancestry Genetic background Allelic states
M1 {0, 1} - - {0, 1}
M2 {0, 1} {D,F}a - {0D, 1D, 0F, 1F}
M3 {0, 1} {D,F} {D,A, F} {0DD, 1DD, 0DA, 1DA, 0FA, 1FA, 0FF, 1FF}

0 : SNP reference allele
1 : SNP alternative allele
D : Dent ancestry or genetic background
F : Flint ancestry or genetic background
A : Admixed genetic background
a confounded with the genetic background

� H0 : ∆m
D = βm1D − βm0D = 0 206

� H0 : ∆m
F = βm1F − βm0F = 0 207

� H0 : ∆m
D+F = ∆m

D + ∆m
F = 0 208

� H0 : ∆m
D−F = ∆m

D −∆m
F = 0 209

Hypotheses ∆m
D and ∆m

F test the existence of a dent and a flint SNP effect 210

respectively. Hypothesis ∆m
D+F tests for a general SNP effect while ∆m

D−F tests for a 211

divergent SNP effect between the dent and flint ancestries 212

Multi-group GWAS model M3 213

We applied a multi-group GWAS model M3 jointly to the flint, dent and admixed
datasets, specifying the allele ancestry and the genetic background of the individual.
For a given SNP m, one has:

Yijkl = µ+ βmijk +Gijkl + Eijkl

where βmijk is the effect of the SNP allele i with ancestry j at locus m in genetic 214

background k, as defined in Table 2. All other terms are identical to those described in 215

Eq (1), and the kinship was computed following Eq (2) using allele frequencies 216

estimated on the joint dent, flint and admixed dataset. At a given SNP, 16 hypotheses 217

were tested (Table 3). Hypotheses referred to as ”simple” (∆m
DD, ∆m

DA, ∆m
FA and ∆m

FF ) 218

were tested to identify QTLs with a significant SNP effect for each combination of 219

ancestries and genetic backgrounds. For instance, ∆m
DD tests whether a dent SNP effect 220

(differential effect between alleles 0 and 1 of dent ancestry) exists in the dent genetic 221

background. Hypotheses referred to as ”general” (∆m
FA+FF , ∆m

DD+DA, ∆m
DA+FA, 222

∆m
DD+FF and, ∆m

DD+DA+FA+FF ) were used to identify QTLs with a mean SNP effect 223

over ancestries and genetic backgrounds. For instance, ∆m
FA+FF tests for a general flint 224

SNP effect in the flint and the admixed genetic backgrounds and ∆m
DD+DA+FA+FF 225

tests for a general SNP effect over ancestries and genetic backgrounds. Hypotheses 226

referred to as ”divergent” (∆m
DA−FA, ∆m

DD−DA, ∆m
FA−FF , ∆m

DD−FF , ∆m
DA−FF , 227

∆m
DD−FA, ∆m

(DD+DA)−(FA+FF ), ∆m
(DD+FF )−(DA+FA), ∆m

(DD−DA)−(FF−FA)) were 228

tested to identify QTLs with a contrasted SNP effect between ancestries and/or genetic 229

backgrounds. For instance, ∆m
DD−DA tests for a divergent dent SNP effect between the 230

dent and the admixed genetic backgrounds, which amounts to testing an epistatic 231

interaction between the SNP and the genetic background (see S2 Appendix for details). 232

On a biological standpoint, a QTL with contrasted SNP effects between groups can 233

be caused by (i) a local genomic difference due to a group-specific genetic mutation 234
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Table 3. Linear combination tested with M3 compared to hypotheses tested using
other GWAS models (M1 and M2).

Type ∆m
DD

a ∆m
DA

b ∆m
FA

c ∆m
FF

d M1 M2

∆m
DD simple +1 0 0 0 3 3

∆m
DA simple 0 +1 0 0 - -

∆m
FA simple 0 0 +1 0 - -

∆m
FF simple 0 0 0 +1 3 3

∆m
FA+FF general 0 0 +1 +1 - -

∆m
DD+DA general +1 +1 0 0 - -

∆m
DA+FA general 0 +1 +1 0 - -

∆m
DD+FF general +1 0 0 +1 - 3

∆m
DD+DA+FA+FF general +1 +1 +1 +1 - -

∆m
DA−FA divergent 0 +1 -1 0 - -

∆m
DD−DA divergent +1 -1 0 0 - -

∆m
FA−FF divergent 0 0 +1 -1 - -

∆m
DD−FF divergent +1 0 0 -1 - 3

∆m
(DD+DA)−(FA+FF ) divergent +1 +1 -1 -1 - -

∆m
(DD+FF )−(DA+FA) divergent +1 -1 -1 +1 - -

∆m
(DD−DA)−(FF−FA) divergent +1 -1 +1 -1 - -

a ∆m
DD = βm

1DD − βm
0DD

b ∆m
DA = βm

1DA − βm
0DA

c ∆m
FA = βm

1FA − βm
0FA

d ∆m
FF = βm

1FF − βm
0FF

3 : hypothesis also tested using the corresponding GWAS model
- : hypothesis not tested using the corresponding GWAS model

and/or to group differences in LD or (ii) an interaction with the genetic background. 235

