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Abstract This paper presents theoretical advances in the application of the Stochastic Partial Differential

Equation (SPDE) approach in geostatistics. We show a general approach to construct stationary models

related to a wide class of SPDEs, with applications to spatio-temporal models having non-trivial properties.

Within the framework of Generalized Random Fields, a criterion for existence and uniqueness of stationary

solutions for a wide class of linear SPDEs is proposed and proven. Their covariance are then obtained

through their associated spectral measure. We also present a result that relates the covariance in the case of

a White Noise source term with that of a generic case through convolution. Using these results, we obtain

a variety of SPDE-based stationary random fields. In particular, well-known results regarding the Matérn

Model and models with Markovian behavior are recovered. A new relationship between the Stein model

and a particular SPDE is obtained. New spatio-temporal models obtained from evolution SPDEs of arbitrary

temporal derivative order are then obtained, for which properties of separability and symmetry can easily be

controlled. Models with a fractional evolution in time are introduced and described, and we thereby obtain a

large class of spatio-temporal models which separate regularity over space and time without separability or

symmetry conditions. We also obtain results concerning stationary solutions for physically inspired models,

such as solutions for the heat equation, the advection-diffusion equation, some Langevin’s equations and the

wave equation.

Keywords SPDE Approach, Matérn model, general random fields, spectral measure, symbol function,

evolution equations, space-time geostatistics.
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1 Introduction

Finding new statistical models for analyzing spatio-temporal data that appropriately capture the complex

interactions between space and time observed in natural phenomenon while allowing efficient computations

able to handle very large datasets is a very active field of research. The typical approach in modeling a

variable that varies spatio-temporally is to consider it is a realization of a random field, i.e. a stochastic

process indexed in space or in space ˆ time. The common practice is to describe its statistical properties

by its covariance function which must be non-negatively definite, thereby limiting the choice of available

models and making the construction of models with realistic features intricate.

Most of the commonly used space-time covariance models are built by modifying or combining generic

covariance models defined for Rd, d “ 1, 2, . . .. These basic models are usually stationary and isotropic.

Commonly known generic models are covariance functions of exponential, powered exponential, Matérn

or Cauchy type, amongst many others (Chilès and Delfiner, 2012). Space-time separable covariance mod-

els are constructed taking a tensor product between a spatial and a temporal covariance. Separability is

often an overly simplistic assumption, since it cannot capture sophisticated interaction between space and

time. One of the first attempts to build nonseparable covariance functions lead to the so-called product-

sum class of models which simply adds and multiplies valid covariance models in the space and time do-

mains (De Iaco et al., 2001, 2002; Porcu et al., 2009). Even though this approach is perfectly valid from

a mathematical standpoint, it is not grounded on physical considerations. In addition, product-sum mod-

els imply lower space-time correlations than separability, which is a feature rarely encountered in physical

phenomenon. The Gneiting class (Gneiting, 2002) provides flexible nonseparable space-time models. Its

construction is based on mixtures arguments, with no reference to physical considerations. Contrarily to the

product-sum model, the Gneiting class implies higher space-time correlation than separability, in accordance

to most observed phenomenon.

Another important notion characterizing some spatio-temporal covariances is that of full symmetry

(Gneiting et al., 2006). In a fully symmetric model, the direction of the time evolution is ignored, obtain-

ing equal covariance values if we look either forward or backward in time. Separable covariance functions

are necessarily fully symmetric, but not vice-versa. Product sum models and the Gneiting class are fully

symmetric, non separable covariance functions. Atmospheric or environmental processes are often under the

influence of prevailing air or water flows which are incompatible with full symmetry. Transport effects of

this type can easily be modeled with the help of a purely spatial covariance function and a possibly random

velocity vector. See Benoit et al. (2018) for an example of application to precipitation fields, Ailliot et al.

(2011) for an application on significant height wave fields with varying velocities. We refer to Gneiting et al.

(2006) for a more detailed review on usual spatio-temporal covariance models.

The recent SPDE approach advocated in Lindgren et al. (2011) has open a new paradigm for handling
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large to very large (ą 106) spatial datasets. This approach consists in modeling the spatial variable as arising

from the solution of a particular class of stochastic partial differential equations for which the representa-

tion on a finite grid presents interesting Markov properties making it computable even for very large grids.

Specifically, Lindgren et al. (2011) consider the following SPDE

pκ2 ´ ∆qα{2U “ W, (1)

where α ą d{2, ∆ is the Laplacian, W is a white noise process and U is the unknown random field. The

SPDE approach is an important paradigm shift from both theoretical and practical prospective. From a theo-

retical viewpoint, in contrast to the previously statistically oriented construction reviewed above, it proposes

a physically grounded construction, for which the parameters carry traditional physical meanings such as

diffusivity, reaction and transport, see also Whittle (1963), Dong (1990) and Kelbert et al. (2005). It allows

the construction of models with interesting non-separability and non symmetry properties (Jones & Zhang,

1997; Brown et al., 2000). Non-stationarity can also easily be accounted (Fuglstad et al., 2013). Other works

based on this paradigm include Vecchia (1985), Gay & Heyde (1990) and Ruiz-Medina et al. (2016). From

a practical viewpoint, spatial prediction and simulation can be computed with methods brought from numer-

ical analysis and PDE-solving methods such as finite element methods, see Lindgren et al. (2011) for de-

tails. The sparsity of the matrices involved in the computations allows extremely efficient treatment of very

large datasets for which classical geostatistical methods fail due to their high computational cost, see e.g.

Simpson et al. (2012) for details. Thanks to this unique combination of theoretical and practical properties,

the SPDE approach has been widely used for analyzing environmental or climate datasets (Bolin & Lindgren,

2011; Cameletti et al., 2013; Huang et al., 2017) and Mena & Pfurtscheller (2017) for El Niño analysis. This

has also inspired the development of other PDE-solver based methods with efficient performances for a wider

class of models (Sigrist et al., 2015; Liu et al., 2016; Bolin & Kirchner, 2017). Lang & Potthoff (2011) pro-

poses an efficient method of simulation for solutions of some SPDEs based on Fourier Analysis, taking

advantage of the low computational cost of the Fast Fourier Transform.

Despite the huge potential of the SPDE approach, theoretical advances have been scarce in a spatio-

temporal context. The requirement of a Markov structure for fast matrix calculations imposes some con-

straints. In R-INLA, which is the commonly used R package using the SPDE representation (1) of Gaussian

fields, a temporal effect can be modeled as an autoregressive process or as a random walk, see Cameletti et al.

(2013) for an application to particulate matters and Opitz (2017) for a recent review on R-INLA with a fo-

cus on spatio-temporal applications. Sigrist et al. (2015) shows that the solution of a stochastic advection-

diffusion partial differential equation provides a flexible model for spatio-temporal processes which is com-

putationally acceptable for large data sets. In a spatial context, actual application rely mainly on Eq. (1)

with its associated Matérn covariance, and also on a restricted set of models obtained from other classes of

SPDE that can be found in the aforementioned literature (Jones & Zhang, 1997; Brown et al., 2000). It is
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therefore of theoretical and practical interest to build, in a quite general setting, spatial and spatio-temporal

covariance models that can be related to specific SPDEs, thereby offering physical interpretability and the

computational efficiency brought by numerical analysis solvers. This setting should offer the possibility to

handle a very general class of random fields and yet should be easy to use in order to simplify the concep-

tion, characterization and exploitation of new models. Clearly, it is expected that known results and known

models will appear as special cases in this setting.

For this purpose, this work proposes a general framework based on the distribution theory of Schwartz

(Schwartz, 1959) in which stationary models related to SPDEs can be rigorously studied. We express under

which conditions a stationary covariance model corresponds to the unique stationary solution of some SPDE.

When possible, the associated spectral measure is given. The well-known result by Whittle (Whittle, 1963)

is easily recovered in this framework. It also includes many other known models such as stationary Markov

models (Rozanov, 1977), long-range dependent random fields (Gay & Heyde, 1990; Anh et al., 1998) ap-

pearing as Matérn models without range parameter, the Stein spectral measure (Stein, 2005) and solutions

to some linear evolution equations (Kelbert et al., 2005; Sigrist et al., 2015). This framework also allows us

to obtain new spatio-temporal models that can present non-trivial properties such as non-separability and

non-symmetry. In particular, non-symmetric evolution models with fractional evolution behavior have been

obtained.

The rest of the paper is organized as follows. In section 2 we present our main result which provides

a criteria for the existence and uniqueness of stationary solutions for a wide class of linear SPDEs. In this

Section, we use the minimum necessary concepts to rigorously present the result. Technical details are left

to Section 3 where the complete theoretical framework is presented. It is based on the concept of generalized

random fields as defined in Itô (1954); Matheron (1965); Rozanov (1982), which has been relatively forgotten

in the spatial statistics community. Here, the random field is no longer a function but a distribution Schwartz

(1959) for which Differential calculus and Fourier analysis are well defined operations. The interest of

this section is, in addition to the proof of our main result, the construction of a rigorous framework where

operations on SPDEs are well-defined and relatively easy to use.

White Noise is then introduced in Section 4. We define it as a particular generalized random field playing

a central role. We present an important result that relates the covariance of the solutions of the SPDEs with

any source term to the covariance of the solution of the same SPDE with White Noise source term. In

sections 5 and 6 we show examples of models that can be conceived within our framework, involving both

known and new models. In section 5 we review some known cases in a spatial context, which involve the

Matérn covariance and Markov models. In section 6 we work in a spatio-temporal context. In section 6.1 we

relate the Stein model (Stein, 2005) to a particular SPDE and in section 6.2 we present a wide-class of new

spatio-temporal stationary models with non-trivial properties arising as solutions to evolution equations. We

show examples having special interest both in physics and statistics. A general analysis of the properties
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based on the spectral measures of the models is made, in particular with regards to their spatial structure. We

specify the corresponding spatial SPDE when possible. We conclude in 7 with some final words.

2 Presentation of the main theoretical result

In this section we introduce our main theoretical result regarding the existence and the uniqueness of sta-

tionary solutions for a rich class of linear Stochastic Partial Differential Equations (SPDEs). All models

presented later in this work, either in a spatial context in Section 5, or in a spatio-temporal one in Section

6, derive from this construction which offers a unified framework to a variety of spatial and spatio-temporal

models that have been presented or revisited recently, such as Gaussian processes with Matérn covariance

(Whittle, 1963; Lindgren et al., 2011) and the spatio-temporal spectral measure proposed in Stein (2005).

This result is presented here in general terms. A more detailed presentation is voluntarily deferred to Section

3, where all proofs are given.

2.1 Introduction

A second order stationary real random function over Rd is a family of squared-integrable real random vari-

ables indexed over the euclidean space, Z “ pZpxqqxPRd , such that its mean function mZpxq “ EpZpxqq is

constant and its covariance function CZpx, yq “ CovpZpxq, Zpyqq depends only on the gap x´ y. Without

loss of generality, we will consider that mZpxq “ 0. The stationary covariance function, ρZ : Rd Ñ R,

such that ρZpx´ yq “ CovpZpxq, Zpyqq must be positive-definite. By Bochner’s Theorem (see for example

Donoghue (1969)), it is well known that a continuous real positive-definite function is the Fourier transform

of a positive, finite, even measure µZ , referred to as the spectral measure of Z: ρZ “ F pµZq, where F de-

notes the Fourier transform on R
d. The covariance function ρZ and the spectral measure µZ can equivalently

be used to fully characterize the covariance structure of Z .

