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Abstract

This paper reconsiders the international technology diffusion model. Because the high

degree of uncertainty surrounding the Data Generating Process and the likely presence

of nonlinearities and latent common factors, it considers alternative nonparametric panel

specifications which extend the Common Correlated Effects approach and then contrasts

the out-of-sample performance of them with those of more common parametric models.

To do so, we adopt an approach recently proposed within the literature of nonparametric

regression. This approach is based on a pseudo Monte Carlo experiment that takes its

roots on cross validation and aims at testing whether two competing approximate models

are equivalent in terms of their expected true error. Our results indicate that the adoption

of a nonparametric approach provides better performances. This work also refines previous

results by showing threshold effects, nonlinearities and interactions, which are obscured

in parametric specifications and which have relevant implications for policy.

Keywords: large panels; cross-sectional dependence; factor models; nonparametric regression; spline functions;

approximate model; predictive accuracy, international technology diffusion.
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1 Introduction

With the development of endogenous growth theory since the nineties, there has been an in-

creasing interest in estimating the effect research and development (R&D) on growth and

productivity. A pioneering empirical work by Coe and Helpman (1995), revisited by Coe et al.

(2009) – henceforth CH and CHH, respectively – relates total factor productivity (TFP) to

both domestic and foreign R&D and, assuming that technology spills over across countries

through the channel of trade flows, constructs foreign R&D capital stock as the import-share-

weighted average of the domestic R&D capital stocks of the trading partners. Subsequent

studies consider other factors as channels of international spillovers, such as foreign direct in-

vestment, bilateral technological proximity, patent citations between countries, language skills

or geographic proximity.

In recent years, with the increasing relevance of globalisation, panel data approaches have

focused on the issue of cross-country dependence arising from the interactions among economic

units or the consideration of global unobservable factors (Pesaran, 2006; Bai, 2009). While

alternative approaches have been developed to estimate a model with a multifactor error struc-

ture, an extremely appealing one is the common correlated effects (CCE) approach developed

by Pesaran (2006), which has been further developed and proved to be valid in a variety of

situations (Chudik et al., 2011; Pesaran and Tosetti, 2011; Kapetanios et al., 2011). In partic-

ular, Pesaran and Tosetti (2011) prove that the CCE estimator provides consistent estimates

of the slope coefficients and their standard errors under the more general case of a multifactor

error structure and spatial error correlation. Moreover, Chudik et al. (2011), after introducing

the concept of strong and weak factors and clarifying that Pesaran (2006) introduces CCE es-

timators in a panel model with a fixed number of strong factors and without weak (semi-weak

or semi-strong) factors, demonstrate that the CCE method still yields consistent estimates of

the mean of the slope coefficients when there are an infinite number of factors, a fixed number

of which are strong, with the rest being weak, semi-weak or semi-strong. Additionally, the

asymptotic normal theory continues to be applicable even in this extended framework. Finally,

Kapetanios et al. (2011) provide both analytical results and a simulation study indicating that

the CCE approach is still valid when the unobserved factors are allowed to follow unit root

processes.

With the availability of these new methods, recent studies extended the literature on inter-

national R&D spillovers (see, e.g. Ertur and Musolesi, 2017). To the best of our knowledge,

however, all the empirical literature adopted parametric specifications. Although a log-log

specification is customary in the literature, more flexible functional forms could be suitable to

model the likely complex relation between research activity and economic performances. This

relevant issue was recognised in closely related literatures on economics of innovation. In an

early work, (Griliches, 1998, p. 1674), relating R&D to productivity suggests that ”Given the

nonlinearity and the noisiness in this relation, the finding of ”diminishing returns” is quite sen-

sitive to functional form, weighting schemes, and the particular point at which the elasticity is
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evaluated’. As highlighted by Charlot et al. (2014), it can be expected, for instance, that a crit-

ical mass of R&D or human capital is necessary to make such inputs truly effective. Moreover,

not only the linearity but also the additivity assumption implicit in the linear model, might be

too restrictive and should be relaxed, as suggested by (Hall et al., 2010, p. 1074): ”Because

the additive model is not really a very good description of knowledge production, further work

on the best way to model the R&D input would be extremely desirable’.