Under the first hypothesis, one expects that the effect of a SNP depends on its ancestry 236

but not on the genetic background (admixed or pure, see Fig 3-a). Under the second 237

hypothesis, we expect a SNP effect, for a given ancestry, to vary depending on the 238

genetic background. One example would be a QTL with a strong SNP effect in a dent 239

genetic background, but none in the flint genetic background, while the SNP effects 240

would be of intermediate size for alleles of both ancestries in the admixed genetic 241

background (see Fig 3-b). Note that other complex configurations are possible, 242

justifying the inclusion of all tests in the analysis. 243

For the three GWAS models, a SNP was discarded if its minor allelic state (Table 2) 244

was carried by less than 10 individuals, or if it carried a redundant information with 245

another SNP. Model parameters were estimated using ReML and the linear 246

combinations of fixed effects were tested using Wald tests, both implemented in the 247

R-package MM4LMM [51]. The false discovery rate (FDR) was controlled by applying 248

the procedure of [52] jointly to the whole set of tests defined by each GWAS strategy, 249

and repeatedly for each trait. For a given hypothesis tested, significant SNPs were 250

clustered into QTLs if they were located within a physical window of 3 Mbp, leading to 251

a LD below 0.05 between markers of different QTLs. 252
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Fig 3. Schematic of allele effects when divergent SNP effects are observed between
groups, depending on the biological hypothesis: (a) local genomic difference between
groups and (b) allele effects interacting with the genetic background. The denomination
of the allelic states on the x-axis include the SNP allele (0/1), its ancestry (D/F) and
the genetic background in which it is observed (D/A/F), as presented in Table 2.

Results 253

Phenotypic analysis and directional epistasis 254

We observed a substantial phenotypic variability within the dent, flint and admixed 255

genetic backgrounds. The variance components estimated in the phenotypic analysis 256

were summarized in S1 Table. Similar trends were observed for both MF and FF. The 257

admixed genotypic variance was lower than the dent and flint genotypic variances, 258

which were themselves comparable. GxE variances were limited and the broad sense 259

heritabilities were high for each genetic background, ranging from 0.88 in the admixed 260

lines to 0.96 in the dent and flint lines for both MF and FF. 261

The presence of admixed lines allowed us to test the existence of directional epistasis 262

which was significant for both MF and FF (Table. 4). The mean of admixed lines 263

estimated using a model accounting for relatedness differed significantly from the one 264

expected without directional epistatic interactions. On average, admixed lines flowered 265

as late as dent lines while the flint lines flowered earlier. 266

Table 4. Test for directional epistasis with group-specific means estimated by the
model (Eq.1) and the p-value (pval) of the directional epistatic deviation

Dent Flint Admixed pval
MF 68.26 66.26 68.44 3.14 10−10 ***
FF 69.84 67.87 70.16 2.05 10−11 ***

*** : pval < 10−3 ; ** : < 10−3 pval < 10−2 ; * : < 10−2 pval < 5 × 10−2

Associations detected and comparison of GWAS strategies 267

For each GWAS model, two levels of FDR were used: 5% and 20% to declare a SNP as 268

significantly associated. The number of significant SNPs detected and the 269

corresponding number of QTLs were summarized in Table 5 for both traits. The 270

location of QTLs detected using a FDR of 20% was represented along the genome in Fig 271
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4 for MF and in S6 Fig for FF. All associations were listed in S2 Table and S3 Table. 272

Note that major QTLs detected by a model (e.g. M1) may be discarded with another 273

model (e.g. M3) because of the filtering on allele frequencies. 274

Table 5. Number of SNPs associated with each trait, depending on the GWAS strategy,
using a FDR of 5% and 20%. The number of corresponding QTLs is also indicated

MF FF
5% 20% 5% 20%

SNP QTL SNP QTL SNP QTL SNP QTL
M1

a 7 2 56 24 8 3 38 14
∆m (Dent) 4 1 35 12 4 1 22 6
∆m (Flint) 3 1 21 13 4 2 16 8

M2
a 4 1 57 22 4 1 7 3

∆m
D 4 1 37 9 4 1 4 1

∆m
F - - 3 2 - - 2 1

∆m
D+F 1 1 11 7 2 1 2 1

∆m
D−F - - 18 9 - - 1 1

M3
a 7 3 116 41 6 2 11 6

∆m
DD 4 1 32 8 4 1 4 1

∆m
DA - - 1 1 - - - -

∆m
FA 2 1 10 2 - - 1 1

∆m
FF - - 1 1 - - - -

∆m
FA+FF - - 4 4 - - - -

∆m
DA+DD - - 10 4 - - - -

∆m
DA+FA - - 11 5 - - - -

∆m
DD+FF 2 2 34 12 2 2 6 2

∆m
DD+DA+FA+FF - - 19 6 1 1 2 1

∆m
DA−FA - - 2 2 - - - -

∆m
DD−DA

b - - 4 4 - - - -
∆m
FA−FF

b - - 1 1 - - - -
∆m
DD−FF - - 15 5 - - - -

∆m
(DD+DA)−(FA+FF ) - - 5 3 - - - -

∆m
(DD+FF )−(DA+FA)

b - - 5 4 - - 2 2

∆m
(DD−DA)−(FF−FA)

b - - 2 2 - - - -

a number of SNPs detected over the set of tests (a given SNP can be detected using different
tests)
b hypothesis testing an interaction between the QTL and the genetic background

First, a standard GWAS model M1 was applied separately to the dent and the flint 275

datasets. Based on a 20% FDR, 35 SNPs were associated with MF in the dent dataset 276

while 21 SNPs were associated in the flint dataset. These SNPs can be clustered into 12 277

QTLs in the dent dataset and into 13 QTLs in the flint dataset. Interestingly, none of 278

these SNPs were detected in both datasets and they only pointed to one common QTL 279

between datasets, which was located in the vicinity of Vgt2 on chromosome 8 [14]. 280