In this work, it will be necessary to consider more general mathematical objects that allow us to deal

properly with linear differential operators and Fourier transforms on random fields. We will use Generalized

Random Fields (GeRF), which are an analogous to the generalization of functions presented in Schwartz’s

Distribution Theory, see for example Itô (1954) for a theory of stationary GeRFs. In this framework, the

random fields have only meaning when applied to test functions in some particular functional space, and

not necessarily when evaluated in points of the space. We present all the technical details in section 3. For

now, we mention that the covariance structure of a stationary GeRF can be described by not necessarily finite

spectral measures. To characterize those, we consider the class M`
SGpRdq of slow-growing positive (Borel)

measures on R
d. Members of M`

SGpRdq can have infinite total mass, but they grow at most at a polynomial
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rate. Specifically,

M`
SGpRdq :“

"

µ positive measure over Rd :

ż

Rd

p1 ` |x|2q´Ndµpxq ă 8 for some N P N

*

. (2)

If µZ P M
`
SGpRdq is even, it can be used as a spectral measure of a real stationary GeRF Z , and its Fourier

transform ρZ “ F pµZq is called the stationary covariance distribution of Z (we will omit the adjective

stationary when it is clear from context). This distribution is not necessarily a continuous function and thus

Z is not necessarily a random function with point-wise meaning. However, when N “ 0 in Eq. (2) we are

back to the usual second order stationary random functions and to the Bochner characterization of covariance

functions. From now on, every even measure in M
`
SGpRdq will be said to be a spectral measure.

The focus in this work is on a quite general class of linear stochastic equations which encompasses

those considered in Whittle (1963) Lindgren et al. (2011), Sigrist et al. (2015), Bolin & Lindgren (2011),

Anh et al. (1998), Kelbert et al. (2005) and Gay & Heyde (1990). Linear operators involved here are not

strictly speaking differential operators. We refer to them as pseudo-differential operators. Then, following

Lindgren et al. (2011), we will make a slight abuse of language and we will call SPDEs the class of stochastic

equations considered in this work. This class of SPDEs is defined through operators of the form

Lgp¨q :“ F
´1 pgF p¨qq , (3)

where g : Rd Ñ C must be a sufficiently regular and Hermitian-symmetric function, that is it must satisfy

gpxq “ gp´xq, where a is the complex conjugate of a. Under these conditions, Lg is a real operator thanks

to the properties of the Fourier transform. In this work, we will require that g is continuous and bounded

by a polynomial, see Section 3 for a detailed exposition of all technical requirements. From now, every

continuous, polynomially bounded and Hermitian-symmetric complex function g defined over Rd will be

called a symbol function over Rd, and it will be said to be the symbol function of the operator Lg. Before

presenting our main result, we first need to establish the relationship between the spectral measures of a

stationary GeRF U and its transform through the operator Lg defined in (3). The next proposition will be

proven in Section 3.

Proposition 1. Let U be a real stationary GeRF on R
d with spectral measure µU , and let g be a symbol

function over Rd. Then, LgU , where Lg is defined in Eq. (3), is a real stationary GeRF with spectral measure

µLgU “ |g|2µU and its covariance distribution is ρLgU “ L|g|2ρU .

6



2.2 Statement of the main result

Let us consider a symbol function g over Rd and a stationary GeRF X, which will be called from now on

the source term. A question that arises is to establish under which conditions on g and X the SPDE

LgU “ X, (4)

has a stationary solution, whether it is unique or not and, when solutions exist, whether we can characterize

the associated spectral measures. Theorem 1 provides a general answer to this question in the second order

sense. That is, we shall only impose that the two sides of Eq. (4) have the same (generalized) covariance,

which we write

LgU
2nd o.“ X. (5)

This is not equivalent to require that U solves (4) strictly. Under this more restrictive requirement, the

evaluations of LgU and X over the same test functions (or, more simply, at the same points in the case of

random functions) are almost surely equal random variables. In the language of stochastic process, this is

equivalent to requiring that LgU is a modification of X. From a direct application of Proposition 1, we get

that a spectral measure µU of a potential stationary solution to (5) must verify

|g|2µU “ µX . (6)

This kind of problem is called a division problem in distribution theory. A criteria of existence of real

stationary solutions to (5) arises from the existence of even solutions to this problem which are in M
`
SGpRdq.

The explicit result is now formally presented in Theorem 1, which is our main result.

Theorem 1. Let X be a real stationary GeRF over R
d with spectral measure µX . Let g : Rd Ñ C be

a symbol function, and let Lg be an operator as defined in (3) with symbol g. Then, there exists a real

stationary GeRF solution to the equation (5) if and only if there exists N P N such that

ż

Rd

dµXpξq
|gpξq|2p1 ` |ξ|2qN ă 8. (7)

In that case, the measure

dµU pξq “ |gpξq|´2dµXpξq (8)

is a spectral measure, and any real stationary GeRF with spectral measure µU solves (5). Moreover, µU is

the unique solution in M
`
SGpRdq to (6) if and only if |g| ą 0.

Remark 1. When N “ 0, i.e. if |g|´2 is integrable with respect to the measure µX , the measure µU is finite

and the solution U is thus a mean-square continuous random function. This case was studied in Whittle
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(1963), where it is mentioned that solutions corresponding to non finite measures µU still make sense in

some framework, the theory of which was at that time not completely available. Our work can be seen as

one possible answer to this note.

Remark 2. A Sufficient Condition for Existence and Uniqueness (SCEU), regardless of the source term X,

is to require that |g| is inferiorly bounded by the inverse of a strictly positive polynomial. In this case the

operator Lg is actually invertible: 1{g is a symbol function and it is straightforward that L1{g is the inverse

operator of Lg. This implies that Eq. (4) can be solved explicitly with U “ L1{gX. Then, by Proposition 1,

U is the unique stationary solution and its spectral measure is (8). We shall henceforth refer to this condition

as the SCEU on g.

Remark 3. When the closed set g´1pt0uq “ tξ P R
d | gpξq “ 0u is non-empty, the non-uniqueness is due

to the existence of stationary solutions of the homogeneous problem

LgUH “ 0. (9)

Indeed, for a spectral measure µUH
over Rd supported on g´1pt0uq, its associated stationary random field

satisfies strictly Eq. (9) since µLgUH
“ |g|2µH “ 0. Thus, if existence is provided, the addition of any

stationary solution to (5) with a non-trivial independent stationary solution to (9) is also a stationary solution

to 5, which implies non-uniqueness.

3 Theoretical Framework and proof of the main result

In order to prove Theorem 1, it is necessary to lay out some theoretical background, which uses Schwartz’s

Distribution Theory and its application to construct GeRFs. We assume that the reader is familiar with the

Schwartz class of test functions over Rd, denoted SpRdq, its dual space of tempered distributions, S 1pRdq,

the space of multiplicators of the Schwartz space OM pRdq, and the definition and properties of the Fourier

Transform F (Schwartz, 1966). For sake of completeness, essential reminders on tempered distributions

is provided in Appendix A. We suggest Itô (1954) and (Matheron, 1965, chapter 10), for a more complete

introduction to GeRFs. Proposition 1 and Theorem 1 will be proven here. This Section can be skipped in a

first reading by readers more interested in the spatial and spatio-temporal models of random fields implied

by these results.

3.1 Slow-growing measures and pseudo-differential operators

A complex Radon measure µ over Rd is said to be a slow-growing measure if there exists N P N such that

the measure p1 ` |x|2q´N |µ| is a finite measure, where |µ| denotes the measure of total variation of µ, see
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Rudin (1987, chapter 6), or Demengel & Demengel (2000, chapter 1.A). We shall denote MSGpRdq the set

of all slow-growing complex measures over Rd. Obviously, M`
SGpRdq Ă MSGpRdq. For a measure µ P

MSGpRdq, the integral xµ,ϕy :“
ş

Rd ϕpxqdµpxq is well defined for all ϕ P SpRdq and it is straightforward

that it defines a tempered distribution, thus MSGpRdq Ă S 1pRdq.

Let g : Rd Ñ C be a polynomially bounded continuous function. The multiplication of g with a slow-

growing measure µ P MSGpRdq, noted gµ, is defined as the measure that, for all ϕ P SpRdq, applies

xgµ, ϕy “ xµ, gϕy “
ż

Rd

ϕpxqgpxqdµpxq @ϕ P SpRdq. (10)

It is thus straightforward that gµ P MSGpRdq Ă S 1pRdq. Note that we could have defined equivalently the

measure gµ by defining pgµqpAq :“
ş

A
gpxqdµpxq for every bounded borel set A Ă R

d.

As a consequence, pseudo-differential operators of the form Lg “ F´1pgF p¨qq, as defined in Eq. (3),

with g being a symbol function, are well defined within our framework whenever the Fourier transform of

the argument is a slow-growing measure. The domain of definition of Lg is thus the space of all tempered

distributions such that its Fourier transform is a slow-growing measure:

DpLgq “ tT P S
1pRdq | F pT q P MSGpRdqu. (11)

This class of operators includes for example linear combinations of differential operators which correspond

to g being an Hermitian-symmetric polynomial. Some fractional-differential operators are also included

by taking g to be a suitable continuous functions. A more comprehensive list of specific examples will be

worked out in Sections (5) and (6)).

3.2 Generalized Random Fields

A real L2´tempered random distribution Z , referred to as real Generalized Random Field (GeRF) from

now on, is a real and continuous linear application from SpRdq to L2pΩ,F ,Pq, for some probability space

pΩ,F ,Pq. We will write xZ,ϕy :“ Zpϕq to emphasize that Z acts as a continuous linear functional. All

linear operators that are well defined for tempered distributions can be used without restrictions on GeRFs,

since they are defined through actions on test functions. In particular, differentiation and Fourier transforms

are admissible operations on GeRFs (see Appendix A for their definitions in the deterministic case).

If Z is a real GeRF, there exists a real mean distribution mZ P S 1pRdq and a real covariance distribution

CZ P S 1pRdˆR
dq satisfying EpxZ,ϕyq “ xmZ , ϕy and CovpxZ,ϕy, xZ, φyq “ xCZ , ϕbφy respectively for

all ϕ, φ P SpRdq. Without loss of generality, we will assume mZ “ 0. The covariance distribution must be

a positive-definite kernel, i.e. it must verify xCZ , ϕbϕy ě 0 for all ϕ P SpRdq, where b denotes the tensor
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product, with pϕ b φqpx, yq “ ϕpxqφpyq and ϕ, φ P SpRdq. The existence of this covariance distribution,

which does not follow obviously from our assumptions, can be guaranteed by Schwartz’s Kernel Theorem

applied to the space S 1pRdq. See Schwartz (1959) or Trèves (1967), Theorem 51.6 and its corollary.

A real GeRFZ is second order stationary (from now on, more simply stationary) if there exists a real and

even distribution ρZ P S 1pRdq such that xCZ , ϕbφy “ xρZ , ϕ˚ˇφy, where ˚ denotes the convolution product

and ˇ denotes the reflection operator, with φ̌pxq “ φp´xq. The distribution ρZ is the stationary covariance

distribution of Z , or more simply covariance distribution if stationarity is clear from the context. It must

be positive-definite, i.e., it must verify xρZ , ϕ ˚ ϕ̌y ě 0 for all ϕ P SpRdq. A generalization of Bochner’s

Theorem, known as Bochner-Schwartz Theorem (see for example Donoghue (1969), chapter 42), states that

any positive-definite and even distribution ρZ is the Fourier transform of a positive and even slow-growing

measure: ρZ “ F pµZq, known as the spectral measure of the associated real GeRF. Since both µZ and ρZ
are even distributions, we will use extensively the following fact: ρZ “ F pµZq “ F´1pµZq.