Because of the possible existence of nonlinearities, threshold effects, non-additive relations,

estimating a nonparametric relation could be important to avoid a functional form bias. More-

over, nonparametric approaches have been shown to provide new and useful insights in topics

very closely related to the present one (Ma et al., 2015; Maasoumi et al., 2007). These methods

are recently developing also in the context of panel data (Rodriguez-Poo and Soberon, 2017;

Parmeter and Racine, 2018). Our econometric approach builds on the nonparametric model by

Su and Jin (2012), which allows for a multifactor error structure and extends the approach by

Pesaran (2006). The approach adopted in this paper combines the flexibility of nonpamaetric

models with the ability of factor models to allow for cross-sectional dependence and to account

for endogeneity due to unobservables, whereby the explanatory variables are allowed to be corre-

lated with the unobserved factors. Following Su and Jin (2012), the nonparametric component

is estimated using splines. Specifically, we adopt a regression splines framework, which provides

computationally attractive low rank smoothers. We also employ penalized regression splines,

as they combine the features of regression splines and smoothing splines, and have proven to

be useful empirically in many aspects (Ruppert et al., 2003) while their asymptotic properties

have been studied in recent years (see, e.g. Li and Ruppert, 2008, Wood et al., 2016). The

choice of the knots is avoided by using knot-free bases for smooths (Wood, 2003).

There exists a high degree of uncertainty surrounding the Data Generating Process (GDP)

and it can be expected a bias-efficiency trade-off when comparing parsimonious to complex

models (Ma et al., 2015; Racine and Parmeter, 2014; de Almeida et al., 2018). Considering

flexible models is appealing but, because of the curse of dimensionality, it may come at the

price of unfeasible or extremely inefficient estimates (Ma et al., 2015; Racine and Parmeter,

2014; Baltagi et al., 2002, 2003, 2004). For this reason, we perform model selection by com-

paring the out-of-sample performances of some alternative models. In particular, we consider

a fully nonparametric relation between TFP and the explanatory variable, we then avoid the

curse of dimensionality problem by relying on a specification with additive smooth terms and

finally consider the more constrained parametric CCE specification. To do so, we adopt the

approach recently proposed by Racine and Parmeter (2014), which is based on a pseudo Monte

Carlo experiment and takes its roots on cross validation. While in consistent model selection, it

is assumed that exists a finite-dimensional ‘true model’, in Racine and Parmeter (2014) fitted

econometric models are view as approximations, as suggested by (Hansen, 2005, p. 60) ”econo-

metric model selection methods should be based on a semiparametric vision, models should be

viewed as approximations’, and the goal is to test whether one approximate model performs

better than another on data drawn from the same data generating process. In such a framework
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it is common adopting a sample-splitting mechanism whereby one splits the full sample into two

sub-samples where one sub-sample is used for estimation and the other for out-of-sample eval-

uation. To avoid that the results reflect a particular division of the data into two sub-samples,

the main idea by Racine and Parmeter (2014) is to repeat this process a large number of times

becausee it can provide significant power improvements over existing single-split techniques.

This is a new line of research, which has been recently pursued with nonparametric panel data

(Ma et al., 2015; Delgado et al., 2014).

The econometric analysis is conducted using annual country-level data for 24 OECD coun-

tries from 1971 to 2004. This dataset is also used, among others, in Coe et al. (2009) and in

Ertur and Musolesi (2017) and this allows for a comparability with previous studies. The paper

is organized as follows.

In section 2 we describe the model specifications that we employ as well as the adopted es-

timation approach. The out-of-sample comparison of the alternative specifications is presented

in section 3. Because the nonparametric specifications outperform the parametric one, we also

discuss the main results obtained from these smooth regression models, which have relevant

implication for public policies. Finally, section 4 concludes.