Secondly, dent and flint datasets were analyzed jointly using model M2, which takes 281

into account the dent or flint ancestry of the allele. Note that the allele ancestry is 282

confounded with the genetic background in this model. Based on a 20% FDR, 57 SNPs 283

were associated with MF and were significant for ∆m
D (37 SNPs), ∆m

F (3 SNPs), ∆m
D+F 284

(11 SNPs) and ∆m
D−F (18 SNPs). Note that some SNPs displayed more than one 285

significant test, which explains why the total number of SNPs over the four tests did not 286

sum to 57. These SNPs can be clustered into 22 QTLs that were significant for ∆m
D (9 287
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Fig 4. Position of QTLs detected by each GWAS strategy for MF using a FDR of 20%.
The size of the grey dots is proportional to the -log10(pval) of the test at the most
significant SNP of the region. Red vertical lines and names below correspond to QTL
discussed in section ”Highlighted QTLs”. Note that major QTLs detected by a model
may be discarded with another model because of filtering on allele frequencies

QTLs), ∆m
F (2 QTLs), ∆m

D+F (7 QTLs) ∆m
D−F (9 QTLs). Note that some QTLs were 288

already detected using M1 such as the QTL located in the vicinity of Vgt3 on 289

chromosome 3 [53,54] detected in the dent dataset. Other QTLs were specific to M1 290

such as the QTL located on chromosome 2 detected in the flint dataset, or specific to 291

M2 such as the QTL located chromosome 5 detected using ∆m
D−F . Based on a 20% 292

FDR, a similar number of QTLs was detected between M1 and M2 for MF, while more 293

QTLs were detected using M1 than M2 for FF. 294

Finally, the dent, flint and admixed lines were analyzed jointly using model M3 295

which distinguished the allele ancestry and the genetic background. The existence of a 296

dent SNP effect was tested in the dent (∆m
DD) and in the admixed genetic backgrounds 297

(∆m
DA), and similarly for the flint SNP effect (∆m

FF and ∆m
FA). Several hypotheses on 298

general and divergent SNP effects were also tested between ancestries and genetic 299

backgrounds (Table 3). Based on a 20% FDR, 116 SNPs were associated with MF and 300

were significant for ∆m
DD (32 SNPs), ∆m

DD+FF (34 SNPs), ∆m
DD−DA (4 SNPs), 301
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∆m
(DD+DA)−(FA+FF ) (5 SNPs) and others. These SNPs can be clustered into 41 QTLs 302

that were significant for ∆m
DD (8 QTLs), ∆m

DD+FF (12 QTLs), ∆m
DD−DA (4 QTLs), 303

∆m
(DD+DA)−(FA+FF ) (3 QTLs) and others. Note that some of the QTLs were already 304

detected using M1 and M2 such as the QTL located in the vicinity of Vgt3 on 305

chromosome 3, while several QTLs were specific to M3 such as the two QTLs detected 306

in chromosome 2 using ∆m
FA. Several QTLs were detected as showing a divergent SNP 307

effect, including hypotheses testing an interaction with the genetic background. Based 308

on 5% and 20% FDRs, the number of QTLs detected with M3 was the highest for MF 309

and intermediate between M1 and M2 for FF. 310

Highlighted QTLs 311

Among the 41 QTLs detected for MF with M3, six QTLs were selected and studied in 312

further details. The five first QTLs had (i) at least one significant test among M3 313

hypotheses based on a FDR of 20%, and (ii) a large frequency for each allele with a 314

minimum of 30 lines carrying the minor allelic state (QTL7.2 ). Among them, one SNP 315

was located in the vicinity of Vgt2 [14] and another in the vicinity of Vgt3 [53, 54]. In 316

addition to these five QTLs, we also considered a MITE polymorphism known to be 317

associated with Vgt1, a flowering QTL detected in several studies [21,45,46]. For all 318

QTLs, information concerning their physical position along the genome, the frequency 319

of each allelic state and their -log10(pval) at each test was summarized in Table 6. The 320

distribution of the phenotypes is illustrated for each allele after adjusting the variation 321

due to the polygenic background in Fig. 5, and their location along the genome is 322

indicated by red vertical lines in Fig. 4. Other QTLs had interesting profiles, showing 323

either group-specific allele effects conserved between ancestries or interactions with the 324

genetic background, and are presented in S7 Fig and S4 Table. 325

The SNP matching Vgt2 region on chromosome 8 was detected as associated with 326

MF (5% FDR) using ∆m
DD+FF (-log10(pval)=7.15) in M3. This QTL showed a 327

conserved effect across ancestries and genetic backgrounds (Fig. 5-a). This observation 328

was supported by a high -log10(pval) for tests related to a general SNP effect: ∆m
D+F 329

(5.25), ∆m
DD+DA (5.35), ∆m

DA+FA (3.20), ∆m
DD+FF (7.15) and ∆m

DD+DA+FA+FF (6.46), 330

and a low -log10(pval) for tests related to divergent SNP effects (all below 1). 331

The SNP matching Vgt3 region on chromosome 3 was detected as associated with 332

MF (5% FDR) using ∆m
DD (10.53) in M3. This QTL showed a large effect in the dent 333

genetic background, a medium effect in the admixed genetic background regardless of 334

the allele ancestry and a small effect in the flint genetic background (Fig. 5-b). This 335

observation was supported by a high -log10(pval) for the tests related to the dent SNP 336

effect in the dent genetic background: ∆m (Dent, 10.99), ∆m
D (9.65) and ∆m

DD (10.53), 337

and a low -log10(pval) for the tests related to the flint SNP effect in a flint genetic 338

background. Like for Vgt2, a high -log10(pval) was also detected for tests related to a 339

general SNP effect: ∆m
D+F (7.47), ∆m

DD+DA (6.01), ∆m
DD+FF (7.86) and 340

∆m
DD+DA+FA+FF (6.59), but a high -log10(pval) was detected for the test related to a 341

divergent SNP effect between the dent and the flint genetic backgrounds: ∆m
DD−FF 342