3.3 Slow-growing Orthogonal Random Measures

A (not necessarily real) GeRF Z is said to be a slow-growing random measure if its covariance distribution

CZ is a slow-growing measure, i.e. if CZ P MSGpRd ˆ R
dq. Similarly to slow-growing measures, slow-

growing random measures can be multiplied by (deterministic) polynomially bounded continuous functions,

thereby defining a new slow-growing random measure with covariance distribution in MSGpRd ˆ R
dq.

Specifically we have the following Proposition which is proven in Appendix B:

Proposition 2. Let Z be a slow-growing random measure with covariance CZ P MSGpRd ˆ R
dq and let

g : Rd Ñ C be a polynomially bounded continuous function. Let us define the multiplication gZ as a GeRF

determined by xgZ, ϕy “ xZ, gϕy for all ϕ P SpRdq. Then the multiplication gZ is well defined as a GeRF

and it is a slow-growing random measure with CgZ “ pg b gqCZ P MSGpRd ˆ R
dq.

A particular class of slow-growing random measures is the class of slow-growing orthogonal random

measures, characterized by covariances of the form

xCZ , ϕ b φy “
ż

Rd

ϕpxqφpxqdνZpxq, ϕ, φ P SpRdq, (12)

with νZ P M
`
SGpRdq. This form is obtained when the covariance measure CZ is supported over the hyper-

plane tpx, yq P R
d ˆ R

d | x “ yu. The measure νZ is called the weight of Z . An important characteristic

of this class is that these random measures take non-correlated values when evaluated over test functions

that are orthogonal with respect to the weight measure, in particular when they have disjoint supports. From

Proposition 2 we get directly the following corollary.
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Corollary 1. Let Z be an orthogonal random measure with weight νZ and let g be a symbol function. Then,

gZ is an orthogonal random measure with weight |g|2νZ .

Slow-growing orthogonal random measures are in close connection with stationary GeRFs. A well

known result, which is also easy to prove within the framework of GeRFs, (see Itô (1954) or Matheron

(1965), chapter 10), is that the Fourier transform of a real stationary GeRF with spectral measure µZ is a

Hermitian-symmetric complex slow-growing Orthogonal random measure with weight p2πqd{2µZ . Grounded

on this result, the Fourier transform of a stationary GeRF can be seen as a slow-growing measure. Operators

of the form (3), defined trough a symbol g, can therefore be applied without restrictions. Having laid out

these theoretical foundations, we are now able to establish Proposition 1.

3.4 Proofs of our main result

3.4.1 Proof of Proposition 1

Let g be a symbol function and let Lg its associated operator. Let U be a real stationary GeRF with spectral

measure µU and covariance distribution ρU . We know that F pUq is a Hermitian-symmetric complex slow-

growing orthogonal random measure with weight p2πqd{2µU . Thus, by the corollary of Proposition 2, its

multiplication by g is well defined and is also a slow-growing orthogonal random measure with weight

p2πqd{2|g|2µU P M
`
SGpRdq. Moreover, it is Hermitian-symmetric since g is a symbol function.

Hence, the inverse Fourier transform of gF pUq, which is equal to LgU , is a real stationary GeRF

with spectral measure |g|2µU . The expression of the covariance of LgU is obtained immediately from

ρLgU “ F´1
`

|g|2µU
˘

“ F´1
`

|g|2F pρU q
˘

“ L|g|2ρU . �

3.4.2 Proof of Theorem 1

Let X be a real stationary GeRF over R
d with spectral measure µX . Let g be a symbol function over

R
d and let Lg be its associated operator. We start by proving the existence criterion. Let us prove the

necessity. Suppose there exists a real stationary GeRF, say U , satisfying (5). By Proposition 1, this implies
that |g|2µU “ µX , and in particular we have that µXpg´1pt0uqq “ 0. As µU P M

`
SGpRdq, we can take

N P N such that
ş

Rdp1 ` |ξ|2q´NdµU pξq ă 8. We have thus that

ż

Rd

dµXpξq
p1 ` |ξ|2qN |gpξq|2 “

ż

tg‰0u

|gpξq|2
p1 ` |ξ|2qN

dµU pξq
|gpξq|2 “

ż

tg‰0u

dµU pξq
p1 ` |ξ|2qN ď

ż

Rd

dµU pξq
p1 ` |ξ|2qN ă 8. (13)

Let us prove the sufficiency. The condition (7) implies in particular that the function |g|´2 is locally inte-

grable with respect to µX . We can therefore define the Radon measure µU pAq :“
ş

A
|gpξq|´2dµXpξq, for

any bounded Borel set A Ă R
d. By (7) and by the fact that both µX and |g|2 are even, we see in addition
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that µU P M
`
SGpRdq and that it is even, thus that µU is a spectral measure. Condition (7) implies also that

µXpg´1pt0uqq “ 0. It is therefore straightforward that |g|2µU “ µX . Thus, any real stationary GeRF with

spectral measure µU satisfies (5).

Let us now prove the uniqueness criterion. For the necessity, suppose that g does have zeros. Let us

consider µH , a tempered positive measure supported in the closed manifold g´1pt0uq. For instance, we

can take any point ξ0 P R
d such that gpξ0q “ 0 and use µH “ δξ0 ` δ´ξ0 , which is a spectral measure.

Hence, we have that |g|2µH “ 0. Thus, µH can be added to any solution µU of (6) and we will still get

|g|2pµU ` µHq “ µX . We conclude that the solution is not unique. For the sufficiency, suppose |g| ą 0 and

that there are two different spectral measures µ1 and µ2 satisfying (8). Then, the signed measure µ “ µ1´µ2
satisfies |g|2µ “ 0, and thus for any continuous function with compact support ϕ we have x|g|2µ,ϕy “ 0.

As |g| is continuous and strictly positive, |g|´2ϕ is also continuous with compact support, and we can argue

that for all ϕ continuous with compact support,

xµ,ϕy “ xµ, |g|2|g|´2ϕy “ x|g|2µ, |g|´2ϕy “ 0. (14)

We conclude that µ “ 0 necessarily, and so µ1 “ µ2 and the solution is unique. �

4 White Noise as a fundamental case: a convolution theorem

Let introduce the White Noise, denoted W , defined as a real GeRF whose covariance distribution over Rd ˆ
R
d is

xCW , ϕ b φy “
ż

Rd

ϕpxqφpxqdx, ϕ, φ P SpRdq. (15)

W is stationary with covariance distribution ρW “ δ, where δ P S 1pRdq is the Dirac measure in 0. Its spectral

measure is then proportional to the Lebesgue measure, dµW pxq “ p2πq´d{2dx. W is also a particular case

of an orthogonal random measure whose weight is the Lebesgue measure. Since µW is not a finite measure,

W is not a random function and it can only be defined as a GeRF or as a random measure. We will see that

SPDEs with White Noise as source term correspond to a fundamental case that can be used to obtain the

covariance of solutions with more general source terms.

Let us consider the SPDE

LgU
2nd o.“ W. (16)

Theorem (1) allows us to conclude that there are stationary solutions of (16) if and only if the density

|g|´2pξqdξ defines a measure in M
`
SGpRdq. We suppose this holds and we note dµWU pξq “ p2πq´ d

2 |g|´2pξqdξ,
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and ρWU “ F pµWU q. According to Proposition 1, Eq. (16) implies that

L|g|2ρ
W
U “ ρW “ δ. (17)

Hence, the covariance ρWU can be seen as a Green’s Function of the operator L|g|2 . It turns out that in order to

find the covariance of a solution to (5) with an arbitrary source term X, we have to study the convolvability

between ρWU and ρX . If convolvability is verified, we get ρU “ ρWU ˚ ρX . Theorem 2 provides a sufficient

criteria regarding the applicability of this procedure regardless of the source term X.

Theorem 2. Let X be a real stationary GeRF over Rd with covariance distribution ρX . Let g be a symbol

function over R
d such that 1

g
is smooth with polynomially bounded derivatives of all orders. Then, there

exists a unique stationary solution to (5) and its covariance distribution is given by

ρU “ ρWU ˚ ρX , (18)

where ρWU is the covariance of the unique stationary solution to (16).

Proof: Since 1{g is smooth and polynomially bounded, the SCEU holds, and there exists a unique stationary

solution to equation (5). The spectral measure of the solution is given by µU “ |g|´2µX , µX being the

spectral measure of X. The regularity and boundedness conditions for 1{g and its derivatives imply that

both 1
g

and |g|´2 are in the space OM pRdq of multiplicators of the Schwartz space (see Appendix A). Since

the expression |g|´2µX is the multiplication between |g|´2 P OM pRdq and µX P S 1pRdq, the exchange

formula for the Fourier transform can be applied. We thus obtain

ρU “ F pµU q “ F p|g|´2µXq “ F pp2πq´ d
2 |g|´2q ˚ F pµXq “ F pµWU q ˚ F pµXq “ ρWU ˚ ρX . � (19)

Although the condition on g required in Theorem 2 may seem restrictive, it turns out that it is satisfied by

most models studied in the statistical literature on spatio-temporal random fields. For example, the Matérn

model, the Stein model and Markov models satisfy these conditions, as will be detailed in Sections 5.1, 5.3

and 6.1. A more general analysis could be done by studying the convolvability between ρWU and ρX in the

more general framework of the S 1–convolution, see e.g. Dierolf & Voigt (1978).

Theorem 2 shows that solutions of SPDEs with White Noise source term is the starting point of more

general solutions, when the source term can be any stationary GeRF. In the next Sections, devoted to spatial

and spatio-temporal models we shall always start our analysis by considering White Noise source term.
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5 Applications to spatial models

5.1 Matérn Model

As a first example, we start with a well-known and increasingly popular model, namely the Matérn model.

The relationship between the Matérn Model and the SPDE over Rd,

pκ2 ´ ∆qα
2U “ W, (20)

with κ ą 0, α P R and where ∆ denotes the Laplace operator, established a long time ago (Whittle, 1963)

and recently revisited in Lindgren et al. (2011), can easily be obtained from Theorem 1.

The operator pκ2 ´ ∆qα
2 is of the form (3) with symbol function gpξq “ pκ2 ` |ξ|2qα

2 , satisfying the

SCEU defined in Remark 2. This allows us to conclude that there exists a unique stationary solution to (20),

with spectral measure

dµWU pξq “ dξ

p2πqd{2pκ2 ` |ξ|2qα . (21)

If α ą d{2 the measure (21) is finite, and thus its associated random field is a mean-square continuous

random function, with stationary Matérn covariance function

ρWU phq “ 1

p2πqd{22α´1κ2α´dΓpαq pκ|h|qα´d{2Kα´d{2pκ|h|q, (22)

where Γ is the Gamma function and Kα´d{2 is the modified Bessel function of the second kind of order

α´ d{2. When α ď d{2, we still obtain a unique stationary solution, but it is only defined in a distributional

sense. We refer to this covariance as the generalized Matérn covariance .

Since g also satisfies the conditions in Theorem (2), we get that for any real stationary GeRFX the SPDE

pκ2 ´ ∆qα{2U “ X (23)

has a unique stationary solution whose covariance is the convolution between ρX and the Matérn covariance.

