Investigating the role of the meadow spittlebug (Philaenus spumarius) and its major host plant (Cistus monspeliensis) in the spread of Xylella fastidiosa in Corsica

To cite this version:
Marguerite Chartois, I. Quiquerez, Xavier Mesmin, S. Borgomano, François Casabianca, et al.. Investigating the role of the meadow spittlebug (Philaenus spumarius) and its major host plant (Cistus monspeliensis) in the spread of Xylella fastidiosa in Corsica. 2. European conference on Xylella fastidiosa: how research can support solutions, Oct 2019, Ajaccio, France. 2019. hal-02790433

HAL Id: hal-02790433
https://hal.inrae.fr/hal-02790433

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Investigating the role of the meadow spittlebug (*Philaenus spumarius*) and its major host plant (*Cistus monspeliensis*) in the spread of *Xylella fastidiosa* in Corsica

Marguerite Chartois1, Ileana Quicler2, Xavier Mesmin1, Sabrina Borgomano2, François Casabianca3, Pauline Farigoule1, Anne-Alicia Gonzalez2,3, Laetitia Hugot2, Eric Pierre1, Jean-Claude Streito3, Jean-Marc Thuillier1, Jean-Pierre Rossi1, Jean-Yves Rasplus4 & Astrid Cruaud1

1CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montferrier-sur-Lez, France (marguerite.chartois@inra.fr); 2CNIC, OEC, Corte, France; 3AGAP, INRA, CIRAD, Montpellier SupAgro, Univ. de Montpellier, San Giuliano, France; 4LRDE, INRA, Corte, France

Introduction

Using *Philaenus spumarius* (Hemiptera: Aphrophoridae) as a sentinel insect, we recently demonstrated that *Xylella fastidiosa* (Xf) was widely distributed throughout Corsica (Cruaud et al., 2018). During this survey, *P. spumarius* appeared to be the most abundant vector and field observations revealed that it mostly developed and fed on *Cistus monspeliensis*. We designed a large-scale survey to investigate the role of *P. spumarius* and *C. monspeliensis*, mostly asymptomatic, in the dynamics of Xf in Corsica (Fig.1).

Materials & Methods

Network of 64 experimental plots of 500m² each (Fig.2) with:

1. A density gradient in *C. monspeliensis*
2. Diverse environmental and climatic conditions with:
 a) An altitudinal gradient ranging from 0 to 600m
 b) A diversity of vegetation types ranging from shrubland, *Cistus* vegetation, low and high Maquis, to forest

Results and Discussion

Fig.1 Schematic propagation of *Xylella fastidiosa* in the environment by *P. spumarius* & research questions

- **1.** Does C. monspeliensis density impact *P. spumarius* abundance and Xf prevalence in vector populations?
- **2.** Transmission of Xf to healthy plants
- **3.** If favourable climatic conditions for Xf
- **4.** Do climatic conditions impact development of symptoms?
- **5.** What plant species show the most severe symptoms?

Vegetation Survey
- *P. spumarius* Survey: Visual counting of foams or sweep netting of adults
- *P. spumarius* Sampling: Sampling in the plot vicinity to assess Xf prevalence, Xf strain, and diet.

Xf Symptoms Survey
- Evaluation of symptoms intensity on *Olea europaea*, *Quercus ilex*, *Myrtus communis*, *Arbutus unedo* and global vegetation

Climate Data
- Meteo France modelled data
- Humidity-Temperature sensors on 32 plots

Fig.2 Network of plots

Fig.3 First results on data from spring 2018 to summer 2019

First results suggest that:

- *P. spumarius* abundance increased in cool and humid habitats (Fig.3a), plants were more frequently symptomatic in hot and dry habitats (Fig.3b).
- *Olea europaea* and *A. unedo* expressed fewer symptoms than *M. communis* and *Q. ilex* (Fig.3c).
- Symptoms were particularly intense in the spring 2018 probably due to unusual drought in 2017.
- There was no significant correlation between *P. spumarius* abundance in season n-1 and frequency of symptomatic plants in season n.
- *P. spumarius* abundance increased with *C. monspeliensis* density.

Reference cited