Quantification of Modelling Uncertainties in an Ensemble of Carbon Simulations in Grasslands and Croplands

1 Agricultural Institute CAR HAS, 2 UREP INRA, 3 INRA, 4 Indian Agricultural Research Institute, 5 University of Florence, 6 Queensland University of Technology, 7 INRA, AgroParisTech, 8 CIEMAT, 9 NREL, 10 University of Sassari, 11 Institute of Biological and Environmental Sciences, 12 ETH, 13 SRUC, 14 Agriculture and Agri-Food Canada, 15 UFSM, 16 INRA, 17 UR-1158 AgroImpact, 18 USDA Agricultural Research Service, 19 Mazinga Centre ILRI, 20 AgResearch, Lincoln Research Centre, 21 SRUC, 22 PIK, 23 New Zealand Institute for Plant and Food Research, 24 AgResearch, Grasslands Research Centre, 25 LAPC, 26 INRA, UMR FARE

- **Biogeochemical grassland and crop models** predict carbon (C) balances in agriculture
- **Simulations of C fluxes** are inherently uncertain (complex interactions, high temporal and spatial variability of measurements)
- We assessed C fluxes from 23 biogeochemical models with data from **three crop rotations and two temperate grasslands**

Model name
- Model-one
 - Holmes
 - AP3M, SoilWater
 - AP3M, SWAT
 - SPRINT
 - DNDC
 - CENTURY
- Model-two
 - CERES-ECO
 - MUSCLE
 - APSIM
 - ORCHIDEE
 - DISCOMET-MIP
 - PB
 - RECO

Observed C fluxes (GPP, NEE, RECO)
- C fluxes
- CO2 intensity

Contact
- sandor.renata@agr.mta.hu
- gianni.bellocchi@inra.fr

Acknowledgement: This research was performed within the Global Research Alliance on Agricultural Greenhouse Gases initiative with the support of FACCE JPI projects CN-MIP and Models4Pastures.

Fig 1. Seasonal changes in ecosystem respiration (RECO), gross primary production, net ecosystem exchange (NEE), carbon use efficiency (CUE) and CO2-C intensity (IncO2-C) calculated over multiple years at C1 and C2 crop and G3 and G4 grassland sites, for five calibration stages (S1 to S5) and the observation (Obs). For each calibration stage, triangles demonstrate the multi model mean, black lines show multi-model median. Boxes delimit the 25th and 75th percentiles. Whiskers are 10th and 90th percentiles. Circles indicate outliers. For Obs, diamond shows the observed mean with its standard deviation.

Fig 2. Seasonal variability of ecosystem respiration (RECO), gross primary production (GPP), net ecosystem exchange (NEE), carbon use efficiency (CUE) and CO2-C intensity (IncO2-C) calculated over multiple years at C1, C2 and C3 crop and G3 and G4 grassland sites, for five calibration stages (S1 to S5) and the observations (Obs). Owing to largely different values of carbon use efficiency (CUE), they are presented with distinct scales for boreal soil, grassland and crop systems. For each calibration stage, triangles demonstrate the multi-model mean; black lines show multi-model median. Boxes delimit the 25th and 75th percentiles. Whiskers show 10th and 90th percentiles. Circles indicate outliers.

- Overall, the estimation of C fluxes was more uncertain in grasslands than in crops
- The model ensemble proved effective in representing C sequestration of grasslands and most of crops
- Elimination of fallow and enhancement of cropping intensity may increase C sequestration

Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some plant and soil observations are available locally for model calibration.