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Abstract

The movement of atmospheric air masses can be seen as a continuous and generally complex flow of

gases and particles hovering over our planet. It can however be locally simplified by considering three-

dimensional trajectories of air masses connecting distant areas of the globe during a given period of

time.

In this paper, we present a mathematical framework to construct spatial and spatiotemporal networks

where the nodes are the subsets of a partition of a geographical area and the links between these nodes are

inferred from sampled trajectories of air masses passing over and across the nodes. We propose different

estimators of link intensities relying on different bio-physical hypotheses and covering adjustable time

periods. This approach leads to a new class of spatiotemporal networks characterized by adjacency

matrices giving, e.g., the probability of connection between distant areas during a chosen period of time.

To illustrate the effectiveness of this approach, we applied it to characterize tropospheric connectivity

in two real geographical contexts: the watersheds of the French region Provence-Alpes-Côte d’Azur and

the coastline of the Mediterranean Sea. The analysis of the constructed networks allowed identifying a

marked seasonal pattern in air mass movements in the two study areas.

The networks constructed from air mass trajectories can be used to investigate issues, e.g., in aerobiol-

ogy and epidemiology of airborne plant pathogens. Similar networks could be estimated from other types

of trajectories, such as animal trajectories, to characterize connectivity between different components of

the landscape where the animals live.

Keywords: Aerobiology; Air masses dynamics; Connectivity; Spatial network; Spatiotemporal network;

Trajectory.

1. Introduction

Atmospheric air masses are volumes of air with a defined temperature and water vapor content that

have long been known to rule fundamental atmospheric phenomena like weather and air currents. Their

composition is mostly inert gases, but both organic and inorganic particles have been found to linger in

high-altitude air as a consequence of the constant interaction of air masses with the earth’s surface below
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them. A non-exhaustive list includes gases and minerals like wildfire smoke, radioactive material, dust,

sand, volcanic ash and sea salt, but also living organisms such as pollen, fungal spores, bacteria, virus

and small insects. Despite the relative sparse density of these particles with respect to the volume of an

air mass, their presence and transportation across the planet has proven to have strong effects on many

phenomena impacting human health and safety (pollen (Mahura et al., 2007; Šauliene and Veriankaite,

2006; Bogawski et al., 2019), dust concentrations (Khaniabadi et al., 2017; Aciego et al., 2017), nuclear

byproducts (Moroz et al., 2010; Rolph et al., 2014), human, animal and plant epidemics (Leyronas et al.,

2018; Wang et al., 2010; Aylor, 1990; Mundt et al., 2009; Sadyś et al., 2014; Hiraoka et al., 2017), air

pollution (Liu et al., 2018b,a; Talbi et al., 2018), and rainfall (Chen and Luo, 2018; Armon et al., 2018;

Rabinowitz et al., 2019)).

The rise in the number of publications on these subjects suggests a growing interest of the scien-

tific community on the effects of air-mass movements on the biosphere, that has surely been boosted

by recent available developments, such as the Hybrid Single-Particle Lagrangian Integrated Trajectory

model (HYSPLIT, Stein et al. (2015)), allowing reconstruction of actual air-mass movements at rather fine

geographical and temporal scales and with a global cover.

The vast majority of studies focused on isolated events, such as dust storms or peaks of air pollutants,

that are rather concentrated in time (from few hours to few weeks) and/or space (just a few locations such

as cities). Nonetheless, the movement of air masses is expected to have impacts on a broader spatiotem-

poral scale, as reviewed in recent studies (Leyronas et al., 2018; Margosian et al., 2009). The purpose

of the present paper is then to propose a mathematical framework for studying air-mass movements on

large spatiotemporal scales, under the hypothesis that these movements can create stable and recurrent

connections between distant portions of a territory. The very nature of these connections will be further

specified throughout the manuscript, but as a general rule we will consider that any pair of points (or

areas) in space can have a certain degree of connection, regardless of their geographic distance, pro-

vided that there are recurrent air-mass trajectories that connect the two points (or areas). The direction

and strength of these connections will be estimated by looking at the trajectories linking every pair of

points/areas and weighting them according to appropriate measures. In this perspective, it seems natu-

ral to resort to graph and network theory, since the formalism of nodes and edges provides an adequate

environment for describing complex connections and can further be used to deepen into the topology of

the constructed networks in order to infer interesting properties of the graphs, such as the presence of

hubs.

From a generic statistical point of view, we aim to (i) estimate the weighted and directed edges of a

graph using a sample of trajectories of individuals traveling through the space formed by the nodes of

the graph, and (ii) characterize the estimated graph based on relevant statistics.

In the following sections, we first introduce the definitions and properties that will allow us to describe

and then estimate connections between points/areas in space via spatiotemporal trajectories. Then, we

propose several types of measures to model diverse types of connections. The expected output consists
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of a spatiotemporal graph describing the network of links induced by trajectories. It’s worth noting that

our approach is meant to infer connectivity induced by air-mass movements and it is readily applicable

to HYSPLIT-type data, but we have maintained a sufficient level of generality to be applied to other

phenomena, provided that trajectory data are available (e.g. animal trajectories). Finally, we apply our

method to two case studies concerning the coastline of the Mediterranean sea and the French region of

Provence-Alpes-Côte d’Azur. The two case studies have different spatiotemporal granularities and they

will be used to provide examples of application of the proposed methodology.

2. Framework for the definition of trajectory-based networks

In this section we show how a set of trajectories evolving within space during a finite time interval can

be used to construct pertinent spatiotemporal networks. We first recall some basic definitions related to

networks (Section 2.1) and then propose a statistical methodology to infer the network structure from a

data set of trajectories (Section 2).