2 Model specifications and estimation methods

2.1 The classical parametric approach

The classical parametric specification. The standard parametric specification à la CH/CHH

can be expressed as:

log fit = αi + θ logSdit + γ logSfit + δ logHit + eit, (1)

where fit is the TFP of country i = 1, ..., N at time t = 1, ..., T , αi are individual fixed effects,

Sdit and Sfit are domestic and foreign R&D capital stocks, respectively, Hit is a measure of human

capital, and eit is the error term. Foreign capital stock Sfit is defined as the weighted arithmetic

mean of Sdjt for j 6= i, that is Sfit =
∑

j 6=i ωijS
d
jt, where ωij represents the weighting scheme. We

adopt the definition of weights proposed by Lichtenberg and van Pottelsberghe de la Potterie

(1998), which has been previously adopted in many other papers (Coe et al., 2009; Lee, 2006;

Ertur and Musolesi, 2017), incorporating information on bilateral imports. Specifically, we use

bilateral weight, i.e. the ratio of country i’s imports of goods and services from country j and

nominal GDP of countryj.

Model in Eq. (1) can be written as a special case of the heterogenous panel data model,

yit = α′idt + β
′

ixit + eit, (2)

with yit = log fit, αi is a constant term as dt = dt = 1, xit = [logSdit, logSfit, logHit]
′ and

βi = β = [θ, γ, δ]′.
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In the general specification (2), it is usually assumed that βi = β+µi where the deviations,

µi, are independently and identically distributed with mean 0. Moreover these deviations are

distributed independently of ejt, dt, and xjt, for all i, j and t. In this specification, dt denotes a

l×1 vector of observed common effects (including deterministics such as intercepts and seasonal

dummies), and αi is the associated vector of parameters.

CCE estimators. Panel data literature dealing with models like (2) with both N and T

large has shown that ignoring cross-sectional dependence of individual errors can seriously

impair the properties of usual panel data estimators (Phillips and Sul, 2003; Andrews, 2005;

Phillips and Sul, 2007; Sarafadis and Robertson, 2009). Cross-sectional dependence can be due

to unobserved common factors such as economy-wide shocks (for instance, oil price rise), that

affect all countries albeit with different intensities. The errors eit are then assumed to have the

following common factor structure:

eit = γ
′

ift + εit, (3)

in which ft is an m × 1 vector of unobserved common factors with associated country-specific

factor loadings γi. The number of factors, m, is assumed to be fixed relative to the number of

countries N , and in particular m << N . These factors ft are supposed to have a widespread

effect, as they heterogeneously affect every country in the sample. εit is an idiosyncratic error

term. Pesaran (2006) considers the case of i.i.d erros while Pesaran and Tosetti (2011) focus on

the more general case of a multifactor error structure and spatial error correlation. Combining

(2) and (3), we obtain the following:

yit = α
′

idt + β
′

ixit + γ
′

ift + εit. (4)

This model cannot be estimated using traditional panel data estimators due to unobservability

of common factors ft. Pesaran (2006) suggests the Common Correlated Effects (CCE) estima-

tion procedure to deal with that issue. CCE consists of approximating the linear combination of

the unobserved factors by cross-sectional averages of the dependent and explanatory variables,

and then running standard panel regressions augmented with these cross-sectional averages.

CCE estimator can be motivated as follows. The idiosyncratic errors εit in Eq. (3) are

assumed to be independently distributed over (dt,xit) , whereas the unobserved factors ft can

be correlated with the observed variables (dt,xit). This correlation is allowed by modeling the

explanatory variables as linear functions of the observed common factors dt and the unobserved

common factors ft:

xit = A′idt + Γ′ift + vit, (5)

where Ai and Γi are l × 3 and m × 3 factor loading matrices, and vit = (vi1t, vi2t, vi3t)
′. vit

is assumed to be distributed independently of εit and is allowed to be serially correlated, and

cross-sectionally weakly correlated.

Combining Eqs. (4) and (5), we get the following system of equations

zit =

(
yit
xit

)
= B′idt + C′ift + ξit (6)
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where

Bi = (αi Ai)

(
1 0

βi I3

)
,Ci = (γi Γi)

(
1 0

βi I3

)
, and ξit =

(
εit + β

′
ivit

vit

)

Using sample cross-sectional averages, Eq. (6) can be written as

zt = B
′
dt + C

′
ft + ξt (7)

where

zt =
1

N

N∑
i=1

zit, B =
1

N

N∑
i=1

Bi, C =
1

N

N∑
i=1

Ci, and ξt =
1

N

N∑
i=1

ξit

Following Pesaran (2006), we can premultiply both sides of Eq. (7) by C and solve for ft. We

get

ft =
(
C C

′
)−1

C
′
(
zt −B

′
dt − ξt

)
. (8)