(3.86). There was also a high -log10(pval) for a divergent dent SNP effect between 343

different genetic backgrounds: ∆m
DD−DA (3.03). All these results support the existence 344

of a QTL effect that tends to be higher when the dent genome proportion increases 345

within individuals. It suggests that Vgt3 interacts with the genetic background for MF. 346

The SNP matching a region further referred to as QTL4.1 on chromosome 4 was 347

detected as associated with MF (20% FDR) using ∆m
DD−FF (6.93) in M3. This QTL 348

showed a contrasted effect between alleles of different ancestries with an apparent 349

inversion of effects (Fig. 5-c). This observation was supported by a high -log10(pval) for 350

the tests related to a divergent SNP effect between ancestries: ∆m
D−F (5.76), ∆m

DD−FF 351
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Fig 5. Boxplots of phenotypes adjusted for polygenic background variation using
relatedness (MF K corrected) for the different alleles of the six highlighted QTLs: (a)
Vgt2, (b) Vgt3, (c) QTL4.1, (d) QTL2.1, (e) QTL7.2 and (f) Vgt1 using M3. The
denomination of the allelic states on the x-axis includes the SNP allele (0/1), its
ancestry (D/F) and the genetic background in which it was observed (D/A/F), as
presented in Table 2

(6.93) and ∆m
(DD+DA)−(FA+FF ) (5.39). Conversely a low -log10(pval) was detected for 352

tests ∆m
DD−DA and ∆m

FA−FF , which would have otherwise suggested an interaction 353

with the genetic background. These results support the existence of a local genomic 354

difference at QTL4.1 between the dent and the flint genetic groups for MF, but no 355

interaction with the genetic background. 356

The SNP matching a region further referred to as QTL2.1 on chromosome 2 was 357

detected as associated with MF (5% FDR) using ∆m
FA (8.24) in M3. This QTL showed 358

a flint effect in the admixed genetic background (Fig. 5-d), which was supported by a 359

high -log10(pval) for the test ∆m
FA (8.24). Although there was a high -log10(pval) for a 360

general flint SNP effect across genetic backgrounds: ∆m
FA+FF (5.91), a high -log10(pval) 361

was observed for a divergent SNP effect between those same alleles: ∆m
FA−FF (3.70). A 362

high -log10(pval) was also observed for a divergent SNP effect between different 363

ancestries in the admixed genetic background: ∆m
DA−FA (4.84). All these results 364

support the existence of a QTL effect existing only for alleles of flint ancestry in the 365
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Table 6. Information regarding the six highlighted QTLs

Vgt2 Vgt3 QTL4.1 QTL2.1 QTL7.2 Vgt1

Trait MF MF MF MF MF MF
SNP AX-91100620 AX-91583310 AX-91218190 AX-90601996 AX-91744673 MITE
Chromosome 8 3 4 2 7 8
Position (Mbp) 123.50 158.97 31.10 7.04 173.73 131.99

Allele frequency
0DD 230 97 115 75 243 151
1DD 70 203 185 225 57 149
0DA 119 48 53 50 161 70
1DA 58 141 127 134 30 108
0FA 81 92 107 74 113 17
1FA 108 85 79 108 62 171
0FF 162 158 161 102 210 49
1FF 142 146 143 202 94 255

-log10(pval)
M1

∆m (Dent) 4.26 * 10.99 *** 4.96 * 0.05 1.00 3.34 *
∆m (Flint) 2.74 . 0.88 0.31 1.24 1.20 0.86

M2

∆m
D 4.16 * 9.65 *** 4.01 * 0.03 0.96 3.37 *

∆m
F 1.96 1.10 2.16 . 1.29 0.77 0.80

∆m
D+F 5.25 ** 7.47 *** 0.56 0.69 0.10 0.42

∆m
D−F 0.57 3.17 * 5.76 ** 0.82 1.47 3.04 *

M3

∆m
DD 5.21 ** 10.53 *** 4.42 * 0.00 1.79 4.62 *

∆m
DA 2.95 . 1.38 1.47 0.31 2.64 . 2.96 .

∆m
FA 1.09 2.12 . 0.97 8.24 *** 0.15 0.15

∆m
FF 2.85 . 0.92 2.34 . 1.23 1.51 0.41

∆m
FA+FF 2.38 . 2.00 . 2.00 . 5.91 ** 0.49 0.33

∆m
DD+DA 5.35 ** 6.01 ** 3.44 * 0.19 0.32 4.96 *

∆m
DA+FA 3.20 * 2.93 . 0.23 3.09 * 1.47 0.85

∆m
DD+FF 7.15 *** 7.86 *** 0.42 0.70 0.14 1.07

∆m
DD+DA+FA+FF 6.46 ** 6.59 ** 0.39 2.45 . 0.63 1.25

∆m
DA−FA 0.69 0.11 2.11 . 4.84 * 2.00 . 1.52

∆m
DD−DA

b 0.35 3.03 * 0.59 0.29 5.58 ** 0.07

∆m
FA−FF

b 0.60 0.69 0.48 3.70 * 1.51 0.10
∆m

DD−FF 0.58 3.86 * 6.93 ** 0.73 2.93 . 2.93 .
∆m

(DD+DA)−(FA+FF ) 0.82 1.25 5.39 ** 3.51 * 0.04 2.91 .