2.1. Network theory

Network theory (a.k.a. graph theory) is a mathematical formalism introduced by Leonhard Euler to

describe the famous Königsberg bridge problem (Newman, 2003; Strogatz, 2001; West et al., 1996). The

two basic components of a network are a set of nodes linked by a set of edges. Nodes can represent a

variety of things, such as persons, regions, computers, neurons, etc., while edges are used to describe the

connections between those nodes. Formally, a network G “ pV,Eq is defined as a set of nodes (or vertices)

V “ tv1, v2, . . . , vNu connected by a set of edges E “ teijui,jPt1,...,Nu. A natural way of representing a

network is given by means of a N ˆ N square matrix M , usually referred to as an adjacency matrix,

whose term pi, jq, Mij , is non-zero an edge exists between i and j. By convention, adjacency matrices

are defined to have an empty diagonal (i.e. Mii “ 0, i P t1, . . . , Nu), meaning that nodes cannot be

self connected. If M is symmetrical (i.e. Mij “ Mji, i, j P t1, . . . , Nu), then the network is said to be

undirected, and directed otherwise. If Mij P t0, 1u, the network is said to be binary, meaning that an

edge between two nodes i and j either exists or does not. Otherwise, if Mij P R, the network is said to

be weighted, meaning that the edge between nodes i and j are more or less connected.

In this paper, a network is said to be spatial (Barthélemy, 2014) when nodes correspond to geographic

locations, while we use the term temporal (Holme and Saramäki, 2012) to refer to networks where edge

values can change over time. Finally, we will use the term spatiotemporal network to refer to network that

are simultaneously spatial and temporal, under the constraint that nodes cannot change position, neither

appear nor disappear over time. The networks considered in this paper also fall into the rather generic

definition of spatiotemporal networks. If the spatial qualifier means that the nodes of the networks repre-

sent fixed geographical locations, the temporal qualifier is more complex. Indeed, temporal networks are

generally divided in the literature into two main classes, namely contact graphs or interval graphs (Holme

and Saramäki, 2012). The former type refers to networks where edges represents instantaneous contacts
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between nodes (Figure 1(a)), while in the second type edges are active over time intervals instead of

instants of time (Figure 1(b)). In this paper we propose a new definition of spatiotemporal networks

where nodes correspond to disjoint regions of the space and edges are computed as a function of the flow

of trajectories linking these nodes (Figure 1(c)), as it will be explained in the rest of the current section.

A B

C

2,4,6,7

1,4,7 1,2,5,7

A B

C

(0,3),(6,8)

(0,1),(3,4) (3,7)

A B

C

(a) (b)

(c)

Figure 1: Types of temporal networks. The time of activation is indicated within the grey bar next to the edges (ranging

between 0 and 8). For contact networks (a), edges activate only for one instant at the time and are marked with black

vertical lines inside the grey bars. For example, in panel (a), the edge between nodes A and B is only active at instants 2,

4, 6 and 7. For interval networks (b), edges can be activated during an interval of time. For example, the edge between A

and B in panel (b) is active during the time intervals (0,3) and (6,8). For contact networks (c), the edges are quantitatively

more or less active across time, and the quantity of activity of any edge is described by a temporal function.

2.2. Flows and trajectory segments

We consider a function Φ : R ˆ R ˆ Ω Ñ Ω, usually called flow on the spatial domain Ω of Rd,

satisfying the following properties:
$

&

%

Φpt, s, xq “ Φpt, t1,Φpt1, s, xqq

Φ´1pt, s, .q “ Φps, t, .q,
(1)

where s, t, t1 P R and x P Ω. For fixed t and s, the flow Φpt, s, ¨q is a spatial transformation. For fixed

x and varying s or t, the function gives a forward or backward trajectory of a particle over Ω between

times t ^ s “ infpt, sq and t _ s “ suppt, sq. If s ď t, y “ Φpt, s, xq gives the future location at time t

of the particle presently located at x at time s. Contrarily, if s ě t, y “ Φpt, s, xq gives the location at

past time t that was occupied by the particle located at x at present time s. Φpt, s, .q is assumed to be

a bijective mapping meaning that particles following distinct trajectories cannot be at the same location

at the same time.
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In general, a flow is defined with respect to a possibly time-dependent vector field F over R ˆ Ω, as

the solution u : R Ñ Ω of an ordinary differential equation (see e.g. Hamilton’s equations in classical

mechanics) with specified initial condition at a specified time s:
$

&

%

du

dt
ptq “ F pt, uptqq

upsq “ x,
(2)

where F is continuous and Lipschitzian over R ˆ Ω. In the setting introduced above, Φpt, s, xq “ uptq

with Φps, s, xq=u(s)=x. The solution u represents the trajectory of the particle located at x at time s.

Varying the initial condition in System (2), i.e. varying s and x, leads to consider pieces of trajectories of

all particles which dynamics are governed by the vector field F . In this article, the vector field F will not

be made explicit, but we will consider samples of trajectory segments (defined below) for constructing

trajectory-based networks.

Definition 2.1. The trajectory segment associated to the flow Φ over the time interval ∆ts “ rt^ s, t_ ss,

s, t P R, for a particle located at x P Ω at time s is defined as follows:

Γpt, s, xq “ tpt1,Φpt1, s, xqq : t1 P ∆tsu. (3)

If s ă t (resp. s ą t), Γpt, s, xq is a forward (resp. backward) trajectory segment. In this article, we

are mainly interested in backward trajectories, but the framework presented here encompasses forward

trajectories as well.

Example 2.1. The notions of flow and trajectory segment can be adapted to cope with air mass tra-

jectories over the Earth surface. In this case, the spatial domain Ω representing the Earth surface is the

sphere S2 in R3. If in addition, air masses are characterized by altitude and temperature evolving in space

and time, then Ω “ S2 ˆ R` ˆ R, where R` (resp. R) is the domain of the altitude (resp. temperature)

coordinate.

Example 2.2. Animal movements and behaviour activities can also be represented with the notions

of flows and trajectory segments, providing, for instance, the animal locations and the covariate value

indicating whether animals are feeding or not. In this case, Ω “ R2 ˆ t0, 1u, where 1 stands for ‘the

animal is feeding’ and 0 otherwise. The use of a binary variable for describing the feeding activity may

require the use of stochastic processes or generalized functions undergoing dynamic analog to the System

(2) for constructing the flow if it is defined with respect to a vector field F .