It is possible to show that ξt converges to 0 in quadratic mean as N → ∞ (Pesaran and

Tosetti, 2011). Accordingly, it can be shown that

ft −
(
C C

′
)−1

C
′
(
zt −B

′
dt

) q.m.−→ 0, as N → 0 (9)

or, put differently, the unobservable common factors, ft, can be well approximated by a linear

combination of observed common factors dt, the cross-sectional averages of the dependent vari-

able, yt, and those of the country-specific regressors, xt. Two alternative estimators have been

proposed in the literature: the CCE Mean Group (CCEMG) estimator and the CCE Pooled

(CCEP) estimator. It has been shown that CCE estimators yield consistent estimates under a

large variety of situations (Kapetanios and Pesaran, 2009; Pesaran and Tosetti, 2011; Chudik

et al., 2011). Moreover, small sample properties of CCE estimators have also been investigated

in various papers (see, among others, Coakley et al., 2002; Kapetanios and Pesaran, 2009;

Chudik et al., 2011; Westerlund and Urbain, 2015). More specifically, these papers compare

the small sample properties of CCE estimators to their competitors, i.e. estimators based on

principal components (PC) (Coakley et al., 2002; Bai, 2009), and show that, although the PC

estimates of factors are more efficient than the cross-sectional averages, the CEE estimators

of slope coefficients generally perform the best. To conclude, a significant advantage of CCE

estimators is that they do not require a priori knowledge of the number of unobserved common

factors.

2.2 Alternative nonparametric approach

Sieve estimation Recently, Su and Jin (2012) consider a panel data model that extends

the multifactor linear specification proposed by Pesaran (2006). Specifically, Su and Jin (2012)

consider the following panel data model, which allows for a nonparametric relation between
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the dependent variable and the regressors, while the common factors enter the model in a

parametric way,

yit = α
′

idt + gi (xit) + γ
′

ift + εit, (10)

where gi(.) are unknown smooth continuous functions (heterogenous case). In the homogenous

case, gi(.) = g(.), for all i = 1, 2, . . . , N . For identification purposes, the following condition is

necessary,

E(gi (xit)) = 0.

Su and Jin (2012) extend CCE approach to the estimation of heterogenous panel data model

(10). First, following Pesaran (2006), they proxy the unobservable common factors ft in (10) by

the cross-sectional averages zt = N−1
∑N

j=1 zjt, where zit = [yit,x
′
it]
′
. Second, they approximate

the nonparametric part of the model, gi (.), using sieve approximation.

Sieve approximation proceeds as follows. First, we must choose an infinite sequence of

known basis functions, we denote by {πl(x), l = 1, 2, . . .}, that can approximate any square-

integrable function of x very well. Different choices are possible, including spline approximation

(see below). Second, the order of approximation must be defined. Let K denote this order that

is a function of T when estimating the heterogenous model with gi (.), or of N and T when

estimating the homogenous model with g (.). This integer number will tend to infinity as

N → ∞ (heterogenous case), or (N, T ) → ∞ (homogenous case). Third, under fairly weak

conditions, we can approximate the unknown function very well by a linear combination of the

K first elements of the chosen basis, or πK(x) = (π1(x), π2(x), . . . , πK(x))
′
, i.e.

gi (.) ≈ δgi
′πK(x) (heterogenous case), or g (.) ≈ δg

′πK(x) (homogenous case)

Finally, to estimate δgi , we run the regression

yit = α
′

idt + δgi
′πK(x) + ψ

′

izt + uit, (11)

or, to estimate δg, the regression

yit = α
′

idt + δg
′πK(x) + ψ

′

izt + uit, (12)

Su and Jin (2012) show that the extended CCE estimators of both the heterogenous and

homogenous regression functions are consistent as N and T tend to infinity, and establish

asymptotic normality of these estimators.

Nonparametric specifications In our empirical framework, we consider two alternative

specifications where xit enter the model nonparametrically. Because of the relatively small

time timension, we restrict our analysis to the the homogenous case, gi(.) = g(.) (see Su and

Jin, 2012, p. 41) and propose two alternative specifications. The first specification assumes an

additive structure of g(.), as follows:

log fit = αi + φ(logSdit) + ξ(logSfit) + ψ(logHit) + γ
′

ift + εit, (13)

7



where φ(.), ξ(.) and ψ(.) are unknown univariate smooth continuous functions of interest.