∆m
(DD+FF )−(DA+FA)

b 0.73 0.94 0.06 1.35 1.66 0.04

∆m
(DD−DA)−(FF−FA)

b 0.08 2.96 . 0.86 2.60 . 6.21 ** 0.13

*** : -log10(pval) > 7 ; ** : 7 > -log10(pval) > 5 ; * : 5 > -log10(pval) > 3 ; . : 3 > -log10(pval) > 2
b hypothesis testing an interaction between the QTL and the genetic background

admixed genetic background. It suggests that QTL2.1 is specific of flint ancestry and 366

interacts with the genetic background for MF. 367

The SNP matching a region further referred to as QTL7.2 on chromsome 7 was 368

detected as associated with MF (20% FDR) using ∆m
(DD−DA)−(FF−FA) (6.21) in M3. 369

This QTL showed contrasted dent effects between the dent and the admixed genetic 370

backgrounds (Fig. 5-e). This observation was supported by a high -log10(pval) for the 371

test related to a divergent dent SNP effect between genetic backgrounds: ∆m
DD−DA 372

(5.58). A high -log10(pval) was also observed for the hypothesis testing the equality 373

between the divergent dent SNP effect and the divergent flint SNP effect: 374

∆m
(DD−DA)−(FF−FA) (6.21). All these results support the existence of a QTL with 375
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opposite effects between the dent and the admixed genetic backgrounds. It suggests 376

that QTL7.2 interacts with the genetic background for MF. 377

The MITE known to be associated with Vgt1 was never detected for MF using a 378

FDR of 5% or 20%. However, it showed a dent effect that was conserved between the 379

dent and the admixed genetic background, and no flint effect (Fig. 5-f). This 380

observation is supported by a high -log10(pval) for tests related to the dent SNP effect: 381

∆m (Dent) (3.34), ∆m
D (3.37), ∆m

DD (4.62) and ∆m
DD+DA (4.96), and a low -log10(pval) 382

for tests related to flint SNP effects. These results support the existence of a local 383

genomic difference at Vgt1 between flint and dent genetic groups but no interaction 384

with the genetic background for MF. 385

Discussion 386

The stratification of the population sample into distinct genetic groups is a common 387

feature in GWAS studies. Such structure challenges the methods to detect QTLs 388

because (i) spurious associations may be detected if the genetic structure is not 389

accounted for by the statistical model, (ii) QTLs whose polymorphism is correlated with 390

the genetic structure generally have a low probability of being detected when 391

structure/relatedness is accounted for in the model, and (iii) group differences in LD, 392

group-specific genetic mutations and/or epistatic interactions with the genetic 393

background may prevent the detection of SNPs when testing only their average effect. 394

Accounting for genetic groups in GWAS 395

A simple way to deal with genetic groups is to analyze them separately. In our study, a 396

standard GWAS model M1 was applied separately within the dent and the flint 397

datasets. High heritabilities were estimated for each genetic group in the phenotypic 398

analysis, highlighting the suitability of these datasets to detect QTLs. Among the QTLs 399

detected for MF, only one was detected in both dent and flint datasets, and not at the 400

same SNPs, while none were detected in common for FF. One may question whether 401

observing such differences between datasets indicated group specific allele effects, or 402

simply group differences in terms of statistical power. This question often arises when 403

GWAS is applied separately to genetic groups, as in maize [15,55] or dairy 404

cattle [56,57], and is very difficult to answer except for obvious configurations such as 405

associations at SNPs segregating only in one group. 406

Another way to handle genetic groups is to analyze them jointly. One possibility is 407

to apply model M1 while specifying genetic structure as a global fixed effect, in order 408

to prevent the detection of spurious associations. In dairy cattle, this strategy generally 409

improved the precision concerning QTL locations by taking advantage of the low LD 410

extent observed in multi-group datasets. However, while [33] and [32] observed a gain in 411

statistical power due to a larger population size, [31] detected less QTLs by combining 412

breeds compared to separate analyses. They attributed this finding to the limited 413

amount of QTLs segregating within both Holstein and Jersey breeds, but also reported 414

that QTLs detected in both breeds showed only small to medium correlations between 415

within-breed estimates of SNP effects (e.g. 0.082 for milk yield). Obviously, applying 416

M1 jointly to genetic groups does not address directly the problem of whether QTL 417

effects are conserved or not between genetic groups. 418

A model specifying group specific allele effects was referred to as M2 in this study. 419

As with M1, the existence of a dent (∆m
D) and a flint (∆m

F ) SNP effects can be tested, 420

but M2 also allows us to test the existence of a general (∆m
D+F ) and a divergent 421

(∆m
D−F ) SNP effects between flint and dent ancestries. Note that testing ∆m

D+F is 422

similar, although not strictly equivalent, to testing a SNP effect by applying M1 to a 423
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multi-group dataset. Using the hypotheses specifically tested in M2 (∆m
D+F and 424

∆m
D−F ), it was possible to detect new QTLs that were not detected with M1. In 425

particular, QTLs were detected as having a divergent SNP effect between the dent and 426

flint genetic groups, proving the existence of group-specific QTL effects in this dataset. 427

Several QTLs were detected in common with M1 but each strategy allowed the 428

detection of specific QTLs, demonstrating the complementarity between the models. 429

For equivalent tests in M1 and M2 (e.g. ∆m (Dent) in M1 and ∆m
D in M2), the lower 430

number of associations detected with M2 can mostly be attributed to a more 431

conservative filtering on allele frequencies. In conclusion, M2 was efficient to identify 432