2.3. Pointwise and integrated connectivities

Trajectory-based networks are grounded on the notion of connectivity used as a quantitative, directed

measurement of edges between graph nodes. In this aim, we first define the pointwise connectivity as a

measure (or submeasure), in the mathematical sense, of the connectivity between a subset A and a point

x of Ω induced by the trajectory segments Γpt, s, xq of a particle located at x at time s. Then, we use

the pointwise connectivity to define the integrated connectivity between two subsets A and B of Ω over a

temporal domain ∆ of R (∆ can be the union of disjoint intervals).

5



Definition 2.2. Let x P Ω and A P BpΩq, where BpΩq is a σ-algebra of subsets of Ω. The pointwise

connectivity associated to the flow Φ is defined as a real valued function Ψ on BpΩq ˆ R ˆ R ˆ Ω,

conveniently denoted by ΨpA | t, s, xq, where A ÞÑ ΨpA | t, s, xq is a measure or a submeasure on Ω for

each t, s, x

Diverse types of the pointwise connectivity can be constructed, either using trajectory segments

generated by Φ, or directly using Φ. Specific pointwise connectivities can include environmental covariates

and even covariates associated to very the movements of particles. Below, we give several examples of

such specifications. Some of these examples are graphically represented in Figure 2. Most examples are

particularly relevant when Ω is a simple geographic domain and when Φ defines movements of individuals

(e.g., air masses, animals or particles) within Ω.

Example 2.3. The contact-based pointwise connectivity is defined by:

ΨCpA | t, s, xq “ 1tAtsXΓpt,s,xq‰Hu, (4)

where Ats “ ∆ts ˆ A and 1 denotes the indicator function. ΨCpA | t, s, xq indicates whether or not the

particle whose movement in Ω is governed by Φp¨, s, xq hit A during the time interval ∆ts. Note that

A ÞÑ ΨCpA | t, s, xq is only a submeasure on Ω since ΨCpAYA
1 | t, s, xq ď ΨCpA | t, s, xq`ΨCpA

1 | t, s, xq

for disjoint sets A and A1 of BpΩq.

Remark 1. This example based on the simple contact between sets can be considered as too strict from

a statistical and measure-theory perspective since the length or the duration of a contact may be null.

Instead, a positive constraint on contact length for example can be used to define another version of the

contact-based pointwise connectivity: Equation (4) could then be replaced by

ΨC̃pA | t, s, xq “ 1tLpAtsXΓpt,s,xqqą0u,

where LpAtsXΓpt, s, xqq denotes the length of the curve Γ within A. The length operator L will be made

explicit in Example 2.5.

Example 2.4. The duration-based pointwise connectivity is defined by:

ΨDpA | t, s, xq “

ż

∆ts

1tΦpv,s,xqPAudv, (5)

to measure the duration spent by the particle in A during ∆ts.

Example 2.5. The length-based pointwise connectivity is defined by:

ΨLpA | t, s, xq “

ż

∆ts

1tΦpv,s,xqPAu||∇vΦpv, s, xq||dv, (6)

where ∇vΦpv, s, xq stands for the gradient of the flow Φ with respect to the time variable v and || ¨ ||

denotes the Euclidean norm. ΨLpA | t, s, xq measures the distance travelled within A by the particle

during ∆ts.
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Example 2.6. The pointwise connectivity based on local volume is defined by:

ΨV pA | t, s, xq “

ż

∆ts

1pΦpv,s,xqPAq|detpJxΦpv, sq|dv (7)

where detpJxΦpv, sqq is the determinant of the Jacobian matrix (with respect to x) of the spatial transfor-

mation Φpv, s, ¨q. The absolute value |detpJxΦpv, sq| of the Jacobian determinant at x gives the ratio by

which the function Φpv, s, ¨q expands/shrinks infinitesimal volumes around location x into infinitesimal

volumes around location Φpv, s, xq.

In other words, ΨV pA | t, s, xq assesses how particle density increases or decreases from x to A along

the time interval ∆ts. Intuitively, if n particles are initially in A and if the infinitesimal volume around

any of these particles tends to shrink from A to x, then one expects a high concentration of particles in

a fixed volume around x and, therefore, a high connectivity from A to x. Conversely, if the infinitesimal

volume around a particle tends to expand from A to x, then one expects a lower concentration of particles

in the same fixed volume around x and, therefore, a lower connectivity from A to x.

More sophisticated specifications of the pointwise connectivity can be proposed by incorporating

spatio-temporal covariates in its formulation, like in the following examples.

Example 2.7. Let G denote a time-varying vector field defined over Rˆ Ω. The pointwise connectivity

based on the external vector field G is defined by:

ΨGpA | t, s, xq “

ż

∆ts

1pΦpv,s,xqPAq | ă ∇vΦpv, s, xq, Gpv,Φpv, s, xqq ą | dv

where ă ∇vΦpv, s, xq, Gpv,Φpv, s, xqq ą is the scalar product between the gradient with respect to the

time variable v of the flow Φ and the vector field G. Larger the average collinearity in A between the

instantaneous movement of the particle and the simultaneous direction of the vector field G, higher the

connectivity between A and x. For instance, if Φ gives the movement of air masses and G provides the

intensity and the direction of a continuous release of specific particles, then the connectivity will be high

(resp. low) if the movement of the air in A and the movement of particles released in A are approximately

collinear (resp. orthogonal).