5.2 Matérn Model without range parameter

The condition κ ą 0 in the Matérn SPDE defined in Eq. (20) can be relaxed. Setting κ “ 0, we obtain a

fractional Laplacian operator p´∆qα{2 with symbol function gpξq “ |ξ|α for α ą 0. Let us consider the

SPDE

p´∆qα{2U “ W, (24)
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which corresponds to the limit case of a Matérn model as κ Ñ 0. In Theorem 1, the existence condition

(7) requires that there exists N P N such that
ş

Rdp1 ` |ξ|2q´N |ξ|´2αdξ ă 8. Because of the singularity at

the origin, this is only possible if α ă d{2. In this case, the spectral measure of a stationary solution to the

equation (24) is

dµU pξq “ 1

p2πqd{2
dξ

|ξ|2α . (25)

The associated covariance distribution is its Fourier transform, which is the locally integrable function (see

Donoghue (1969), chapter 32)

ρUphq “ 1

πd{2
Γpd

2
´ αq

Γpαq
1

|h|d´2α
. (26)

Note that the function ρU in (26) is not defined at h “ 0. It is not continuous, but it is still positive-definite

in distributional sense. The associated random field must be interpreted as a GeRF and not as a continuous

random function. This is an example of the kind of covariance structures we obtain when working with

non-finite spectral measures. Such models have a long-range dependence behavior. They have been studied

in Anh et al. (1998) and in Gay & Heyde (1990), in which Eq. (24) is specified with a slightly different

definition of the operator p´∆qα
2 .

We remark that the symbol function gpξq “ |ξ|α has a zero at the origin. Hence, the SCEU conditions

do not hold. The stationary solution associated to the covariance (26) is not the unique possible solution.

To describe all possible stationary solutions, we follow Remark 3 and we consider spectral measures which

are supported at the origin, i.e., which are proportionals to the Dirac measure µUH
“ aδ, with a ą 0.

The associated covariance distributions are then constant positive functions, and thus the associated GeRF

are random constants, that is, UHpxq “ A, for all x P R
d, with A being a centered random variable

with variance p2πq´ d
2 a ă 8. In other words, the only stationary solutions to the homogeneous equation

p´∆qα{2UH “ 0 are random constants.

5.3 Isotropic Markov Models

Let p : R` Ñ R
` be a strictly positive polynomial over R`. We consider the SPDE over Rd

a

pp´∆qU “ W, (27)

where the operator
a

pp´∆q is of the form (3) with symbol function gpξq “
a

pp|ξ|2q. The SCEU holds,

and thus the SPDE (27) has a unique stationary solution, and its spectral measure if of the form

dµWU pξq “ 1

p2πq d
2

dξ

pp|ξ|2q . (28)
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This is a measure whose density is the inverse of a strictly positive and isotropic polynomial. Rozanov’s

Theorem (Rozanov, 1977) allows us to conclude that this model is an isotropic stationary Markov Random

Field (MRF). According to Rozanov’s Theory, a MRF is, broadly speaking, a GeRF such that for every

domain of Rd, evaluations of the random field in the interior of the domain are independent upon evaluations

in the interior of the complement of the domain, conditionally to the behavior of the random field in a

neighborhood of the boundary of the domain. By evaluations, we mean the action of the GeRF to test

functions whose supports are in the interior of the corresponding set. Rozanov’s theorem states that every

stationary MRF has a spectral measure whose density is the inverse of a strictly positive polynomial. Thus,

in the case of isotropic models, MRFs satisfy equation (27). See Rozanov (1982) for a complete theory of

MRFs which also uses the theory of GeRFs.

Note that g satisfies the conditions of Theorem 2. Hence, for any real stationary GeRF X there exists a

unique stationary solution to the SPDE
a

pp´∆qU “ X, whose covariance is the convolution between ρX
and the covariance of the MRF solution to Eq. (27).

6 Applications to spatio-temporal models

We now present stationary spatio-temporal models which can be obtained and described within our frame-

work. From now on, dwill always denote the spatial dimension, and we will explicitly write RdˆR referring

to the spatio-temporal domain. We will denote F ,FS and FT , respectively the spatio-temporal, spatial and

temporal Fourier transforms. We will use the variables pξ, ωq P R
d ˆ R for the frequency space-time do-

main (that is, after applying a spatio-temporal Fourier transform). When working with stationary covariance

functions or distributions, the spatial gap will always be denoted by h P R
d and the temporal gap by u P R.

The function g will always denote a spatial symbol function. Thus, Lg denotes the operator F
´1
S pgFSp¨qq,

which will be applied to stationary GeRFs over Rd ˆ R. We denote gR and gI the real and imaginary parts

of g respectively. As g is Hermitian-symmetric, gR is even and gI is odd.

We recall the important concepts of separability and symmetry of a spatio-temporal stationary model.

A stationary GeRF Z over R
d ˆ R is said to be separable if its covariance ρZ P S 1pRd ˆ Rq can be

expressed as the tensor product of a spatial covariance and a temporal covariance, ρZ “ ρZS
b ρZT

, with

ρZS
P S 1pRdq and ρZT

P S 1pRq, obtaining ρZph, uq “ ρZS
phqρZT

puq in the case with functional meaning.

This is equivalent to require the spatio-temporal spectral measure to be the tensor product of a spatial and a

temporal measure, dµZpξ, ωq “ dµZS
pξqdµZT

pωq. If Z is separable, we write Z “ ZS b ZT , ZS and ZT

representing the corresponding spatial and temporal GeRFs with covariance ρZS
and ρZT

respectively. A

stationary GeRF Z over Rd ˆ R is said to be symmetric if its covariance satisfies ρZph, uq “ ρZph,´uq “
ρZp´h, uq “ ρZp´h,´uq in the case with functional meaning, with its corresponding generalization in the

case of distributions. If Z is a stationary GeRF with spectral measure dµZpξ, ωq “ fpξ, ωqdξdω, a necessary
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and sufficient condition for Z to be non-symmetric is that the density f does not depend on the variable ω

only through its absolute value |ω|.
The spatial behavior of a stationary random function over Rd ˆ R, say Z , with covariance function ρZ

is studied by fixing the time component at any particular time t P R, obtaining the spatial random function

ZS “ pZpx, tqqxPRd . Because of time stationarity, ZS has the same spatial covariance function for any

chosen t, with ρZS
phq “ ρZph, 0q. We refer to ZS as a spatial trace of Z . This can be generalized to

any stationary GeRF Z such that its spectral measure satisfies µZpA ˆ Rq ă 8 for every bounded Borel

set A Ă R
d. In such a case, the covariance distribution ρZ has a continuous point-wise meaning in time,

and thus ρZS
:“ ρZp¨, 0q is a spatial covariance distribution. Any spatial GeRF ZS with ρZS

as covariance

distribution is said to be a spatial trace of Z . We can equivalently describe the spectral measure of a spatial

trace, with µZS
pAq “ p2πq´ 1

2µZpA ˆ Rq for every bounded Borel set A Ă R
d.

6.1 Stein Model

Rather than solving a SPDE and analyzing the covariance structure of the solution, we start in this example

from the spectral measure over Rd ˆ R proposed in Stein (2005)

dµU pξ, ωq “ 1

p2πq d`1

2

dξdω

paps2 ` ω2qβ ` bpκ2 ` |ξ|2qαqν , (29)

with a, b ą 0, s2 ` κ2 ą 0, and α, β, ν P R. It is always a well-defined spectral measure since its density

is the inverse of a positive and polynomially bounded continuous function. Using the spatio-temporal White

Noise, dµW pξ, ωq “ p2πq´ d`1

2 dξdω, we consider the spatio-temporal symbol function

pξ, ωq ÞÑ paps2 ` ω2qβ ` bpκ2 ` |ξ|2qαqν{2 (30)

which satisfies the SCEU as long as α and β are not simultaneously equal to 0, which we exclude from now

on. The corresponding SPDE is

˜

a

ˆ

s2 ´ B2
Bt2

˙β

` b
`

κ2 ´ ∆
˘α

¸ν{2

U “ W, (31)

where W is a White Noise on R
d ˆ R. As a consequence of Theorem 1, there exists a unique stationary

solution to (31q and its spectral measure is (29). When α, β and ν are positive, and if 1
βν

` d
αν

ă 2 holds, Stein

(2005) shows that the measure (29) is finite and that its associated random field is a mean-square continuous

random function. The interesting property of the Stein model is that, without being a separable model, the

spatial and temporal smoothness of the paths of the random function can be controlled separately thanks

17



to the parameters α and β. Except for some particular values for the parameters, there is no closed-form

expression of the covariance.

When κ, s, a, b ą 0 and α, β, ν are not null, the symbol function (30) satisfies conditions in Theorem

2. Hence, if the source term X is any stationary GeRF,

ˆ

a
´

s2 ´ B2

Bt2
¯β

` b
`

κ2 ´ ∆
˘α

˙ν{2
U “ X has

a unique stationary solution whose covariance is the convolution between ρX and the covariance of the

(generalized) Stein model.

6.2 Models derived from Evolution Equations

In this section we study models associated to the following class of SPDEs over Rd ˆ R:

BβU
Btβ ` LgU “ X (32)

where X is a stationary spatio-temporal GeRF, and β ą 0. For this class of SPDEs, we study in details

several examples with both physical and statistical interest. They involve diffusion, Langevin-type equation,

heat equation and wave propagation phenomena.

We present sufficient conditions for existence and uniqueness of a stationary solution. We describe the

spectral measure of the covariance distribution when the source term is a spatio-temporal White Noise. When

we can, we also specify the spatial SPDE to be satisfied by the spatial trace of the model when it exists (i.e.

when β ą 1
2
), and in this case we describe its spatial spectral measure.

For some specific values of β, namely when β P t1, 2u, we provide a more detailed analysis. We specify

the cases where the solutions can be conceived as random functions. We also detail the cases where X is

a separable model with a White Noise structure in time and any other structure in space, which we write

X “ XS bWT . We also specify when Theorem 2 can be applied for an arbitrary X. Finally, our framework

allows us to provide a well adapted definition of the operator Bβ

Btβ for non integer values of β.

6.2.1 First Order Evolution Models

First order evolution models correspond to β “ 1 in (32). The SPDE is then determined by the symbol

function over Rd ˆ R:

pξ, ωq ÞÑ iω ` gpξq. (33)

The null-set of this function is N1 “ tpξ, ωq P R
d ˆ R : gRpξq “ 0 and gIpξq “ ´ωu. Hence, a sufficient

condition to have a unique stationary solution is that gR satisfies the SCEU, for in this case the function (33)
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also satisfies the SCEU. Let us first consider the case where the source term is a spatio-temporal White Noise

BU
Bt ` LgU “ W. (34)

Following (8), the spectral measure of the unique stationary solution to (34) is

dµWU pξ, ωq “ 1

p2πq d`1

2

dξdω

pω ` gIpξqq2 ` g2Rpξq , (35)

leading, after temporal Fourier transform to its covariance

ρWU ph, uq “ FS

˜

ξ ÞÑ 1

p2πq d
2

eiugIpξq´|u||gRpξq|

2|gRpξq|

¸

phq. (36)

For ease of reading, we have used a functional notation for the variables ph, uq in (36) even though this

covariance is not necessarily a function. In general, it is a distribution, the spatial Fourier transform being

interpreted in a distributional sense. However, when |gR|´1 is integrable, the equation (36) does define a

positive-definite continuous covariance function, and in that case the solution is a stationary, mean square

continuous random function.