QTLs with either conserved or specific allele effects between ancestries, but observing 433

group-specific allele effects provided little insight regarding the cause of this specificity. 434

Admixed individuals can help to tackle that issue. 435

Benefits from admixed individuals 436

Admixed individuals were generated for this study by mating pure individuals of each 437

group according to a sparse factorial design. Integrating these admixed individuals in 438

GWAS can be done by simply analyzing the joint multi-group dataset using M1 or M2, 439

which may lead to a gain in statistical power, due to an increase in population size. 440

More interestingly, admixed individuals can be used to disentangle the factors causing 441

the heterogeneity of allele effects across groups. 442

We developed model M3 to distinguish the allele ancestry (dent/flint) and the 443

genetic background (dent/flint/admixed). 41 QTLs were detected for MF (20% FDR). 444

While many of these QTLs were previously detected using M1 and M2, the new 445

hypotheses tested allowed us to discover new interesting regions. These new QTLs 446

resulted from a gain in statistical power by (i) testing an overall SNP effect for SNP 447

with conserved effects accross ancestries and/or genetic backgrounds, or by (ii) testing 448

hypotheses for complex configurations between allele effects. The new hypotheses tested 449

with M2 and M3 did not lead to an increase in false positive rate, based on the 450

observation of the QQ-plots of the test p-values (results not shown). 451

Note that the idea of exploiting admixed individuals has been proposed in the 452

creation of NAM [39] and MAGIC [40] populations. Compared to our approach, such 453

experimental populations include a limited number of founders, generally selected in 454

different genetic groups. This is beneficial to increase power of detection for alleles 455

which were rare in the initial genetic group(s). However these populations cannot 456

address the question of the epistatic interaction with the genetic background of the 457

original groups, which is possible in our study thanks to the use of numerous parents. 458

Both our approach and NAM and MAGIC designs are therefore expected to have 459

complementary properties. 460

Heterogeneity of maize flowering QTL allele effects 461

From a global perspective, a high number of QTLs have been detected in previous maize 462

studies [15,21,36,58,59]. When evaluating the American and European NAMs, [21] 463

and [60] showed that flowering time is a trait controlled by a large number of QTLs, 464

many of which display variable effects across individual recombinant populations. Our 465

study highlighted consistently a high number of QTLs and confirmed a large variation in 466

effects. It provides further elements on the origin of this variation, by identifying QTLs 467

affected by local genomic differences, epistasis with the genetic background, or both. 468

When doing GWAS in a multi-group population, geneticists generally assume that 469

QTL effects are conserved between groups. Such QTLs were detected in our study with 470

the example of the SNP associated with MF in the vicinity of Vgt2 [14] and its 471

candidate gene: the flowering activator ZCN8 [61–63] on chromosome 8. At this SNP, 472
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all hypotheses that tested a general SNP effect had a high -log10(pval), and conversely 473

for hypotheses testing a divergent SNP effect. When simultaneously interpreting all 474

tests, Vgt2 appeared to have an effect that is conserved between genetic groups. Such a 475

QTL can easily be detected in a multi-group population sample using a standard 476

GWAS model [1]. However many QTLs show more complex patterns. 477

When group-specific allele effects are only due to group differences in LD or 478

group-specific mutations at the QTL, the difference in allele effects should be conserved 479

between the pure and the admixed genetic backgrounds. A first QTL matching this 480

situation (QTL4.1 ) was detected by a SNP located on chromosome 4. High -log10(pval) 481

were observed for the test to a divergent SNP effect between ancestries 482

(∆m
(DD+DA)−(FA+FF )), suggesting a local genomic difference. To validate this 483

hypothesis, one could produce near isogenic lines with the two alleles from both 484

ancestries introgressed in a dent and a flint genetic backgrounds. A phenotypic 485

evaluation of these individuals would give a definitive proof of a local genomic difference. 486

Nevertheless, it remains difficult to disentangle the effect of LD from that of a genetic 487

mutation without complementary analysis. LD was shown to be different between 488

groups, with a higher LD extent in the dent group (S4 Fig), while LD phases appeared 489

well-conserved at short distances (S5 Fig). However, a strong overall conservation of LD 490

phases at short distances does not exclude a specific configuration for a given SNP-QTL 491

pair. The position of QTL4.1 is close (< 700 Kbp) to GRMZM2G126253, a candidate 492

gene for maize flowering time proposed by [59]. This gene codes for a cullin 3B protein 493

involved in ubiquitination that was shown to be essential to plant development in 494

Arabidopsis [64]. 495

Another example is the MITE that we selected based on the a priori knowledge that 496

it is associated with Vgt1 [21, 45,46] and its candidate gene ZmRap2.7. A high 497

-log10(pval) was observed for a dent SNP effect (∆m
DD and ∆m

DD+DA) but not for a flint 498

SNP effect. Note that another SNP (AX-91103145) was detected close to the MITE 499

(548 Kbp further), based on 20% a FDR, for ∆m
(DD+DA)−(FA+FF ) (see QTL8.4 in S7 500

Fig-a and S4 Table). This SNP also showed evidences for a contrasted QTL effect 501

between the dent and flint groups due to a local genomic difference. However these two 502

loci were in very low LD with each other (below 0.05). We can reasonably suggest that 503

the MITE and the SNP both capture a partial but different genetic information of the 504

causal genetic variant at Vgt1. [46] already showed the existence of other genetic 505

variants being more associated with maize flowering than the MITE in the vicinity of 506

Vgt1, such as CGindel587. 507

Group-specific allele effects may also be due to an interaction with the genetic 508

background. A first QTL matching this profile was detected by a SNP in the vicinity of 509