Example 2.8. Let Z and Z̃ be positive real valued spatio-temporal functions defined over Rˆ Ω. The

pointwise connectivity based on Z and Z̃ is defined by:

ΨZ,Z̃pA | t, s, xq “ Zps, xq

ż

∆ts

1pΦpv,s,xqPAqZ̃pv,Φpv, s, xqqdv. (8)

This form of pointwise connectivity may represent, for example, (i) the negative effect of the altitude

of the air mass when it is above A on the recruitment of specific particles from the ground, and (ii) the

positive effect of rainfall at ps, xq on the deposition of particles from the air mass to the ground (see

Figure 3). Thus, lower the average altitude of the air mass above A and more intense the rainfall at

ps, xq, larger the contribution to the connectivity between A and x. This is expressed in Equation (8)

as follows: (i) Z̃ is defined as the binary function indicating whether or not the altitude of the air mass

(located at x at time s) is lower than a threshold h when it is located at Φpv, s, xq at time v; (ii) Z is a

function of the local rainfall intensity at ps, xq.
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Remark 2. If in Example 2.8, the altitude of the air mass is incorporated as the third coordinate of Φ

and A is a 3D-domain vertically limited by the threshold value h, then, Equation (8) is simplify reduced

to Equation (5).

Remark 3. Example 2.8 could be generalized by considering a measure, say µ, over R, to handle the

potential contribution of discrete-time events to the pointwise connectivity:

ΨZ,µpA | t, s, xq “ Zps, xq

ż

∆ts

1pΦpv,s,xqPAqZ̃pv,Φpv, s, xqqdµpvq. (9)

Remark 4. In the same vein, Example 2.8 can also be modified by adding within the integral the term

||∇vΦpv, s, xq|| arising in Equation (6) to account for a supplementary effect of the distance travelled

within A on the pointwise connectivity.

Each pointwise connectivity defined above can be used for defining the integrated connectivity, which

measures the quantitative directional link between two subsets A and B of BpΩq generated by trajectories

of particles located in B at times belonging to the temporal domain T .

Definition 2.3. Let A and B be two sets of BpΩq and T a subset of the temporal domain R. The δ-lag

integrated connectivity linking B to A over T is defined by:

Ψp2qν,δpB ˆA | T q “
ż

TˆB

ΨpA | s` δ, s, xqνpds, dxq, (10)

where δ P R and ν is a measure on Rˆ Ω.

Definition 2.3 encompasses connectivities generated by either forward or backward trajectories, de-

pending on the sign of δ. The use of a unique duration |δ| could be relaxed to account for space-time

heterogeneities in the duration of trajectories. It could even be infinite by introducing a measure over

time like in Equation (9).

The measure ν in Definition 2.3 can be continuous, discrete or hybrid over RˆΩ. Indeed, if particles

of interest are air masses, then B can be considered as continuously filled in space and time. Conversely,

if particles of interest are animals of a specific species, then animals occupy only punctual locations in B

at each time and the measure x ÞÑ νpds, dxq, given s, is discrete in Ω, whereas the temporal component

of ν is continuous. Another examples occurs when the time s corresponds to death times of animals, then

ν is both discrete in space and time with a mass only at a countable collection of space-time points.

2.4. Trajectory-based network

Definition 2.4. A trajectory-based network generated by Ψp2qν,δ (given by Equation (10)) over the temporal

domain T Ă R, is a graph whose nodes Ai, i “ t1, .., Iu, are disjoint sets of Ω in BpΩq and whose directed

edges are weighted by integrated connectivities Mij “ Ψp2qν,δpAi ˆAj | T q, 1 ď i, j ď I and i ‰ j.

Definition 2.4 corresponds to a spatial trajectory-based network evaluated over the fixed temporal

domain T . It can be extended in different ways to obtain spatiotemporal analogs. For example, if

T1, . . . , TK denote K disjoint but successive time intervals with equal lengths, then the sequence of
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trajectory-based networks generated by Ψp2qν,δp¨ ˆ ¨ | Tkq, k “ 1, . . . ,K, forms a spatiotemporal trajectory-

based network that can be analyzed to assess how connectivities across space are changing with time.

This is one of the issues considered in Section 4.2.
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Figure 2: Illustration of contact-based, duration-based and length-based pointwise connectivities (resp. ΨC , ΨD and ΨL)

between the elliptic spatial domain A Ă R2 and different spatial points x at time s “ 1, for ∆ts “ r0, 1s. The left curve on

panel (a) never enters the domain A. The middle curve on panel (a) enters A (red part of the curve) over a relatively long

duration (as shown by panel (a)) but a short distance (as shown by panel (b)). The right curve on panel (a) enters A over

a shorter duration but a longer distance. Thus, ΨCpA | t, s, xq, ΨDpA | t, s, xq and ΨLpA | t, s, xq are zero for the left curve;

ΨCpA | t, s, xq “ 1 for the two other curves; ΨDpA | t, s, xq is larger for the middle curve than for the right one, whereas

ΨLpA | t, s, xq is larger for the right curve than for the middle one.
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Figure 3: Illustration of pointwise connectivity based on a covariate measured along the trajectory (see Example 2.8). In

this illustration, the passage of the particle in the elliptic spatial domain A contributes to the pointwise connectivity (red

part of the curve in panel (a)) only when the particle is at an altitude lower than a threshold value (grey part of the curve

in panel (b)).

3. Estimation of integrated connectivities

In practice, the integral defining the integrated connectivities between subsets of Ω (Definition 2.3)

cannot be analytically computed in general, but can be estimated from a sample of trajectories. For

instance, the integrated connectivity Ψp2qν,δpB ˆ A | T q can be estimated by its empirical counterpart

obtained by importance sampling, say pΨp2qν,δpB ˆA | T q:

pΨp2qν,δpB ˆA | T q “
1
N

1
N 1

N
ÿ

k“1

N 1
ÿ

l“1
ΨpA | sk ` δ, sk, blq, (11)

where s1, . . . , sN P T and b1, . . . , bN 1 P B are times and locations, respectively, randomly drawn under

the measure ν restricted to T ˆB, and ΨpA | sk` δ, sk, blq is the pointwise connectivity associated to the

trajectory of the particle located at bl at time sk and observed over ∆sk`δ,sk “ rsk ^ sk ` δ, sk _ sk ` δs.

If ν is constant, other classical numerical approaches can be applied to approximate the integral, such

as an hybrid approach in which the mid-point rule is applied in time and a regular point process is used

in space. In such a case, the integrated connectivity estimator is also given by Equation (11).

