What fluxes are telling us so far? A naïve reanalysis of CO2 fluxes over the past 18 years

Virginie Moreaux, Paul Berbigier, Daniel Berveiller, Jean-Marc Bonnefond, Christophe Chipeaux, Nicolas Delpierre, Olivier Darsonville, Eric Dufrene, André Granier, Richard Joffre, et al.

To cite this version:

Virginie Moreaux, Paul Berbigier, Daniel Berveiller, Jean-Marc Bonnefond, Christophe Chipeaux, et al.. What fluxes are telling us so far? A naïve reanalysis of CO2 fluxes over the past 18 years. Assemblée Générale ICOS France, Dec 2018, Paris, France. 21 p. hal-02790285

HAL Id: hal-02790285
https://hal.inrae.fr/hal-02790285
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
At half the way: what is still to be achieved?
Sites with minimal management

Data filtered & processed using homogenized protocol (EddyPRO)

- **Le Bray**: coniferous Atlantic forest (13°C, 950mm)
- **Puechabon**: old-growth evergreen Quercus coppice (14°C, 910 mm)
- **Laqueuille**: extensive grassland (7°C, 1050 mm)
- **Barbeau**: old growth mixed broadleaved forest (11°C, 690mm)
Time series analysed

Puechabon

\(F_{CO2} \)

\(GPP \)

\(R_{ECO} \)

Le Bray

\(F_{CO2} \)

\(GPP \)

\(R_{ECO} \)

Barbeau

\(F_{CO2} \)

\(GPP \)

\(R_{ECO} \)

Laqueuille
What fluxes are telling us so far?

A naïve reanalysis of CO₂ fluxes over the past 18 years

Moreaux V.
CO$_2$ fluxes and environmental factors across sites and frequency-time scales

1. High frequency classification approach: Random Forest analysis (Breiman, 2001)

2. Across frequency domain: Cospectra analysis with wavelet theory
 Torrence C & Compo GP, 1998
 Stoy et al. 2005, 2009
 Vargas et al. 2010, 2011
 Fares et al. 2013

3. Inferential statistics (linear/non linear regression analysis)

1. Classification of environmental factors: **ecosystem photosynthesis (GPP)**

- Random forest analysis at 1/2h time scale
1. Classification of environmental factors: \textit{ecosystem respiration (R}_{ECO})

- Random forest analysis at 1/2h time scale

\begin{itemize}
\item Puechabon
\item Barbeau
\item Le Bray
\item Laqueuille
\end{itemize}
2. Continuous time series analysis

Wavelet analysis: scalogram and average cross-coherence graphs

- Appropriate to nonstationary and heteroscedastic time series
- Single and cross-spectra in time or frequency domains
- Assess synchrony and phasing (advance/delay between signals at given frequencies)
Cross correlograms of GPP, SW↓ and Soil Water (REW)
Selected scalograms: GPP - REW

Temperate deciduous broadleaf forest (FR-Fon)

Extensive grassland (FR-Laq)

Temperate coniferous forest (FR-LBr)

Mediterranean evergreen broadleaf forest (FR-Pue)
Selected scalograms: GPP - R_{ECO}

Temperate deciduous broadleaf forest (FR-Fon)

Temperate coniferous forest (FR-Bra)

Extensive grassland (FR-Laq)

Mediterranean evergreen broadleaf forest (FR-Pue)
3. Regression analysis: GPP response to environmental parameters: PPFD↓

Similar response of ecosystem photosynthesis/LAI to PPFD among sites and between years.
3. Regression analysis: GPP response to environmental parameters: PPFD↓

The response of ecosystem photosynthesis/LAI to PPFD x VPD is similar among sites.

CESEC Project overview (2015-2017)
Moreaux et al. 2018, ADEME report
3. Regression analysis: R_{ECO} response to temperature

Temperate deciduous forest (FR-Fon) vs. Mediterranean evergreen forest (FR-Pue)

Same response of ecosystem respiration to temperature among sites and between years.
3. Time series re-analysis: naive conclusions

Large similarities among all sites - years.

- Photosynthesis correlated with:

 \[SW \downarrow > \text{Air VPD} > \begin{cases} \text{Air Temperature (Fr-Laq FR-LBr)} \\ \text{Soil water (Fr-Fon, Fr-Pue)} \end{cases} \]

- Respiration correlated with:

 \[\text{Temperature} > \text{Air VPD} > \text{soil water content} \]
4. Low frequency changes

FR-Fon

FR-Pue

FR-LBr
4. Low frequency changes: are they significant?

Longterm trend analysis: Example of Barbeau: FR-Fon

after Baldocchi et al. 2018

Standard deviation of NEE

Linear regression slope for the trend

IAV, gC m\(^{-2}\) y\(^{-1}\)
2005-2014

Detectable trend threshold (gC m\(^{-2}\) y\(^{-2}\))
2005-2014

Number of years

Number of years

Detectable IAV threshold (g C m\(^{-2}\) y\(^{-1}\))

Detectable trend threshold (g C m\(^{-2}\) y\(^{-2}\))

3 8 13 18 23 28

Years

3 8 13 18 23 28

Years

± 60 g C m\(^{-2}\) y\(^{-1}\)
± 30
± 10
± 25.7
± 60 g C m\(^{-2}\) y\(^{-2}\)
± 30
± 10
± 25.7

FR-Fon
4. Low frequency changes: are they significant?

Temporal trends across sites: significant but not consistent
• Climate drivers of CO₂ exchanges are strikingly similar among a range of ecosystems
 • SW↓, Tair, Soil Water, air water vapour saturation deficit

• Respiration is coupled more tightly with GPP in ecosystems with lesser biomass and soil carbon stocks
 • Faster transfer of C from foliage to soil
 • Larger fraction of autotrophic respiration

• Cumulative effects of drifting variables (e.g. CO2) are barely visible.
 • Uncertainty and lack of temporal consistency still too large
 • Confounding effects (growth, age,...) are dominant

• Obtained time series so far:
 - numerical analysis of fluxes data say little about ecosystem functioning
 - long for scientists but short for the ecosystems!
And few thoughts for future research

From naive statistical correlations to causal attribution of biogeochemical fluxes:

• Transform ecosystem stations, « Flux towers » into terrestrial biogeochemical observatories where :

 • Monitoring of environmental drivers completed (Ozone, Ndeposition, ...)

 • Fluxes measurements can be better ascribed to processes

• In-depth, knowledge-guided time series investigations

• Develop plant growth processes modelling !!

 Plant growth drives photosynthesis !
 But what is driving plant growth ?
Acknowledgements

• Sites :
 • Berbigier P., J.-M. Bonnefond, Chipeaux C., Loustau D.
 • Berveiller D., Delpierre N., Dufrene E., Pontailler J.-Y.,
 • Darsonville O., Falcimagne R., Klump K., Soussana J.-F.
 • Cuntz M., Granier A., Gross P., Lily J.-B., Longdoz B.
 • Joffre R., Limousin J-M., Ourcival J.-M., Piquemal K., Rambal S.
 • Buysse P., Cellier P., Loubet B.
 • Brut A., Ceschia E., Tallec T.

• Data analysis:

• CESEC project: Cross-comparison of Reco and GPP in response to environmental parameters: synthesis over French forest ecosystems (ADEME)

• RINGO project: Long term trends and variability on carbon fluxes: uncertainties and detection ability of heterogeneous network. (H2020 / INFRAIA, TASK 3.5)