This spatio-temporal model is in general neither separable nor symmetrical. Symmetry is obtained if and

only if gI “ 0. The spatial structure is controlled by gR, as can be seen by evaluating (36) in u “ 0:

ρWU ph, 0q “ FS

˜

ξ ÞÑ 1

p2πq d
2

1

2|gRpξq|

¸

phq. (37)

It is thus clear that p2πq´ d
2

dξ
2|gRpξq| is the spectral measure of the spatial covariance.

Let us now consider the more general case X “ XS bWT . In this case, the covariance of the solution is

ρU ph, uq “ FS

˜

ξ ÞÑ eiugIpξq´|u||gRpξq|

2|gRpξq| dµXS
pξq

¸

phq. (38)

Characteristics of separability and symmetry are then similar to those obtained with White Noise as source

term. Evaluating at u “ 0 we get the covariance describing the spatial behavior, with associated spectral

measure dµUS
pξq “ dµXS

pξq
2|gRpξq| . Observing that this measure is of the form (8), it follows that US satisfies the

SPDE over Rd: ?
2L?

|gR|US
2nd o.“ XS . (39)

In the completely general case, when X is any spatio-temporal stationary GeRF, Theorem 2 is of ap-
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plication under the condition that gR, gI and 1
gR

are in OM pRdq, since in this case the reciprocal of the

spatio-temporal symbol function (33) is in OM pRd ˆ Rq. Under these conditions on g, the only stationary

solution to the SPDE (32) with β “ 1 has a covariance of the form ρU “ ρWU ˚ ρX , with ρWU given by (36).

Example 6.1. First order evolution of Matérn model. We call First Order Evolution of Matérn Model the

unique stationary solution to the equation over Rd ˆ R

BU
Bt ` apκ2 ´ ∆qα

2U “ W, (40)

Where a ą 0, κ ą 0, and α P R. This is a first order evolution model with spatial symbol function

gpξq “ apκ2 ` |ξ|2qα
2 . The associated spectral measure is

dµU pξ, ωq “ 1

p2πq d`1

2

dξdω

ω2 ` a2pκ2 ` |ξ|2qα . (41)

Following equation (36), and using expressions of the Fourier transform of radial functions (see for example

Donoghue (1969), chapter 41), we obtain the spatio-temporal covariance

ρU ph, uq “ 1

p2πq d
2 |h| d´2

2

ż 8

0

J d´2

2

p|h|rqe
´apκ2`r2qα

2 |u|

2apκ2 ` r2qα
2

r
d
2 dr, (42)

where Jb denotes the Bessel function of the first kind of order b. This model can be found in Jones & Zhang

(1997). This is a symmetric non-separable model which follows a Matérn covariance structure in space and

a mixture of exponentials in time. It is a well defined random function for α ą d. Following (39), the spatial

trace of this model follows the SPDE over Rd

?
2apκ2 ´ ∆qα

4US “ WS , (43)

where WS is a spatial White Noise. Since gR and 1
gR

are in OM pRdq, by Theorem 2, if X is an arbitrary

stationary GeRF, the unique stationary solution of the SPDE

BU
Bt ` apκ2 ´ ∆qα

2U “ X (44)

has a covariance equal to the convolution of ρX and the covariance ρU in (42).

Example 6.2. Advection-Diffusion Equation. Sigrist et al. (2015) proposed estimation methods and sim-

ulation algorithms for the unique stationary solution of the SPDE over Rd ˆ R:

BU
Bt ` κ2U ` vT∇U ´ ∇ ¨ pΣ∇Uq “ XS bWT , (45)
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where κ ą 0 is a damping parameter, v P R
d is a velocity and Σ is a symmetric positive-definite matrix

controlling non-isotropic diffusion. WT is a temporal White Noise and XS is a stationary spatial random

field. This equation, known as a Advection-Diffusion Equation, is a particular First Order Evolution Model.

Its spatial symbol function is gpξq “ κ2`ξTΣξ`ivT ξ. It satisfies the sufficient conditions for existence and

uniqueness of a stationary solution. Without advection (v “ 0), this equation was studied in Whittle (1963)

in a non-generalized framework . Sigrist et al. (2015) considers a Matérn Model for XS , with smoothness

parameter equals to 1, corresponding for example to α “ 2 in (22) when d “ 2. The spatial behavior of this

particular model is described by the SPDE (39).

Example 6.3. A Langevin’s Equation.

Using linear response theory, Hristopulos & Tsantili (2016) propose stationary random fields which are

solutions to the Langevin equation

BU
Bt ` D

2kdη0

`

1 ´ η1k
2∆ ` νk4∆2

˘

U “ W, (46)

with D, k, η0 ą 0, η1, ν ě 0. For this first order evolution model, the spatial symbol function is gpξq “
D

2kdη0

`

1 ` η1k
2|ξ|2 ` νk2|ξ|4

˘

, which satisfies the SCEU stated in 2. Hence, (46) has a unique stationary

solution, whose spectral measure can be obtained using the general expression of first order evolution model

in (35). Hristopulos & Tsantili (2016) provides expressions of the related covariance structures, which are

functions for d ď 3, and which can be obtained through formulas similar to (36) in combination with Fourier

transforms of radial functions. The spatial behavior of this model can be described following equation (39),

with spatial White Noise, XS “ WS . In general, this Langevin equation model is not an evolution of a

Matérn model. It is the particular case when the parameter ν, called curvature coefficient, equals to 0.

Example 6.4. The Heat Equation. We now consider the stochastic Heat (or Diffusion) Equation over

R
d ˆ R

BU
Bt ´ a∆U “ X, (47)

where a ą 0 is the diffusivity parameter. It is a first order evolution model with spatial symbol gpξq “ a|ξ|2.

In this case, the spatio-temporal symbol function pξ, ωq ÞÑ iω`a|ξ|2 is not strictly positive, the origin being

the only zero of g. There is thus no uniqueness of stationary solutions, if they exist. Using similar arguments

as those used in Section 5.2, one can see that the only stationary solutions of the homogeneous Heat Equation

BUH

Bt ´ a∆UH “ 0, (48)

are random constants. Because of the singularity at the origin of the function |g|´2, the existence condition

(7) does not always hold. Existence needs to be checked for each source term X. Let us first consider that

21



the source term is a spatio-temporal White Noise. Equation (47) becomes

BU
Bt ´ a∆U “ W. (49)

Using Theorem 1, one concludes (see Appendix C.1) that there exists stationary solutions to the Stochastic

Heat equation (49) only for spatial dimensions d ě 3, and in those cases, they can only be conceived as

GeRFs and never as Random Functions continuous in mean-square. When d “ 3, computations reported in

Appendix C.2 show that the covariance structure is

ρWU ph, uq “ 1

p2πq d`1

2

π

2a|h| erf
˜

|h|
2
a

a|u|

¸

. (50)

This covariance must be interpreted in a distributional sense, since it is not defined at |h| “ |u| “ 0. The

spatial trace of the stationary field associated to (50), US , can be described using equation (39) to obtain

?
2p´∆q 1

2US
2nd o.“ WS, (51)

whereWS is a spatial White Noise. In other words, US is a Matérn model without range parameter presented

in Section 5.2, as can be seen when evaluating equation (50) at u “ 0, with h ‰ 0.

When X is an arbitrary source term, Theorem 2 cannot be applied for spatial dimensions smaller that 3.

For d “ 3, a convolvability condition between ρX and (50) must be verified. Nevertheless, the existence of a

solution can be ensured independently on existence of solutions with White Noise source term by imposing

necessary conditions on µX such that the existence criteria (7) holds. For example, one could require µX to

be null in some neighborhood of the origin.

6.2.2 Second Order Evolution Models

Second order evolution models are solutions of (32) with β “ 2. The spatio-temporal symbol function is

pξ, ωq ÞÑ ´ω2 ` gpξq. (52)

The null-set of this function is N2 “ tpξ, ωq P R
d ˆ R | gRpξq “ ω2 and gIpξq “ 0u. A sufficient condition

to have a unique stationary solution is thus that gR is a strictly negative function satisfying the SCEU, which

is from now on supposed to hold. Let us first consider the case X “ W ,

B2U
Bt2 ` LgU “ W. (53)
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The spectral measure of the unique stationary solution to 53 is

dµWU pξ, ωq “ 1

p2πq d`1

2

dξdω

pω2 ´ gRpξqq2 ` g2I pξq , (54)

and its covariance distribution ρWU is the Fourier transform of µWU . To simplify the notation, consider the

non-null complex spatial function

γpξq “
c

|gpξq| ` gRpξq
2

` i

c

|gpξq| ´ gRpξq
2

. (55)

Let us denote γR and γI the real and imaginary parts of γ respectively. The covariance ρWU can be expressed
as

ρWU ph, uq “ FS

˜

ξ ÞÑ e´p|γIpξq|`iγRpξqq|u|

p2πq d
2 8|γIpξq|2

„

1

|γIpξq| ` iγRpξq ` ei2γRpξq|u|

|γIpξq| ´ iγRpξq ` ei2γRpξq|u| ´ 1

iγRpξq



dξ

¸

phq.

(56)

This positive-definite distribution has a functional meaning if the function |γI |´1|γ|´2 is integrable over Rd,
which is equivalent to require that the function |g|´1p|g|´gRq´ 1

2 is integrable over Rd. The term ei2γRpξq|u|´1
iγRpξq

is interpreted as 2|u| when γRpξq “ 0, which is the case when gIpξq “ 0. Contrarily to first order evolution
models, this model is always symmetric. The spatial covariance structure is determined by both gR and gI ,
and we describe it by evaluating (56) at u “ 0,

ρWU ph, 0q “ FS

˜

ξ ÞÑ dξ

p2πq d
2 4|γIpξq||γpξq|2

¸

phq “ FS

˜

ξ ÞÑ dξ

p2πq d
2 2

?
2|gpξq|

a

|gpξq| ´ gRpξqq

¸

phq. (57)

The spectral measure of a spatial trace of the unique stationary solution to (53) is thus

dµWUS
pξq “ dξ

p2πq d
2 2

?
2|gpξq|

a

|gpξq| ´ gRpξqq
.

We consider next the separable source term X “ XS bWT . In this case, the covariance of the solution
is

ρU ph, uq “ FS

˜

ξ ÞÑ e´p|γIpξq|`iγRpξqq|u|

p2πq d
2 8|γIpξq|2

„

1

|γIpξq| ` i|γRpξq| ` ei2γRpξq|u|

|γIpξq| ´ i|γRpξq| ` ei2γRpξq|u| ´ 1

iγRpξq



dµXS
pξq

¸

phq.

(58)

Evaluating at u “ 0 leads to the covariance of the spatial trace US , with spectral measure

dµUS
pξq “ dµXS

pξq
2
?
2|gpξq|

a

|gpξq| ´ gRpξqq
. (59)
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Observing that this is a measure of the form (8), we obtain that US satisfies the SPDE over Rd

b

2
?
2Lb

|g|
?

|g|´gR
US

2nd o.“ XS (60)

When X is a general spatio-temporal stationary GeRF, a sufficient condition to apply Theorem 2 is that

gR, 1
gR

and gI are in the space OM pRdq. In this case, the only stationary solution to the SPDE (32) with

β “ 2 has a covariance of the form ρU “ ρWU ˚ ρX , where ρWU is given by (56).

Example 6.5. Second Order Evolution of Matérn Model.