Example 3.1. Using Equation (11), the contact-based pointwise connectivity in Example 2.3 is estimated

by:

pΨp2qC,δpB ˆA | T q “
1
N

1
N 1

N
ÿ

k“1

N 1
ÿ

l“1
1tAsk`δ,sk

XΓpsk`δ,sk,blq‰Hu, (12)
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where Ask`δ,sk “ ∆sk`δ,sk ˆ A. Thus, pΨp2qC,δpB ˆ A | T q is simply the proportion of sampled trajectories

intersecting A.

Example 3.2. Using Equation (11), the duration-based pointwise connectivity in Example 2.4 is esti-

mated simply by the average duration of the intersections between the sampled trajectories and A.

Example 3.3. Using Equation (11), the length-based pointwise connectivity in Example 2.5 is estimated

simply by the average length of the intersections between the sampled trajectories and A.

4. Applications

In this section, we applied our general framework to the flow of air mass movements. Indeed, these

movements compiled over years were used to characterize climatic patterns (Hondula et al., 2010) and to

describe the transport of pollutants (Pérez et al., 2015). We show now how to deploy our approach for

constructing air-mass movement networks in two real geographical contexts, namely the coastline of the

Mediterranean Sea and the French region of Provence-Alpes-Côte d’Azur. These two examples have been

chosen in order to prove the flexibility of our approach to different situations and geographical scales.

4.1. Case study regions and network construction

The first study region corresponds to the coast of the Mediterranean Sea, ranging approximately

1,600 km from north to south and 3,860 km from east to west. The temperate climate of the chosen

region is strongly influenced by the presence of the Mediterranean Sea, with mild winters, hot summers

and relatively scarce precipitations events. The landscape is characterized by coastal vegetation, typically

shrubs and pines, and densely populated areas with intensive crop production of wheat, barley, vegetables

and fruits, especially olive, grapes and citrus. In this paper, we characterize recurrent movements of air

masses through the Mediterranean region by defining a grid with mesh size 74 km covering the coastline

from 5 km up to 250 km inland from the coast, including the four largest islands (namely Sicily, Sardinia,

Cyprus and Corsica). Thus, we divide the region into 604 cells, where the centroids of the cells will

be used as arrival locations of air-mass trajectories and will correspond to the nodes of the constructed

network.

The second study region corresponds to the French region of Provence-Alpes-Côte d’Azur (PACA,

hereafter), located in the south-eastern part of France and characterized by a rather complex landscape

formed by a densely-populated coastline, agricultural lands (high-value-crops with fruit and olive orchards,

vineyards, vegetable cultivation and horticulture), and natural mostly-alpines areas. The choice of this

particular region is justified in the context of a research project aimed at assessing the potential long-

distance dissemination of phytopathogenic bacterial populations that are known to be transported by air

currents. The bacteria of interest (e.g., Pseudomonas syringae) can be lifted in to the air from a source

location and then be passively transported by air masses until they are deposited back to land onto a

different, far away sink location. Since the life cycles of the considered species of bacteria are strongly

linked to the water cycle (Morris et al., 2008), we naturally partitioned the study area in a way that

11



fit this assumption. Hence, we considered the 294 watersheds of the PACA region to define the sites

that will later constitute the nodes of the constructed network. Since watersheds have irregular shapes

and varying sizes, we selected a certain number of arrival locations per watershed (between 1 and 10

and proportionally to the watershed area) in order to cover the watersheds consistently according to the

relative importance of their size and estimate the integrated connectivities. In total, a set of 833 arrival

locations for air-mass trajectories was generated.

Once the arrival points for the two study regions have been established, we turned to the computation

of air-mass trajectories arriving at the prescribed locations using the Hybrid Single-Particle Lagrangian

Integrated Trajectory model (HYSPLIT, (Stein et al., 2015)). The HYSPLIT model can be fed with me-

teorological data from the Global Data Assimilation System files with a 0.5-degree spatial resolution

(GDAS1) and was tuned by us to return 48-hours backward air-mass trajectories arriving at the pre-

scribed locations at an altitude of 500 m above mean sea level. A single trajectory consists of a vector

containing the hourly positions (longitude, latitude and altitude) visited by the air mass before arriving

at the specified location and time. Air-mass trajectories have been computed for every arrival location

(604 for the Mediterranean region and 833 for the PACA region) and for every day between January 1,

2011 and December 31, 2017 (arrival hour is 12:00 GMT). The total number of computed trajectories is

1,543,220 for the Mediterranean region and 2,128,315 for the PACA region.

The final step for the construction of the networks is the estimation of the adjacency matrices of the

networks, based on the methodology presented in the previous sections. To do that, for each pair of

subsets of the spatial domain, we used the daily 48-hours backward trajectories arriving at the locations

sampled within the receptor subset, and computed the contact-based estimator (see Example 3.1). The

subsets of the spatial domain are the watersheds for PACA and circular buffers of radius 20 km for the

Mediterranean region, as in Leyronas et al. (2018)

In this work we will consider networks corresponding to three temporal contexts: (i) the spatial

networks obtained when T is the entire period 2011-2017, (ii) the yearly spatiotemporal networks formed

by the seven spatial networks obtained when T1 encompasses the year 2011, T2 encompasses 2012 and so

on, and (iii) monthly spatiotemporal networks formed by the twelve spatial networks obtained when T1

represents every January from 2011 to 2017, T2 every February from 2011 to 2017, and so on.

4.2. Network analysis

The constructed networks are directed and weighted by contact-based connectivities generated by air

mass trajectories. They are inherently complex by the sheer amount of spatial and temporal information

that they encompass. Hence, there is no easy way of representing the results either graphically or

numerically, without compromising the original complexity of the networks. While a comprehensive

physical study of the spatiotemporal properties of these networks goes beyond the scope of the paper,

we explore the estimated trajectory-based networks by looking at some generic properties through the

1https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
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following indices:

• Diameter: the longest of all possible shortest paths between any two pair of nodes.