The second specification assumes instead a non-additive structure of g(.), i.e.

log fit = αi + g(logSdit, logSfit, logHit) + γ
′

ift + εit. (14)

Relaxing additivity may suffer of the curse of dimensionality but, at the same time, may

allow to detect relevant intercation effects, which are not allowed in the additive specification.

Thin plate regression splines Su and Jin (2012) estimate the nonparametric component of

the model using sieves, and particularly splines, as they typically provide better approximations

(see, e.g., Hansen, 2014). Following Su and Jin (2012), we adopt a regression splines (RS)

framework. We also employ penalized regression splines (PRS), as they combine the features

of both regression splines, which use less knots than data points but do not penalize roughness,

and smoothing splines, which control the smoothness of the fit through a penalty term but use

all data points as knots. PRS have proven to be useful empirically in many aspects (see, e.g.

Ruppert et al., 2003) and, in recent years, their asymptotic properties have been studied and

then connected to those of regression splines, to those of smoothing splines and to the Nadaraya

- Watson kernel estimators (Claeskens et al., 2009; Li and Ruppert, 2008). In this work, for

both RS and PRS we use thin plate regression splines (TPRS), which are introduced by Wood

(2003). Since TPRS have been developed and mostly adopted in the statistical science, a short

introduction of them is in order.

Consider the generic problem of finding the smooth function g of y = g(x) + ε from n

observations, where x is a vector of d variables. Thin plate splines (TPS) can be employed to

estimate g by finding the function ĝ that minimizes the quantity

||y − χ||+ λJmd(χ), (15)

where y and χ are n-dimentional vectors of the yi and χ(xi), i = 1, 2, ..., n, respectively.

|| · || is the Euclidean norm. Jmd(χ) is a penalty functional that is related to the order m of

differentiation in Jmd and to the dimension d, as described below.

Jmd(χ) =

∫
Rd

∑
ν1+···+νd=m

m!

ν1! . . . νd!

(
∂mχ

∂xν11 . . . ∂xνdd

)2

dx1 . . . dxd.

It is proven that the function that minimizes the expression above is of the form

ĝ(x) =
n∑
i=1

δiηmd(||x− xi||) +
M∑
j=1

αjπj(x), (16)

under the constraint that T ′δ = 0, Tij = πj(xi). δ and α are vectors of unknown parameters

and πj, j = 1, 2, ...,M , are M =
(
m+d−1

d

)
are linearly independent polynomials of degree less

than m that span the Rd space. ηmd is a specific function associated with m and d (see Wood,

2003). Then, (15) translates to minimizing with respect to δ and α

||y − Eδ − Tα||2 + λδ′Eδ, subject to T ′δ = 0, (17)
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where E is the matrix with elements Eij = ηmd(||xi − xj||), i, j = 1, 2, ..., n.

In contrast to typical RS and PRS, the estimation of g using TPS does not require the choice

of knots or the selection of basis functions. Moreover, TPS do not impose any restriction in

the number of predictor variables and allow some flexibility to the selection of m. Nevertheless,

TPS are not computationally attractive because, as implied by (16) and (17), except for the

case when d = 1, they require the estimation of as many parameters as the number of data

points n.

To overcome this computational difficulty, Wood (2003, 2017) starts from the smoothing

problem (17) and truncates the space of the components with parameters δ, which are the

ones associated with the wiggliness of the spline. Following Wood (2017), let E = UDU′

be the eigen-decomposition of E, where D is a diagonal matrix of eigenvalues of E such that

|Di,i| ≥ |Di−1,i−1| and U the corresponding eigenvectors. Denote by Uk the matrix of the first

k columns of U and by Dk the upper left k×k submatrix of D. Restrict δ to the column space

of Uk, so that δ = Ukδk, where δk is a k-dimensional vector with k > M . Then, within the

space spanned by Uk, problem (17) is replaced by minimizing

||y −UkDkδk − Tα||2 + λδ′kDkδk, subject to T ′Ukδk = 0. (18)

Having fitted (18), the spline is evaluated from (16) after estimating δ from δk.