A second order evolution of Matérn model is the unique stationary solution to the SPDE over Rd ˆ R

B2U
Bt2 ´ apκ2 ´ ∆qα

2U “ W, (61)

with a, κ ą 0 and α P R. The spatial symbol function is gpξq “ ´apκ2 ` |ξ|2qα
2 , which satisfies SCUE. Its

spectral measure is

dµU pξ, ωq “ 1

p2πq d`1

2

dξdω

pω2 ` apκ2 ` |ξ|2qα
2 q2

. (62)

Here, the function γ defined in (55) is purely imaginary, with γpξq “ i
?
apκ2 ` |ξ|2qα

4 . Following equation

(56) and using the expression of the Fourier transform of a radial function, the covariance is

ρU ph, uq “ 1

p2πq d
2 |h| d´2

2

ż 8

0

J d´2

2

p|h|rqe
´?

apκ2`r2qα
4 |u|p1 ` ?

apκ2 ` r2qα
4 |u|q

4a
?
apκ2 ` r2q 3α

4

r
d
2 dr, (63)

which has a meaning as a continuous function when α ą 2d
3

. Following (60), a spatial trace of this model is

the unique solution of the SPDE over Rd

2

b

a
?
apκ2 ´ ∆q 3α

8 US
2nd o.“ WS , (64)

where WS is a spatial White Noise. As a consequence it is a Matérn Model. Since 1
gR

P OM pRdq, we

conclude by Theorem 2 that the unique stationary solution of the SPDE

B2U
Bt2 ´ apκ2 ´ ∆qα

2U “ X (65)

has a covariance which is the convolution between ρX and ρU ph, uq given in (63).
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Example 6.6. The Wave Equation. As next example we consider the stochastic wave equation

B2U
Bt2 ´ c2∆U “ X, (66)

where X is a stationary random field and c ą 0 is the propagation velocity. This is a second order evolution

model with spatial symbol function gpξq “ c2|ξ|2. The null-set of the associated spatio-temporal symbol

function pξ, ωq ÞÑ ´ω2 ` c2|ξ|2 is the spatio-temporal cone C “ tpξ, ωq P R
d ˆ R | |ω| “ c|ξ|u. As a

consequence uniqueness of a potential stationary solution does not hold. Following Remark 3, stationary

solutions to the homogeneous wave equation

B2UH

Bt2 ´ c2∆UH “ 0 (67)

are found by studying covariance structures associated to spectral measures supported on the cone C. A

spectral measure µUH
over R

d ˆ R, supported on C, can be described trough its action to test functions

ψ P SpRd ˆ Rq by

xµUH
, ψy “

ż

Rd

ψpξ, c|ξ|q ` ψpξ,´c|ξ|q
2

dνpξq “
ż

Rd

ż

R

ψpξ, ωqd
ˆ

δ´c|ξ| ` δc|ξ|
2

˙

pωqdµUS
H

pξq (68)

where µUS
H

is a spectral measure over Rd. In the right hand side of (68), the disintegration language is used

for the measure µUH
, which can then be expressed as dµUH

pξ, ωq “ dp δ´c|ξ|`δc|ξ|

2
qpωqdµUS

H
pξq. Hence,

all stationary solutions of (67) have a spectral measure of this form. After applying a temporal Fourier

transform, we obtain that the associated covariance structure is

ρUH
ph, uq “ FS

ˆ

ξ ÞÑ cospc|ξ||u|q?
2π

dµUS
H

pξq
˙

phq. (69)

Evaluating (69) at u “ 0, we get that the measure p2πq´ 1

2µUS
H

describes the spatial structure of the solution

UH , which can be chosen arbitrarily. The covariance (69) is a continuous function if µUS
H

is a finite measure

over Rd. Thus, we can use any spatial stationary model to construct a spatio-temporal stationary solution

to (67) maintaining its spatial behavior. As an example, the waving Matérn model, would correspond to

dµUS
H

pξq “ p2πq´ d´1

2 apκ2 ` |ξ|2q´αdξ, with a, κ ą 0 and α P R. The associated covariance would then be

ρph, uq “ FS

˜

cospc|ξ||u|q
p2πq d

2 apκ2 ` |ξ|2qα

¸

phq. (70)
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Let us now go back to the existence of stationary solutions of (66) with X “ W , i.e.

B2U
Bt2 ´ c2∆U “ W. (71)

Since the function pξ, ωq ÞÑ p´ω2 ` c2|ξ|2q´2 is not locally integrable, by applying Theorem 1 we conclude

that there are no stationary solutions to the stochastic wave equation (71). Hence, we cannot apply Theorem

2 to relate the covariance of a possible stationary solution of (66) to the covariance of the solution with White

Noise source term. The existence of a stationary solution to (66) must be then studied for every particular

case of X. Notice however that the existence is guaranteed when the spectral measure of the source term has

a support which is strongly disjunct with the spatio-temporal cone C, that is, there exists a neighborhood of

the support that is disjoint with the cone.

6.2.3 Fractional Order Evolution Models

We close this Section with a class of operators defined through a symbol which can be interpreted as frac-

tional differential operators in time. Let β ą 0 a positive real number. We define

Bβ
Btβ :“ F

´1
T ppiωqβFT p¨qq, (72)

where we have used the symbol function over R

ω ÞÑ piωqβ :“ |ω|βei sgnpωqβπ
2 . (73)

The function (73) is continuous, Hermitian-symmetric and bounded by a polynomial for every β ą 0, so it

is indeed a symbol function. The operator (72) coincides with a classical differential operator for β P N.

Similar definitions of a fractional differential operator can be found in Maniardi et al. (2001).

A fractional order evolution model is a spatio-temporal stationary solution of the SPDE (32) with β R N.

The associated spatio-temporal symbol function is

pξ, ωq ÞÑ piωqβ ` gpξq “ |ω|β cos
ˆ

βπ

2

˙

` gRpξq ` i

ˆ

sgnpωq|ω|β sin
ˆ

βπ

2

˙

` gIpξq
˙

. (74)

Since the null-set of (74) is

Nβ “
"

pξ, ωq P R
d ˆ R | gRpξq “ ´|ω|β cos

ˆ

βπ

2

˙

and gIpξq “ ´ sgnpωq|ω|β sin
ˆ

βπ

2

˙*

,

a sufficient condition to have a unique stationary solution is that gR satisfies SCEU with p´1qtβ`1

2
ugR ą 0.
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We suppose this holds and we consider the case where X is a spatio-temporal White Noise, yielding

BβU
Btβ ` LgU “ W. (75)

The spectral measure of the unique stationary solution of (75) is

dµWU pξ, ωq “ 1

p2πq d`1

2

dξdω

|ω|2β ` 2|ω|β
´

gRpξq cos
´

βπ
2

¯

` sgnpωqgIpξq sin
´

βπ
2

¯¯

` |gpξq|2
. (76)

This model is in general non-separable, and it can be non-symmetrical, depending on the function gI . A

symmetrical model is obtained when gI “ 0. If β ď 1
2
, the measure (76) is not finite, in which case

the solution is a GeRF. An important property of this model is that the temporal regularity of the Random

Field can easily be controlled with the parameter β, thereby obtaining a large variety of models that are not

necessarily symmetric, in a striking contrast with the Stein model presented in Section 6.1. For instance,

when β ą 1
2
, the solution of (75) is mean-square continuous in time. Notice that Theorem 2 cannot be

applied since the function piωqβ is not smooth for a non-integer values of β.

When β ą 1
2
, expressions of the spectral measure of a spatial trace of this model are possible but rather

complicated. Example 6.7 details a particular case of gR with gI “ 0. It can be generalized to other functions

gR following a similar approach.

Example 6.7. Fractional Evolution of Matérn Model. A fractional evolution of Matérn model is the

(unique) stationary solution of the equation over Rd ˆ R

BβU
Btβ ` p´1qrβ

2
s`1apκ2 ´ ∆qα

2U “ W, (77)

with β R N, a, κ ą 0 and α P R. It is a fractional order evolution model with spatial symbol function

gpξq “ p´1qrβ
2

s`1apκ2 ` |ξ|2qα
2 . Its spectral measure is

dµU pξ, ωq “ 1

p2πq d`1

2

dξdω

|ω|2β ` p´1qrβ
2

s`12a|ω|βpκ2 ` |ξ|2qα
2 cos

´

βπ
2

¯

` a2pκ2 ` |ξ|2qα
. (78)

The spatial structure of this model can be described when β ą 1
2

by computing the integral over the temporal

frequency domain of the measure (78). The spectral measure of the spatial trace is then

dµUS
pξq “

σ2a,βdξ

p2πq d
2 pκ2 ` |ξ|2qα´ α

2β

, (79)
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with σ2a,β “
´a

1

β
´2

sinpπ
2
βq sin

´

π
β

¯

β cospπ
2
β`π

2
prβ

2
s`1qq . The spatial trace is therefore the solution of the SPDE over Rd

1

σa,β
pκ2 ´ ∆q

α
2

´

1´ 1

2β

¯

US
2nd o.“ WS, (80)

where WS is a spatial White Noise. Direct identification in (80) indicates that the spatial covariance is thus

a Matérn covariance with functional meaning when α
´

1 ´ 1
2β

¯

ą d
2
.

7 Conclusion

We have proposed a very general setting that allows to relate a SPDE to spatial and spatio-temporal co-

variance structures through the specification of symbol functions. It is grounded on Schwartz’s theory of

distribution Schwartz (1966), as already proposed in Itô (1954) and Matheron (1965). This setting offers a

convenient framework to build and characterize models of random fields that are stationary solutions, when

they exist, of a very large class of SPDEs. Their covariance structure is in direct relationship with the symbol

function thanks to Theorem 1. In particular, this setting allows to handle relatively easily SPDEs with frac-

tional behavior, in time, in space, and in both spatial and temporal dimensions. Thanks to this framework,

we were able to construct very general models, that include and encompass existing models, as shown in

details in Section 5 and Section 6.

Theorem 2 establishes that the covariance of the stationary solution of a given SPDE for general random

source term with covariance ρX is the convolution between the covariance of the same SPDE with White

Noise source term and ρX . This results is a powerful tool for easily characterizing solutions of very general

SPDEs. It also emphasizes the central role played by White Noise source term.

We envision this work as a contribution strengthening the SPDE paradigm shift for analyzing spatial and

spatio-temporal data as initiated in Lindgren et al. (2011). Our contribution offers the possibility to build

and characterize models far beyond the Matérn family which is currently the covariance model considered

within most SPDE implementations.

Efficient simulation of our models can be easily conceived using Fourier analysis based PDE-solvers

as proposed in Lang & Potthoff (2011). Inference and simulation methods presented in Sigrist et al. (2015)

can be easily adapted to any first order evolution models presented in Section 6.2.1. Since the linear oper-

ators considered in this work are not strictly speaking differential operators, methods inspired by the Finite

Elements Method or by the Finite Difference Method are not applicable without specific adaptation. For

instance, Bolin & Kirchner (2017) proposed adaptations of finite elements methods for Matérn Model with

fractional regularity.
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Appendix

A Reminders on tempered distributions

Here we give a brief overview of the main definitions and results regarding Schwartz’s distribution theory

in a tempered framework. For a more detailed presentation, the reader is referred to Donoghue (1969) and,

of course, to Schwartz (1966). For a brief introduction with geostatistical purposes, we suggest Matheron

(1965), appendix A.