• Density: the ratio between the sum of all edge weights and the number of all possible edges (Liu

et al., 2009).

• Transitivity (also known as clustering): the equivalent definition of density, but applied to triplets

of nodes instead of pairs of nodes (Opsahl and Panzarasa, 2009).

• Shortest path: characterized by the average and standard deviation of the computed shortest path

between any possible pair of different nodes (Newman, 2001).

• Small worldness: refers to the property of a network of being highly clustered and having rela-

tively short shortest paths. It is computed as the ratio between the normalized clustering and the

normalized average shortest path distance (Li et al., 2007; Colon-Perez et al., 2016).

• Scale-free property: The degree of a node in terms of the total number of edges entering and exiting

from it, and for directed networks it can be decomposed in the incoming and outgoing degree,

respectively. The degree distribution is the empirical distribution of the degree of a network and

it said to be scale free when it approximately follows a power law distribution, i.e. P pkq „ kp´αq,

where P pkq represents the probability of a node having degree equal to k (Barabási and Bonabeau,

2003; Barabási and Albert, 1999). Some authors impose that the α parameter of the power law

distribution has to fall within the interval r2, 3s (Barabási et al., 2016). Thus, a network is scale free

when most of its nodes have low degree, while the probability of having nodes with very high degree

is not negligible (fat right tail of the distribution). Nodes with very high degree play a crucial role

in dynamics conditional on networks and are often referred as hubs (Liu et al., 2011).

• Degree correlation: in directed networks, it accounts for the correlation between the incoming and

the outgoing degree of a node. Networks with positive (resp. negative) degree correlation foster

(resp. hamper) epidemic spread (Pautasso et al., 2010).
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4.3. Results

(a) (b)

Figure 4: Networks weighted by contact-based connectivities generated by air mass trajectories between (a) the 604 sampled

circular areas around the Mediterranean sea and (b) the 294 watersheds of PACA. Edges with weights lower than 0.3 are

not drawn.

The two spatial trajectory-based networks representing the strength of tropospheric connections in

the Mediterranean region and PACA during the entire period 2011 to 2017 are represented in Figure

4. In order to highlight those edges that represent strong connections, we depicted them with darker

shades of color, while we did not draw the connections that had a weight of less than 0.3. It can be seen

that the strongest connections tend to link nodes that are geographically close, but nonetheless moderate

connections also exist between rather distant nodes. This is confirmed by small values of the average

shortest path distance 8.20ˆ 10´4 for the Mediterranean and 2.57ˆ 10´4 for PACA, and high values of

the transitivity index (0.74 for the Mediterranean region and 0.99 for PACA), as shown in the first lines

of Tables 1 and 2. An interesting difference between the two networks is that the one for PACA has a

very negative degree correlation (´0.85), meaning that nodes having a high incoming degree will have

low outgoing degree, and vice versa. On the other hand, for the Mediterranean network, the value of the

degree correlation is moderately positive (0.31), meaning that nodes having high a incoming degree tend

to have also high a outgoing degree.
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Mediterranean region

Diam Dens Trans S P (mean) S P (sd) S W S F D C

2011-2017 3.12ˆ10´3 2.96ˆ10´4 0.74 8.20ˆ10´4 2.19ˆ10´4 18242 11.6 0.31

2011 0.03 3.0ˆ10´4 0.67 6.17ˆ10´3 1.92ˆ10´3 2222 11.5 -0.04

2012 0.02 2.9ˆ10´4 0.67 6.09ˆ10´3 1.87ˆ10´3 2236 10.4 -0.06

2013 0.01 3.0ˆ10´4 0.66 6.06ˆ10´3 1.86ˆ10´3 2228 13.9 0.20

2014 0.08 2.9ˆ10´4 0.65 6.52ˆ10´3 2.11ˆ10´3 2044 9.0 0.30

2015 0.06 3.0ˆ10´4 0.66 6.22ˆ10´3 1.93ˆ10´3 2147 8.2 0.26

2016 0.55 3.0ˆ10´4 0.66 6.32ˆ10´3 1.97ˆ10´3 2110 8.8 0.25

2017 0.12 3.0ˆ10´4 0.65 6.08ˆ10´3 1.83ˆ10´3 2186 9.2 0.12

January 0.23 3.1ˆ10´4 0.63 1.15ˆ10´2 3.81ˆ10´3 1118 14.9 0.14

February 0.67 3.0ˆ10´4 0.63 1.15ˆ10´2 3.92ˆ10´3 1106 14.9 0.24

March 0.29 3.0ˆ10´4 0.62 1.15ˆ10´2 3.87ˆ10´3 1104 11.9 0.26

April 0.70 3.1ˆ10´4 0.64 1.13ˆ10´2 3.91ˆ10´3 1137 15.4 0.18

May 1.02 3.2ˆ10´4 0.63 1.20ˆ10´2 4.43ˆ10´3 1064 12.4 0.21

June 1.14 3.2ˆ10´4 0.61 1.19ˆ10´2 4.18ˆ10´3 1041 12.9 0.15

July 1.41 3.1ˆ10´4 0.60 1.19ˆ10´2 4.01ˆ10´3 1017 28.2 -0.07

August 1.87 2.9ˆ10´4 0.59 1.22ˆ10´2 4.14ˆ10´3 987 11.9 -0.02

September 1.51 2.9ˆ10´4 0.60 1.23ˆ10´2 4.18ˆ10´3 994 12.8 0.13

October 0.12 2.8ˆ10´4 0.62 1.26ˆ10´2 4.46ˆ10´3 998 14.9 0.12

November 0.10 2.7ˆ10´4 0.62 1.27ˆ10´2 4.90ˆ10´3 997 14.3 0.41

December 1.07 3.0ˆ10´4 0.61 1.16ˆ10´2 3.89ˆ10´3 1079 14.1 0.32

Table 1: Network indices (Diameter, density, transitivity, shortest path (mean and standard deviation), small worldness,

scale-free property, degree correlation) calculated from the networks covering the Mediterranean region and estimated in

three temporal contexts: the entire period 2011-2017, yearly time periods from 2011 to 2017 and monthly time periods.
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PACA