Vgt3 on chromosome 3 [53,54] and its candidate gene ZmMADS69 [65]. This QTL 510

showed an effect varying according to the genetic background: large in the dent, 511

intermediate in the admixed and small in the flint. A high -log10(pval) was observed for 512

tests that supported this hypothesis: a dent SNP effect in the dent genetic background 513

(∆m
DD) and a divergent dent SNP effect between genetic backgrounds (∆m

DD−DA). If 514

this interaction with the background involves numerous loci, introgressing alleles from a 515

dent to a flint genetic background may lead to disappointing results, as the effect would 516

probably vanish with repeated back-cross generations. If interactions mostly involve a 517

single locus, the effect at Vgt3 effect is conditioned by the allele at the other locus, so 518

that a simultaneous introgression may be necessary to reach the desired effect. Using 519

near isogenic lines that cumulated an early mutation at Vgt1 [66] and the early allele at 520

Vgt3, the effect of Vgt3 was shown to vanish in presence of the early allele of Vgt1 (A. 521

Charcosset pers. comm.), which supports the hypothesis of Vgt3 interacting with the 522

genetic background. Recently, [65] demonstrated the action of ZmMADS69, the 523

candidate gene of Vgt3, as being an activator of the regulatory module ZmRap2.7 - 524
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ZCN8, which are the candidate genes of Vgt1 and Vgt2, respectively. The existence of 525

such interactions is consistent with flowering time being controlled by a network of 526

interacting loci, as now well established in model species arabidopis [67]. 527

Other examples of QTLs interacting with the genetic background were identified. 528

Two of them featured a similar profile in the sense that they mainly exhibited a QTL 529

effect in the admixed genetic background. One was located on chromosome 2 (QTL2.1 ) 530

and showed a flint effect in the admixed genetic background, while the other QTL was 531

located on chromosome 7 (QTL7.2 ) and showed an opposite dent effect between the 532

dent and the admixed genetic backgrounds. Such QTLs are interesting as they are 533

mainly revealed when creating admixed genetic material. They also suggest complex 534

epistatic interactions between QTLs for these traits. The position of QTL2.1 is close (< 535

1.4 Mbp) to ereb197, a candidate gene for maize flowering time proposed by [59]. This 536

gene codes for an AP2-EREBP transcription factor: a family of transcription factors 537

known to play a role in plant development and response to environmental stress [68]. 538

The position of QTL7.2 is close (< 100 Kbp) to dof47, a candidate gene for maize 539

flowering time proposed by [59]. This gene codes for a C2C2-Dof transcription factor: a 540

family of transcription factors known to play major roles in plant growth and 541

development [69]. 542

The existence of epistatic interactions was also evaluated globally by a test that 543

aimed at detecting directional epistasis [49]. This test was specifically developed to 544

benefit from our admixed genetic material and revealed important directional epistasis 545

for both flowering traits with admixed lines flowering closer to the dent than the flint 546

group. Such epistasis may imply that (i) the effects of early alleles from flint origin tend 547

to decrease in presence of alleles that are more frequent in dent than in flint group 548

and/or (ii) the effect of late alleles from dent origin tends to be promoted by alleles that 549

are more frequent in flint than in dent group. Alternatively, this epistasis can be 550

interpreted as late QTL alleles (common in dent lines but rare in flint lines) interacting 551

in a duplicate way [70], i.e. the presence of a late allele at one QTL is sufficient to 552

confer a late phenotype. This hypothesis is equivalent to early QTL alleles (common in 553

flint lines but rare in dent lines) interacting in a complementary way [70], i.e. early 554

alleles are needed at both loci to confer an early phenotype. We also tested global 555

epistasis that is not directional by decomposing the genetic variance into an additive 556

and an epistatic component, as suggested by [71]. This confirmed the existence of 557

epistatic interactions for FF and MF (S5 Table). In conclusion, the assessment of global 558

epistasis supported the possibility of QTLs interacting with the genetic background, 559

resulting from epistatic interactions with loci that have differentiated allele frequencies 560

between groups. It would be interesting to test the existence of epistatic interactions 561

between pairs of loci. However, a filtering on crossed allele frequencies between pairs of 562

loci would lead to discard most SNPs from the analysis. Other possibilities would be to 563

apply GWAS procedures that are based on testing the epistatic variance of each SNP 564

against the polygenic background [72–74]. 565

Conclusion 566

In this study, we proposed an innovative multi-group GWAS method which accounts 567

and tests for the heterogeneity of QTL allele effects between groups. The addition of 568

admixed individuals to the dataset was useful to disentangle the factors causing the 569

heterogeneity of allele effects, being either a local genomic differences or epistatic 570

interactions with the genetic background. Only homozygous inbred lines were 571

considered in this study, but the method may be easily generalized to heterozygous 572

individuals. Recently many studies focused on the problem of genomic prediction across 573

genetic groups [41, 75–78]. In such scenarios, the stability of QTL effects across genetic 574