It is worth to note that while TPS are optimal with respect to minimizing (15), the low

rank smoothers resulting from the truncation described above do not inherit such an optimality

property. Moreover, this low rank approximation would be ideal only if, for any given δ, it

would result in minimum change in the goodness of fit and, simultaneously, in the penalty

term. Nevertheless, no single basis can achieve the above for all δ. This fact raises the need to

define a way by which (17) is approximated by (18). Wood (2003, 2017) proposes an approach

that is associated to minimizing the largest possible change of the goodness of fit, that is

êk = maxδ=0
||(E−Êk)δ||
||δ|| , as well as minimizing the largest change in wiggliness, that is ẽk =

maxδ=0
δ′(E−Ẽk)δ
||δ||2 . In these quantities, Êk = EUkU

′
k and Ẽk = U′kUkEUkU

′
k. Further, Wood

(2003) shows that the choice of Uk as the truncated basis for δ minimizes simultaneously both

êk and ẽk. This approximation that also considers the minimization criteria of êk and ẽk results

in the definition of the TPRS.

Since our explanatory variables have different units, in the case of the non-additive spec-

ification (14), we avoid isotropy by considering a tensor product basis, which is constructed

by assigning TPRS as the basis for the marginal smooth of each covariate and then creating

their Kronecker product. The tensor product smooths are invariant to the linear rescaling of

covariates, and for this reason, they are appropriate when the arguments of a smooth have dif-

ferent units (Wood, 2006). Finally note that in the PRS framework, the smoothing parameter

is selected by the restricted maximum likelihood (REML) estimation, which, relative to other

approaches, is less likely to develop multiple minima or to undersmooth at finite sample sizes

(see, e.g. Reiss and Todd Ogden, 2009).
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3 Results

In this section, we compare the results from the estimation of the three aforementioned speci-

fications:1

log fit = αi + θ logSdit + γ logSfit + δ logHit + γ
′
ift + εit,

log fit = αi + φ(logSdit) + ξ(logSfit) + ψ(logHit) + γ
′
ift + εit, and

log fit = αi + g(logSdit, logSfit, logHit) + γ
′
ift + εit.

We use data on a balanced panel of 24 OECD countries observed over the period 1971-2004

from Coe et al. (2009) and revisited in Ertur and Musolesi (2017). Total factor productivity,

fit, is measured as the log of output minus a weighted average of labor and capital inputs using

factor shares as weights. Sdit is total domestic R&D capital stock computed using perpetual

inventory procedure. Sfit is foreign R&D capital stock defined as the weighted average of Sdjt,

j 6= i, using bilateral imports as weights Lichtenberg and van Pottelsberghe de la Potterie

(1998), i.e.

Sfit =
∑
j 6=i

(Mijt/Yjt)S
d
jt

with Mijt = country i’s imports of good and services from country j and Yjt = nominal GDP

of country j. Hit is the stock of human capital used by Ertur and Musolesi (2017), which is

obtained starting from the average years of schooling provided by Barro and Lee (2000).

3.1 Out-of-sample comparison

To compare the aforementioned specifications, we perform a pseudo Monte Carlo experiment.

In particular, along the lines depicted by Racine and Parmeter (2014), Ma et al. (2015) and

Delgado et al. (2014), using similar macro panel data variables related to economic growth,

the observations are randomly shuffled at 90% into training points and at 10% into evaluation

points. Each model is fitted according to the training sample. Then, the average out-of-sample

squared prediction error (ASPE) is computed using the evaluation sample. The above steps

are repeated a large number of times B = 1000, so that a B × 1 vector of prediction errors is

created for each model.2

According to the statistical literature dealing with apparent versus true error (see e.g. Efron,

1982), the true error is associated with out-of-sample measures of fit, contrasted to the apparent

error, which is associated with within sample measures. Typically, the latter is smaller than

the former and frequently overly optimistic. The method proposed by Racine and Parmeter

1The parametric specification is estimated using CCEP estimator already coded in R within the package plm

while the nonparametric specifications are estimated by exploiting the R package mgcv.
2See also Baltagi et al. (2003) who contrast the out-of-sample forecast performance of alternative parametric

panel data estimators.
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(2014) is linked to cross validation (CV), in the original formulation of which a regression

model fitted on a randomly selected first half of the data was used to predict the second half.