Let SpRdq be the set of all complex, smooth and fast decreasing functions over Rd,

SpRdq “ tϕ P C8pRdq such that }xαDβϕ}8 “ sup
xPRd

|xαDβϕpxq| ă 8, @α, β P N
du,

where the multi-index notation for the power xα and the differential operator Dβ for α, β P N
d is used,

meaning respectively xα “ xα1

1 ¨ ¨ ¨ xαd

d and Dβ “ B|β|

Bxβ1
1

¨¨¨Bxβd
d

, with |β| “ β1 ` ... ` βd. Equipped with a

particular topology, SpRdq is a complete metric space, known as the Schwartz space of test functions. Its

dual space, i.e. the space of all continuous linear functionals from SpRdq to C, is called the space of tempered

distributions and it is denoted S 1pRdq. In order to emphasize the dual aspect of tempered distributions and

test functions, we will denote xT, ϕy the action of T P S 1pRdq on ϕ P SpRdq.

Tempered distributions can be seen as a generalization of functions, on which Fourier transform and

differentiation of any order can be properly defined. Polynomials, continuous and bounded functions or

functions f P LppRdq with p P r1,8s can be interpreted as tempered distributions through the integral

xf, ϕy :“
ş

Rd fpxqϕpxqdx which is well defined for all ϕ P SpRdq. Similarly, a finite measure µ over Rd

can also define a tempered distribution through the integral xµ,ϕy :“
ş

Rd ϕpxqdµpxq, ϕ P SpRdq.

Tempered distributions can be differentiated any number of times. Let Dα be a differential operator with

α P N
d. Inspired by the integration by parts formula, the derivative of a tempered distribution T P S 1pRdq

is defined as a new tempered distribution DαT P S 1pRdq through xDαT, ϕy :“ p´1q|α|xT,Dαϕy for all

ϕ P SpRdq. The Fourier transform and its inverse are defined for any test function ϕ P SpRdq as

F pϕqpξq “ 1

p2πqd{2

ż

Rd

e´iξTxϕpxqdx, F
´1pϕqpξq “ 1

p2πqd{2

ż

Rd

eiξ
Txϕpxqdx. (81)

For tempered distributions, the Fourier transform is defined as a new tempered distribution through the

transfer formula

xF pT q, ϕy :“ xT,F pϕqy; xF´1pT q, ϕy :“ xT,F´1pϕqy, @ϕ P SpRdq, T P S 1pRdq. (82)
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The Fourier transform is a bijective endomorphism over SpRdq and over S 1pRdq. The classical property

of the Fourier transform with respect to the differentiation, F pDαT q “ i|α|ξαF pT q, where ξ denotes the

variable in the frequency space, holds also for every tempered distribution T .

Let us also define the space OM pRdq of complex smooth functions defined over Rd such that all of its

derivatives are polynomially bounded. Explicitly,

OM pRdq “ tf P C8pRdq : @α P N
d DC ą 0 DN P N such that |Dαfpxq| ď Cp1 ` |x|2qN @x P R

du.

This space is known as the space of multiplicators of the Schwartz space. If f P OM pRdq and ϕ P SpRdq,

then fϕ P SpRdq. If T P S 1pRdq, the multiplication fT P S 1pRdq is defined through xfT, ϕy “ xT, fϕy
for every ϕ P SpRdq. If f P OM pRdq, then its Fourier transform F pfq is convolvable with any tempered

distribution, and the exchange formula for the Fourier transform holds: F pfT q “ p2πq´ d
2 F pfq ˚F pT q for

every T P S 1pRdq. See Schwartz (1966), chapter VII, section 5 and Theorem XV in section 8.

B Proof of Proposition 2

The main difficulty of this Proposition lies in a proper definition of the multiplication gZ as a GeRF. Indeed,

we could simply write xgZ, ϕy :“ xZ, gϕy, but Z is only defined over functions in SpRdq, and gϕ is not

in general in SpRdq. Nevertheless, we will show that we can define xZ, fy if Z is a slow-growing random

measure and f is a continuous function with fast decreasing behavior .

We define CFDpRdq :“ tf P CpRdq | }p1 ` |x|2qNf}8 ă 8 @N P Nu, the space of all continuous

functions with fast decreasing behavior, equipped with the following topology: a sequence of functions

pfnqnPN Ă CFDpRdq converges to f P CFDpRdq, denoted fn
CFDÑ f , if for all N P N we have that

}p1 ` |x|2qN pfn ´ fq}8 Ñ 0. For this topological vector space, the following two lemmas hold. They will

be proven later.

Lemma B.1. SpRdq Ă CFDpRdq, and it is a dense sub-space (with the topology of CFD).

Lemma B.2. MSGpRdq “ C 1
FDpRdq, that is, every measure µ P MSGpRdq defines a continuous linear

functional T over CFDpRdq through the integral

xT, fy “
ż

Rd

fpxqdµpxq, @f P CFDpRdq. (83)

Conversely, for every continuous linear functional T : CFDpRdq Ñ C there exists a unique µ P MSGpRdq
such that (83) holds.

We now prove Proposition 2. If g is a continuous function bounded by a polynomial, then gϕ P CFDpRdq
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for all ϕ P SpRdq. Since, as stated in Lemma B.1, SpRdq is dense in CFDpRdq , we can construct the random

variable xZ, gϕy as a limit in a mean-square sense. Let pgnqnPN Ă SpRdq be a sequence such that gn
CFDÑ gϕ.

Consider the sequence of square-integrable (centred) random variables pxZ, gnyqnPN. We obtain by linearity

that

Ep|xZ, gny ´ xZ, gmy|2q “ Ep|xZ, gn ´ gmy|2q “
ż

RdˆRd

pgn ´ gmqpxqpgn ´ gmqpyqdCZpx, yq. (84)

Since the sequence pgnqn converges inCFDpRdq, it is straightforward that the sequence pgnbgnqn converges

in CFDpRd ˆR
dq. Since CZ P MSGpRd ˆR

dq, by Lemma B.2 the integral in (84) goes to zero as n and m

grow, due to continuity. The sequence pxZ, gnyqnPN is thus a Cauchy sequence in L2. Hence, it is convergent,

and we write

xgZ, ϕy :“ xZ, gϕy :“ lim
nÑ8

xZ, gny, (85)

where the limit is taken in the sense of L2. The covariance structure of gZ can be easily obtained as a limit

of covariances, obtaining for all ϕ, φ P SpRdq

CovpxgZ, ϕy, xgZ, φyq “
ż

RdˆRd

ϕpxqφpyqgpxqgpyqdCZpx, yq “ xpg b gqCZ , ϕ b φy. (86)

The result of Corollary 1, which describes the case of a slow-growing orthogonal random measure, follows

from 86. Details are left to the reader. �

Proof of Lemma B.1. It is clear that SpRdq Ă CFDpRdq. To prove the density, we first prove that

if f P CFDpRdq and ϕ P SpRdq, then f ˚ ϕ P SpRdq, where ˚ is the convolution product. It is clear

that f is integrable and bounded, as well as ϕ which, in addition, is smooth. Thus f ˚ ϕ is a smooth inte-

grable, continuous and bounded function, and its Fourier transform satisfies F pf ˚ϕq “ p2πq d
2 F pfqF pϕq.

We have that F pϕq P SpRdq since F is a bijective endomorphism of SpRdq. Since f P CFDpRdq
we conclude by Riemann-Lebesgue lemma that F pfq is a smooth function with all derivatives vanishing

at infinity. Thus F pfq P OM pRdq, which implies that p2πq d
2 F pfqF pϕq P SpRdq. This proves that

f ˚ ϕ “ F´1
´

p2πq d
2 F pfqF pϕq

¯

P SpRdq.

Let pφnqnPN Ă SpRdq be a regularizing sequence of positive smooth functions with compact support,

such that supppφnq “ B1{np0q and
ş

B1{np0q φnpxqdx “ 1 for all n P N. Here Brp0q Ă R
d denotes the open

ball with center 0 and radius r ě 0. We consider the sequence of functions fn “ f ˚ φn, which are all in

SpRdq. We will prove that fn
CFDÑ f . Let m P N be fixed. We must show that }p1 ` |x|2qmpfn ´ fq}8 Ñ 0

as n Ñ 8. Let ǫ ą 0. As f P CFDpRdq, we can take R ą 0 large enough such that for every x such that

|x| ą R ´ 1, p1 ` 2|x|2qm|fpxq| ă ǫ
3p2m´1`22m´1q holds. Notice that in this case, p1 ` |x|2qm|fpxq| ă ǫ

3
.

Since f is continuous, it is uniformly continuous over the compact set BR`1p0q. Thus, there exists δ ą 0
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such that if |x ´ y| ă δ, then |fpxq ´ fpyq| ă ǫ
3p1`R2qm for all x, y P BR`1p0q. Consider n0 P N such that

1
n0

ă δ. Then, for all n ě n0,

}p1 ` |x|2qmpf ´ fnq}8 “ sup
xPRd

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1{np0q
p1 ` |x|2qmpfpxq ´ fpx´ yqqφnpyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
xPBRp0q

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1{np0q
p1 ` |x|2qmpfpxq ´ fpx´ yqqφnpyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

(a)

` sup
xPBRp0qc

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1{np0q
p1 ` |x|2qmpfpxq ´ fpx´ yqqφnpyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

. (b)

(87)

For the first term (a) uniform continuity of f implies

sup
xPBRp0q

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1{np0q
p1 ` |x|2qmpfpxq ´ fpx´ yqqφnpyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ż

B1{np0q
p1 `R2qm ǫ

3p1 `R2qmφnpyqdy “ ǫ

3
.

(88)

Regarding the second term (b), the integral is split to obtain

pbq ď sup
xPBRp0qc

t
ż

B1{np0q
p1 ` |x|2qm|fpxq|φnpyqdy

loooooooooooooooooooomoooooooooooooooooooon

ď ǫ
3

`
ż

B1{np0q
p1 ` |x|2qm|fpx´ yq|φnpyqdyu (89)

When applying Jensen’s inequality twice, one shows that p1` |x|2qm ď 2m´1rp1` 2|x´ y|2qm ` 2m|y|2ms
for all x and y, and thus

ż

B1{np0q
p1 ` |x|2qm|fpx´ yq|φnpyqdy ď 2m´1

„
ż

B1{np0q
p1 ` 2|x ´ y|2qm|fpx´ yq|
loooooooooooooooomoooooooooooooooon

ă ǫ

3p2m´1`22m´1q
from |x´y|ąR´1

φnpyqdy

`2m
ż

B1{np0q
|fpx´ yq|
loooomoooon

ă ǫ

3p2m´1`22m´1q

|y|2m
loomoon

ď1

φnpyqdy


ă 2m´1p ǫ

3p2m´1 ` 22m´1q ` 2m
ǫ

3p2m´1 ` 22m´1qq “ ǫ

3
.

(90)

Hence considering (89) and (90) we finally obtain pbq ă 2ǫ
3

. Putting together this result and (88) on equation
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(87), we finally obtain that for all n ě n0,

}p1 ` |x|2qmpf ´ fnq}8 ă ǫ, (91)

hence }p1 ` |x|2qmpf ´ fnq}8 Ñ 0. Since m was arbitrary, this result hods for all m. We therefore can

conclude that fn
CFDÑ f . Since for any arbitrary f P CFDpRdq we can find a sequence contained in SpRdq

which converges to f , we conclude that SpRdq is dense in CFDpRdq. �

Proof of Lemma B.2. Let µ P MSGpRdq. By definition, there exists N P N such that p1 ` |x|2q´N |µ|
is finite. Let f P CFDpRdq. We have that

ˇ

ˇ

ˇ

ˇ

ż

Rd

fpxqdµpxq
ˇ

ˇ

ˇ

ˇ

ď
ż

Rd

|p1 ` |x|2qNfpxq|p1 ` |x|2q´Nd|µ|pxq ď }p1 ` |x|2qNf}8

`

p1 ` |x|2q´N |µ|
˘

pRdq ă 8.