Diam Dens Trans S P (mean) S P (sd) S W S F D C

2011-2017 6.06ˆ10´3 2.51ˆ10´3 0.99 2.57ˆ10´4 1.00ˆ10´4 7813 19.2 -0.85

2011 8.07ˆ10´3 2.53ˆ10´3 0.95 1.76ˆ10´3 4.42ˆ10´4 1095 26.9 -0.82

2012 6.61ˆ10´3 2.45ˆ10´3 0.97 1.94ˆ10´3 4.92ˆ10´4 1012 21.5 -0.88

2013 7.39ˆ10´3 2.53ˆ10´3 0.98 2.05ˆ10´3 5.75ˆ10´4 971 23.7 -0.91

2014 9.53ˆ10´3 2.51ˆ10´3 0.98 2.20ˆ10´3 5.79ˆ10´4 898 24.5 -0.92

2015 8.76ˆ10´3 2.56ˆ10´3 0.98 2.42ˆ10´3 6.65ˆ10´4 825 27.1 -0.92

2016 9.44ˆ10´3 2.53ˆ10´3 0.98 2.29ˆ10´3 6.64ˆ10´4 864 19.3 -0.92

2017 7.48ˆ10´3 2.50ˆ10´3 0.98 1.49ˆ10´3 4.77ˆ10´4 1330 17.5 -0.89

January 2.56 2.42ˆ10´3 0.69 4.68ˆ10´3 1.50ˆ10´3 299 6.8 -0.66

February 2.60 2.24ˆ10´3 0.73 5.30ˆ10´3 1.90ˆ10´3 277 8.2 -0.60

March 0.61 2.37ˆ10´3 0.70 3.65ˆ10´3 1.14ˆ10´3 389 22.3 -0.84

April 0.02 2.48ˆ10´3 0.99 5.04ˆ10´3 1.65ˆ10´3 397 43.4 -0.98

May 1.02 2.76ˆ10´3 0.84 3.33ˆ10´3 9.10ˆ10´3 512 46.8 -0.93

June 4.78 2.64ˆ10´3 0.70 8.45ˆ10´3 3.70ˆ10´3 169 6.9 -0.64

July 4.44 2.71ˆ10´3 0.71 1.03ˆ10´2 4.75ˆ10´3 139 7.9 -0.64

August 4.34 2.72ˆ10´3 0.71 8.04ˆ10´3 3.55ˆ10´3 179 6.5 -0.66

September 4.10 2.72ˆ10´3 0.64 3.90ˆ10´3 1.21ˆ10´3 333 6.4 -0.73

October 0.02 2.77ˆ10´3 0.99 2.44ˆ10´3 1.00ˆ10´3 823 25.4 -0.92

November 0.01 2.40ˆ10´3 0.95 2.93ˆ10´3 7.50ˆ10´4 657 29.4 -0.89

December 2.08 2.41ˆ10´3 0.73 4.30ˆ10´3 1.30ˆ10´3 343 7.1 -0.70

Table 2: Network indices (Diameter, density, transitivity, shortest path (mean and standard deviation), small worldness,

scale-free property, degree correlation) calculated from the networks covering PACA and estimated in three temporal

contexts: the entire period 2011-2017, yearly time periods from 2011 to 2017 and monthly time periods.

Qualitatively, the indices provided in Tables 1 and 2 are overall more variable for the monthly spa-

tiotemporal trajectory-based networks than for the yearly ones. Thus, focusing in what follows the

monthly network, we investigate possible seasonal patterns by using the complete-linkage hierarchical

clustering method (Ferreira and Hitchcock, 2009). We applied the clustering using the Euclidean dis-

tance over the 8-dimensional space formed by the 8 indices provided in Tables 1 and 2.

For the Mediterranean region, the dendogram in Figure 5(a) can be used to identify four distinctive

periods: summer months (June and July), winter months (January, February, March, April), fall months

(August, September, October, November) and a set of transition months (May and December) surround-

ing the winter months. The spatial networks derived from this clustering are shown in Figure 5(b-e),

which displays clear differences in the connectivity patterns even if one observes similarities between the

networks for winter months and the surrounding transition months (winter and transition months are
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precisely in the same dendogram cluster if one increase the cut-off). The main differences are observed

in the northwestern part of the Mediterranean basin with, in particular, increased connectivities in the

North of Italy in Winter and in the South of France and the East of Spain in Summer. As shown by

Figure 6(a), summer months are characterized by high diameter and density, low values of transitivity,

small-worldness and the lowest values of degree correlation. Winter months have lower diameter and

show high values of small-worldness due to its high values of clustering and low values of average shortest

path distances. Fall months have lower values of density and small-worldness due to its low values of

clustering and high values of average shortest path distances. Finally, the group of transition months

show high values of density and degree correlation.

For PACA, the dendogram in Figure 7(a) can be used to identify three distinctive periods: summer

months (from June to August), winter and spring months (from December to April, plus September that

can be considered as an outlier from a chronological viewpoint) and a set of transition months between

the two previous periods (May, October and November). Figure 7(b-d) illustrates the differences between

the networks derived from this clustering. The summer network is largely more connected than the two

other networks, and the transition months, surprisingly, do not lead to intermediate connectivities but to

the lowest connectivities. Based on Figure 6(b), the group of summer months is characterized by a high

diameter, density and average shortest path, low values of transitivity, small-worldness and the lowest

degree correlations (yet still negative). Winter and spring months have significantly lower diameter,

density and average shortest path distances. Finally, the group of transition months show the highest

values of small-worldness, due to their high values of clustering and low values of average shortest path

distances.
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Figure 5: (a): Dendrogram of the months obtained from a hierarchical cluster analysis of the Mediterranean spatio-

temporal network based on the monthly dissimilarities of the indices presented in Table 1. (b), (c), (d) and (e): Networks

corresponding to the four identified clusters where one displayed only the edges between the nodes connected more than 10

days per month via the air mass trajectories.
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(a) Mediterranean region