The division into equal halves is not necessary. For instance, a common variant is the leave-

one-out CV, which fits the model to the data excluding one observation each time and then

predicts the remaining point. The average of the prediction errors is the CV measure of the

true error. As highlighted in Racine and Parmeter (2014), the method can provide significant

power improvements over existing single-split techniques.

FIGURE 1

Figure 1 presents the box-and-whisker plots of the ASPE distributions for the different spec-

ifications. A first relevant result is that the median that corresponds to the parametric model

is the largest among the different specifications, while the non-additive penalized model has the

smallest median. In particular, the median ASPEs of the non-additive penalized model relative

to the other models – the parametric, the additive unpenalized, the additive penalized and

the non-additive unpenalized – is 0.6023, 0.9284, 0.9409 and 0.8278, respectively. A second

interesting result is that the penalized regression modeling has a smaller median ASPE than its

unpenalized counterpart for both additive and non-additive specifications. However, although

when imposing an additive structure, the two approaches provide quite similar performances,

the gain in terms of predictive ability from using PRS over RS is extremely pronounced when

estimating the non-additive specification, which typically suffers more from the curse of di-

mensionality problem. Also, it is worth noting that within the RS framework, the additive

specification provides a better performance than the non-additive one.

FIGURE 2

Next, figure 2 shows the empirical cumulative distribution functions of the ASPEs for each

model. Clearly, the ASPE of the non-additive penalized model is stochastically dominated by

the ASPE of any of the remaining models. This indicates that the non-additive penalized model

outperforms all others in terms of predictive ability. It is also evident that the parametric model

underperforms with respect to the nonparametric ones.

Finally, we compare the different specifications using the test of revealed performance (TRP)

proposed by Racine and Parmeter (2014). The TRP involves estimating the distribution of the

true errors for the different models and testing whether their expectations are statistically

different. The results of these paired t-tests are presented in Table 1. In all cases, the null

hypothesis that the difference in means of the ASPEs is zero is rejected. Thus, the tests

complement the above presented results, indicating that this difference is statistically significant

in all cases.

TABLE 1
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In summary, these results clearly indicate that the parametric specification underperforms

with respect to the nonparametric ones. This is a similar results than Ma et al. (2015) who use a

similar macro panel data set. As far as nonparametric specifications are concerned, PRS always

perform better than unpenalized RS. The improvement achieved when using PRS is much more

pronounced when focusing on the nonadditive specification where RS suffer more of the curse of

dimensionality problem while PRS apper to be extremely efficient. While there exists a number

of studies comparing alternative spline methods by using Monte Carlo simulations (see e.g. Nie

and Racine, 2012; Wood, 2003, 2006), to the best of our knowledge, this is the first paper

constrasting PRS and RS in terms of their predictive ability and may provide some guidance

for future works. The nonadditive specification is indeed the best one when using PRS while

with unpenalized RS, the best model is the one with additive smooth terms. These results thus

suggest adopting a nonparametric nonadditive specification and that PRS are more efficient

than their unpenalized counterparts, especially for nonadditive specifications when the curse of

dimensionality is a concern.

3.2 Estimation results

In this subsection, we present the main estimation results and specifically focus attention on

the nonparametric specifications. These results have relevant implication for public policies.

We only consider PRS, since they outperform their unpenalized counterparts. We first provide

the results obtained using the additive specification (13) because, due to the additive structure,

the results are directly comparable to those ones of the parametric specifications adopted in

previous studies. Then, we present the results of the non-additive specification (14), which,

according to our findings, provides the best predictive performance and thus is more suitable

to approximate the underlying DGP.

The results concerning the nonparametric part of the additive specification are presented in

figure 3. The three graphs depict the estimated univariate smooth functions. Following Marra

and Wood (2012), the estimated smooths are shown with confidence intervals that include

the uncertainty about the overall mean, which provides better coverage performance. We also

computed the p-values for smooth terms using a Wald test statistic that is motivated by an

extension of Nychka (1988) analysis of the frequentist properties of Bayesian confidence intervals

for smooths as suggested by Wood (2012). These are p-values associated with Wald test that

the whole function equals zero. Low p-values indicate low likelihood that the splines of the

function are jointly zero. Also note that smooths are subject to sum-to-zero identifiability

constraints as detailed in Cardot and Musolesi (2019).