June 13, 2019 19/28

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/669721doi: bioRxiv preprint first posted online Jun. 12, 2019; 

http://dx.doi.org/10.1101/669721
http://creativecommons.org/licenses/by/4.0/


backgrounds is an important factor impacting the prediction accuracy. It is also an 575

important factor of the relevancy of any marker based diagnostic in complex/structured 576

populations. Our approach opens new perspectives to investigate this stability in a wide 577

range of species. 578

Supporting information 579

S1 Fig. Imputation diagram of admixed lines. Diagram illustrating the 580

procedure applied to impute admixed DH lines from 15K to 600K SNPs using the 581

parental origin of alleles. 582

S2 Fig. Histogram of dent genome proportion among admixed lines. 583

S3 Fig. Genome-wide selection biases among admixed lines. Absolute 584

difference between observed allele frequency of the reference allele fo estimated on the 585

admixed lines and their expected value fe along each chromosome (|fo − fe|). The 586

expected allele frequencies were computed as the mean of flint and dent allele 587

frequencies estimated on the parental lines by taking into account the contribution of 588

each parent. A cubic smoothing spline was adjusted using the R function 589

”smooth.spline”, and plotted in red. 590

S4 Fig. LD extent. LD extent estimated, with a sliding window of physical 591

distances between two pairs of loci, in dent and flint genetic groups using the average of 592

(a) the standard r2 or (b) the r2
K accounting for relatedness between individuals. A 593

cubic smooth spline was adjusted for each group, using the R function ”smooth.spline”. 594

S5 Fig. Conservation of LD phases. Conservation of LD phases estimated, with 595

a sliding window of physical distances between pairs of loci, using the correlation (a) 596

between the r of dent and flint groups (or the rK accounting for relatedness between 597

individuals), and (b) between the signs of r in the dent and flint groups (or the signs of 598

the rK ). A cubic smooth spline was adjusted for method, using the R function 599

”smooth.spline”. 600

S6 Fig. Position of QTLs detected for FF. Position of QTLs detected for FF 601

with a FDR of 20% using (b) M1 , (b) M2 and (c) M3 . The size of the grey dots is 602

proportional to the -log10(pval) of the test at the most significant SNP of the region. 603

S7 Fig. Boxplots of phenotypes adjusted for polygenic background 604

variation using relatedness (MF K corrected) for the different alleles of the six 605

other highlighted QTLs: (a) QTL8.4, (b) QTL10.1, (c) QTL3.5, (d) QTL6.3, (e) 606

QTL8.6 and (f) QTL2.2 using M3 . The denomination of the allelic states on the 607

x-axis include the SNP allele (0/1), its ancestry (D/F) and the genetic background in 608

which it is observed (D/A/F), as presented in Table 2. 609

S1 Table. Parameters estimated in the phenotypic analysis. The lines 610

”Row-Column” refer to the modeling of row and columns as defined by the experimental 611

design. AR1 refers to the autoregressive model AR1, while IID refers to the modeling of 612

row and column as being independent and identically distributed among rows and 613

among columns for a given trial. For more information, see the ASReml-R reference 614

manual by [48]. The mean of each trial j (with j ∈ {2015, 2016}) was computed 615

following: µj = µ+ βj +
∑3
k=1

Nk

N αk where Nk is the number of individuals (genotypes) 616
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in genetic background k (with k ∈ {D,A, F}) and N is the total number of individuals. 617

The mean of each genetic background was computed following: 618

µk = µ+ αk + 1
2

∑2
j=1 βj . The genetic variance σ2

Gk
of each genetic background k and 619

the GxE variance of each genetic background k in each trial j were also reported.The 620

heritabilities of each genetic background k were computed as: 621

h2
k = σ2

Gk

(
σ2
Gk

+ 1
4

∑2
j=1 σ

2
(G×β)jk

+ 1
4

∑2
j=1

1
r̄j
σ2
Ej

)−1

where r̄j is the mean number of 622

genotype replicates in trial j 623

S2 Table. Information regarding significant SNPs for MF. Information 624

regarding significant SNPs for MF using all GWAS strategies: the name of the SNP, the 625

chromosome on which it is located, its position in bp along the chromosome, the 626

frequency of the allelic state observed in the dataset in which it was tested, the GWAS 627

model applied, the hypothesis tested, the -log10(pval) of the test and the FDR for which 628

it was declared significant. 629

S3 Table. Information regarding significant SNPs for FF. Information 630

regarding significant SNPs for FF using all GWAS strategies: the name of the SNP, the 631

chromosome on which it is located, its position in bp along the chromosome, the 632

frequency of the allelic state observed in the dataset in which it was tested, the GWAS 633

model applied, the hypothesis tested, the -log10(pval) of the test and the FDR for which 634

it was declared significant. 635

S4 Table. Information regarding the six other highlighted QTLs: QTL8.4, 636

QTL10.1, QTL3.5, QTL6.3, QTL8.6 and QTL2.2. 637

S5 Table. Additive, epistatic and residual variance components for each 638

trait with the p-value (pval) of the epistatic component using a 639

likelihood-ratio LR test. The existence of epistasis can be investigated using a test 640

based on variance components. The epistatic variance component between pairs of loci 641

was estimated on the joint dent, flint and admixed dataset using the model: 642

Yl = µ+Gl + (G×G)l + El where (G×G)l is the global epistatic deviation of line l, 643

all others terms being identical to those described in M1 (Eq. 1). Noting 644

gTe = ((G×G)1, .., (G×G)N ), one assumes ge ∼ N (0,K ◦Kσ2
(G×G)) where K ◦K is 645

the Hadamard product of the kinship matrix (Eq. 2) with itself and σ2
(G×G) is the 646

epistatic genetic variance between pairs of loci. This model can be seen as a simplified 647

version of the one proposed by [71], as purely homozygous lines were used. The epistatic 648

variance component was tested using a LR test between this model and the same model 649

without the term (G×G)l. 650

S1 Appendix. Effect of directional epistasis on the mean of an admixed 651

progeny. 652

S2 Appendix. Interpretation of the test ∆m
DD−DA. This appendix show that 653

∆m
DD−DA tests for an epistatic interaction between the SNP and the genetic background 654
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