(b) PACA

Figure 6: Boxplot for the different indices (Diameter, density, transitivity, shortest path (mean), small worldness, degree

correlation) obtained from (a) the four clusters identified for the Mediterranean region (see Figure 5) and (b) the three

clusters for PACA (see Figure 7).
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Figure 7: (a): Dendrogram of the months obtained from a hierarchical cluster analysis of the PACA spatio-temporal network

based on the monthly dissimilarities of the indices presented in Table 2. (b), (c) and (d): Networks corresponding to the

three identified clusters where one displayed only the edges between the nodes connected more than 10 days per month via

the air mass trajectories.
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5. Discussion

We presented a framework for estimating and characterizing spatial and spatio-temporal networks

generated by trajectory data. The development of this framework was motivated by the study of networks

resulting from the movement of air masses sampled over long time periods and large spatial scales. Thus,

in the application, we investigated the tropospheric connectivities across the Mediterranean basin and the

French region PACA, and their variations through years and months. Our approach could be applied to

diverse phenomena, from which trajectories can be observed. For instance, one could estimate networks

generated by the movement of animals on the landscape scale based on animal trajectories observed

with GPS devices (Bastille-Rousseau et al., 2018). This would allow the characterization of connectivity

between different landscape components. Sampled trajectories of humans, sampled transports of specific

goods (such as plant material) and sampled trajectories of knowledge in social communities (that cannot

be exhaustively observed) could also be used to estimate networks in other applied settings.

In Section 2.3, we proposed diverse measures of connectivity with different underlying (physical or

biological) interpretations. Thus, the analyst can adapt the connectivity measure to the mechanistic

processes he investigates. In the application section, we only used the contact-based connectivity. Com-

parisons of contact-based, length-based and duration-based connectivities, not shown in this manuscript,

led to little variations for the two case studies considered in this article. However, the use of covariates

such as local rainfall and air-mass altitude for defining connectivities, as proposed in Section 2.3, is ex-

pected to potentially impact the inferred networks and deserves to be explored. This perspective would

be particularly relevant in the context of aerobiology: e.g., the airborne transport of organic particles,

such as bacteria and fungal spores, can be influenced by rainfall favoring the deposition of these particles

(Morris et al., 2017).

In statistics, we are not only interested in point estimation, but also in the assessment of estima-

tion uncertainties. In this paper, we however, focused on connectivity estimation, even if quantifying

the estimation variance could have been useful for more rigorously investigating temporal variation in

connectivities. Formally, the connectivity measures that we defined are integrals. Hence, results on inte-

gral numerical approximations (e.g., midpoint, trapezoidal or Monte Carlo integration) can be exploited

to assess errors or variances of the connectivity estimates (Davis and Rabinowitz, 2007; Caflisch, 1998;

Geweke, 1996). However, for this assessment, one should ideally take into account dependencies between

connectivity estimates for different pairs of nodes, which is not trivial. Further in-depth methodological

developments are required to tackle this issue.

To more finely estimate connectivity, and its uncertainty, one could also take into account, if relevant,

the uncertainty about the trajectories themselves. For example, when observed trajectories are smoothed

versions of actual trajectories (as it is likely the case for air-mass trajectories calculated with HYSPLIT)

or when the trajectories are partially observed and rather erratic, (i) a probabilistic model grounded on,

for instance, a stochastic differential equation, could be used to reconstruct probable trajectories and (ii)

the connectivity would be estimated from these reconstructed trajectories. Obviously, step (ii) should
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incorporate the uncertainty about the trajectory reconstruction impacted by an eventual preliminary step

consisting in estimating the parameters of the above-mentioned probabilistic model.

Concerning the application treated in this article, we observed distinct seasonal patterns in the tem-

poral variation of the networks covering the Mediterranean coastline and PACA. In the former case, the

networks corresponding to the four clusters shown in Figure 5(b-e) exhibit different spatial patterns of

hubs (in terms of location and size) and different trends in the main connectivity directions. In the latter

case, the differences between the three networks identified with the clustering approach are mostly related

to connectivity amplitude. It would be interesting to explore whether this observation made at two very

different spatial scales and resolutions generally holds by studying regions of size similar to PACA all

along the Mediterranean coastline.

In the long-term context of our applied research projects connected to aerobiology, the construction

and exploration of networks generated by air-mass movements are a way to unravel epidemiological

dynamics (and the resulting genetic patterns) of microbial pathogens disseminated at long distance via

air movements in the troposphere (see Leyronas et al., 2018, for a proof of concept). Indeed, even if the

pathogen is not explicitly taken into account by the framework proposed in this article, the description of

connectivities that it offers provides us a proxy of airborne pathogen movements over long temporal terms

and large spatial scales. This proxy is a mean to understand pathogen transportation and to anticipate

its long distance dissemination. Specifically, network indices such as those calculated in this article can

be associated with particular epidemiological properties such as the probability of long-distance transport

of pathogens (Moslonka-Lefebvre et al., 2011; Jeger et al., 2007; Pautasso and Jeger, 2014). For instance,

for plant pathogens, recent studies (Nicolaisen et al., 2017; Bowers et al., 2013; Aho et al., 2019) showed

that airborne populations of bacteria and fungi are rather constant across the years, while higher diversity

can be observed in different seasons. This statement resonates with our analyses where we observed clear

seasonal signals in the estimated monthly spatiotemporal networks in Section 4.3 whereas the yearly

signals were less obvious.

Finally, the networks estimated using our approach could be a basis for developing epidemiological

models (explicitly handling the pathogen) incorporating long-distance dissemination conditional on re-

current air-mass movements. Such models could be exploited to set up surveillance strategies for early

warning and epidemic anticipation in order to help reduce the impacts of airborne pathogens on human

health, agricultural production and ecosystem functioning (Mundt et al., 2009).
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