(92)

Thus, every f P CFDpRdq is Lebesgue integrable with respect to µ, and the integral defines a linear func-

tional on CFDpRdq. If fn
CFDÑ 0 then

|xµ, fny| ď
`

p1 ` |x|2q´N |µ|
˘

pRdq}p1 ` |x|2qNfn}8 Ñ 0. (93)

Hence, µ defines a continuous linear functional from CFDpRdq to C.

In order to prove the converse, we first claim that if T : CFDpRdq Ñ C is a linear functional, then it is

continuous if and only if there exist C ą 0 and N0 P N such that

|xT, fy| ď C}p1 ` |x|2qN0f}8 @f P CFDpRdq. (94)

The sufficiency of this claim is straightforward. Consider any sequence pfnqnPN such that fn
CFDÑ 0. In

particular this sequence satisfies }p1 ` |x|2qN0fn}8 Ñ 0. Thus xT, fny Ñ 0, and T is continuous. Let us

prove the necessity. Let us suppose that T is continuous but that (94) does not hold. Then, for all C ą 0 and

for all N P N we can find a function fC,N P CFDpRdq such that |xT, fC,Ny| ą C}p1 ` |x|2qNfC,N}8. We

consider C “ n2 and N “ n for all n P N. We obtain thus a sequence of functions pfnqnPN in CFDpRdq
such that

|xT, fny| ą n2}p1 ` |x|2qnfn}8 @n P N. (95)

Let us define the family of functions

φn “ fn

n
ÿ

mďn

}p1 ` |x|2qmfn}8
, n P N. (96)
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Clearly the sequence pφnqnPN is in CFDpRdq. Let M P N arbitrary. By (96), we get that if n ě M ,

}p1 ` |x|2qMφn}8 “ }p1 ` |x|2qMfn}8

n
ÿ

mďn

}p1 ` |x|2qmfn}8
ă 1

n

and thus φn
CFDÑ 0 as n Ñ 8. On the other hand, by (95) we get

|xT, φny| “ 1

n

|xT, fny|
ÿ

mďn

}p1 ` |x|2qmfn}8
ą n2

n

}p1 ` |x|2qnfn}8
ÿ

mďn

}p1 ` |x|2qmfn}8
ě 1

where we have used that
ÿ

mďn

}p1 ` |x|2qmfn}8 ď n}p1 ` |x|2qnfn}8 as }p1 ` |x|2qmfn}8 ď }p1 `

|x|2qnfn}8 for all m ď n. We conclude that |xT, φny| does not converge to 0 as n grows, and thus T is not

sequentially continuous, which is a contradiction. Hence, our claim holds.

Let us now prove the second part of Lemma (B.2).

Let T P C 1
FDpRdq. There exists C ą 0 and N P N such that (94) holds. Let us define the linear

functional p1 ` |x|2q´NT : CFDpRdq Ñ C with

xp1 ` |x|2q´NT, fy :“ xT, p1 ` |x|2q´Nfy. (97)

Since for all f P CFDpRdq, p1 ` |x|2q´Nf is also in CFDpRdq this functional is well defined. Considering

that p1 ` |x|2q´N |f | ď |f |, it is easy to see that it is continuous. Using (94) we get

|xp1 ` |x|2q´NT, fy| ď C}p1 ` |x|2qN p1 ` |x|2q´Nf}8 “ C}f}8, (98)

for all f P CFDpRdq. In particular, (98) holds for all f P CcpRdq, the space of compactly supported

continuous complex functions over Rd. Consider C0pRdq, the space of continuous complex functions defined

over Rd vanishing at infinity, which is a Banach space with the supreme norm. AsCcpRdq is a dense subspace

ofC0pRdq, then by extension of bounded linear functionals, we obtain that p1`|x|2q´NT is a bounded linear

functional over C0pRdq, for which (98) holds for every f P C0pRdq. By Riesz’s Representation Theorem

(see Rudin (1987), chapter 6) we conclude that p1 ` |x|2q´NT is identified with a unique finite measure

ν over Rd. By defining µ “ p1 ` |x|2qNν, we obtain that µ is a well defined Radon measure which is in

MSGpRdq, and considering that p1 ` |x|2qN p1 ` |x|2q´NT “ T , it is straightforward that xT, fy “ xµ, fy
for every f P CFDpRdq. �
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C Proofs regarding the Stochastic Heat Equation (Example 6.4)

C.1 Existence of stationary solutions

According to Theorem 1, there exists a stationary solution to the Stochastic Heat Equation with White Noise

source term (49) if and only if the spatio-temporal measure pω2 ` a2|ξ|4q´1dξdω is in MSGpRd ˆ Rq,

i.e. is it is a slow-growing measure. This is the case if the function pξ, ωq ÞÑ pω2 ` a2|ξ|4q´1 is locally

integrable, in which case the slow-growing behavior is provided by the fact that this function is bounded

outside a neighborhood around the origin. It suffices thus to study the integrability over subsets of Rd ˆ R

of the form B
pdq
R p0q ˆ r´M,M s for R,M ą 0, where Bpdq

R p0q Ă R
d is the ball of radius R centered in 0.

Using integration with polar coordinates in the spatial domain and the symmetry in the time dimension, we

obtain
ż

B
pdq
R

p0qˆr´M,Ms

1

ω2 ` a2|ξ|4 dpξ, ωq “ C

ż R

0

arctan

ˆ

M

ar2

˙

rd´3dr (99)

for some positive constant C . As the function r ÞÑ arctan
`

M
ar2

˘

is both inferiorly and superiorly bounded

by a constant when r P r0, Rs, we conclude that the integral (99) is finite only for d ą 2, from which

we get that there exists stationary solutions to the equation (49) only for spatial dimensions d ě 3. In

these cases, solutions would have a functional meaning if the measure pω2 ` a2|ξ|4q´1dξdω was finite,

which would hold if the limit when M and R go to 8 would exist and was finite. However, by seeing that
şR

0
arctan

`

M
ar2

˘

rd´3dr ě arctan
`

M
aR2

˘

Rd´2

d´2
, and by letting M Ñ 8 first and R Ñ 8 second, one gets

that the limit is not finite. Hence, the stationary solutions to (49) only have a meaning as GeRFs and not as

Random Functions.

C.2 Covariance structure

The covariance structure (50) is the Fourier transform of the spatio-temporal spectral measure dµU pξ, ωq “
p2πq´ d`1

2 pω2 ` a2|ξ|4q´1dξdω for d “ 3. This measure is not finite. The Fourier transform ρU “ F pµU q
is obtained as the limit, in a distributional sense, of continuous functions. Let R ą 0 and let denote

µRU the restriction of the measure µU to BRp0q ˆ R Ă R
3 ˆ R, i.e. dµRU pξ, ωq “ p2πq´ d`1

2 pω2 `
a2|ξ|4q´1

1BRp0qpξqdξdω. This measure is finite, so ρRU “ F pµRU q is a continuous positive-definite func-

tion. By the dominated convergence theorem, one gets that for every ϕ P SpR3 ˆ Rq, xµRU , ϕy Ñ xµU , ϕy
as R Ñ 8. Thus, by continuity of the Fourier transform, we have ρUR Ñ ρU , in distributional sense. Let us
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calculate ρRU ph, uq for ph, uq P R
3 ˆ R.

ρRU ph, uq “ 1

p2πq4
ż

BRp0q

ż

R

e´iuω´ihT ξ

ω2 ` a2|ξ|4 dωdξ

“ 1

p2πq3
1

2a

ż

BRp0q
e´ihT ξ e

´a|ξ|2|u|

a|ξ|2 dξ

“ 1

p2πq 3

2

1

2a

c

2

π

ż R

0

J 1

2

p|h|rq
a

r|h|
e´a|u|r2dr

“ 1

p2πq2
1

a|h|

ż R

0

sinp|h|rq
r

e´a|u|r2dr. (100)

Let us evaluate lim
RÑ8

ρRph, uq for |h| ‰ 0 ‰ |u|. Consider the function fR : R` Ñ R defined by fRpλq “
şR

0

sinpλrq
r

e´a|u|r2dr for λ ě 0, with fRp0q “ 0. By the dominated convergence theorem, we have f 1
Rpλq “

şR

0
cospλrqe´a|u|r2dr. Using the expressions of the Fourier transform of a Gaussian function, one proves

that lim
RÑ8

f 1
Rpλq “

c

π

4a|u|e
´ λ2

4a|u| . Using fRpλq “
şλ

0
f 1
Rpsqds and the dominated convergence theorem,

we get

lim
RÑ8

fRpλq “
ż λ

0

c

π

4a|u|e
´ s2

4a|u|ds “ π

2
erf

˜

λ

2
a

a|u|

¸

. (101)

Using this result in (100) with λ “ |h| and R Ñ 8, we finally obtain the distribution associated to the

function

ρU ph, uq “ 1

p2πq2
π

2a|h| erf
˜

|h|
2
a

a|u|

¸

. (102)

which is the expression in (50).

It is worth emphasizing that this expression is only valid in a distributional sense. The distribution ρU is

only meaningful when applied to test functions, satisfying xρU , ψy “ lim
RÑ8

xρRU , ψy for all ψ P SpR3 ˆ Rq.

The expression associated to the function (102) refers to the fact that for every test function ψ such that its

support does not contains the origin, we have xρU , ψy “
ş

R3ˆR

1

p2πq2
π

2a|h| erf
ˆ

|h|
2
?

a|u|

˙

ψph, uqdhdu.
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D Proofs of results in Example 6.7

We show the steps to calculate the spectral measure of the spatial trace of the unique stationary solution to
(77) for β ą 1

2
. As ρU ph, uq “ F pµU q, we have explicitly (when we have a functional meaning)

ρUS
phq “ 1

p2πq d
2

ż

Rd

e´ihT ξ 1

p2πq d
2

`1

ż

R

dω

|ω|2β ` p´1qr β

2
s`12a|ω|βpκ2 ` |ξ|2qα

2 cos
´

βπ
2

¯

` a2pκ2 ` |ξ|2qα
dξ

(103)

The difficulty is then to compute the temporal integral with respect to ω. Using the parity of the involved

function and the change of variable ω “
´

apκ2 ` |ξ|2qα
2 θ

¯
1

β
one obtains the expression

1

p2πq d
2

ż

Rd

e´ihT ξ
2

´

apκ2 ` |ξ|2qα
2

¯ 1

β
´2

p2πq d
2

`1β

ż 8

0

θ
1

β
´1

θ2 ` 2θp´1qrβ
2

s`1 cos
`

π
2
β

˘

` 1
dθ dξ. (104)

The integral with respect to θ is computable following Gradshteyn & Ryzhik (1994 ), 3.252.12. After a

few adaptations for the expression "p´1qrβ
2

s`1 cos
`

π
2
β

˘

" depending in the value of β, and by using basic

properties of the trigonometric functions one proves that

ż 8

0

θ
1

β
´1

θ2 ` 2θp´1qrβ
2

s`1 cos
`

π
2
β

˘

` 1
dθ “

´π sin
`

π
2
β

˘

sin
´

π
β

¯

cos
´

π
2
β ` π

2

´

rβ
2

s ` 1
¯¯ .

Replacing this in 104, one obtains the expression (79) as a spectral measure of the spatial trace. This pro-

cedure also works without a functional meaning, as all we need to do is to calculate the density of the (not

necessarily finite) spatial measure in (103).
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