FIGURE 3

All the estimated smooths appear to be highly significant, with extremely low p-values

associated with the Wald test. Moreover, using an approximate ANOVA test procedure (see

Wood, 2017), the parametric model is strongly rejected in favour of model (13). It is worth
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mentioning that because the response as well as the explanatory variables are in logs, the slope

of the estimated smooth functions represents the estimated elasticity, which are depicted in the

bottom panel of 3. The first plot shows the effect of domestic R&D on TFP. It appears that

for low values of R&D, where data are sparse and large confidence interval bands are present,

the relation is flat. Then, for intermediate values of domestic R&D, the function is monotonic

increasing, with a steep rise in approximately the last two deciles. The policy implications

resulting from the above are clear: an increase in domestic R&D has an effect on productivity

only above a threshold, thus suggesting that a critical mass of investments in R&D is crucial

for R&D to become effective. After this threshold, the estimated output elasticity becomes

positive and increases even more for very high levels of domestic R&D. This can be seen as a

refinement of the results of the existing empirical literature on R&D spillovers, which is based on

parametric models and generally distinguishes between G7 and non-G7 countries. Indeed, Ertur

and Musolesi (2017), employing the CCE approach, show that the estimated output elasticity

of domestic R&D is positive and significant for G7 countries, while it is non-significant for non-

G7 countries. Similar results are also found by Coe et al. (2009), who adopt the dynamic OLS

for cointegrated panels, and by Barrio-Castro et al. (2002), who use a standard fixed effects

approach.

The second graph shows the effect of foreign R&D on TFP. Again, for low levels of the

variable, data are sparce, making it difficult to identify a clear pattern. Then, the relation

is positive and roughly concave for intermediate values, while it becomes flat for high levels

of foreign R&D. The results show that an increase in foreign R&D affects TFP positively,

but only up to a certain level. They complement previous empirical literature such as Coe

et al. (2009), who indicate that trade-related foreign R&D is a significant determinant of TFP.

More specifically, our findings improve the results of Ertur and Musolesi (2017), among others,

who find a small, positive and significant effect of R&D on TFP in non-G7 countries, but

no significant effect in the case of the G7. Nevertheless, in all previous studies, the linearity

assumption obscures the fact that the output elasticity of foreign R&D is not constant but

varies with respect to the different levels of foreign R&D. Indeed, looking at the bottom panel

of figure 3, it can be seen that the estimated elasticity constantly decreases over the range of

foreign R&D up to a level where it becomes not significantly different from zero.

The third graph in figure 3 depicts the effect of human capital on TFP. It again shows

scarce data and large confidence bands for low levels. Then, the relation between human

capital and TFP is approximately flat for intermediate values, while for high values, it seems

to be monotonic increasing, with a steep rise in approximately the last two deciles. In terms

of policy perspectives, the results suggest a threshold that occurs at very high levels of human

capital, above which the estimated elasticity becomes positive. Investing in human capital

becomes effective only after a certain level is reached. These findings add new insights to Ertur

and Musolesi (2017), who find no significant effect of human capital on TFP for both G7 and

non-G7 countries and explain their result on the grounds that the quantity of education no

longer has a significant effect when omitted variable bias is addressed. We find confirmation
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of such results for most of the domain of human capital, but we also show that allowing for

nonlinearity in the relation between human capital and TFP is crucial in order to highlight a

positive effect for the highest levels of human capital.

FIGURE 4

Next, we turn to the estimates of the non-additive specification. Also, in this case, the

estimated (multivariate) smooth function appears to be highly significant. Again, an approxi-

mate ANOVA test procedure is used and the the model with additive smooth functions (13) is

rejected in favour of model with a trivariate smooth function (14). Interestingly, the results of

this test confirm the out-of-sample comparison.

In particular, we focus attention on the joint effect of domestic and foreign R&D stocks on

TFP. This because the effect of these two variables is the main focus in this literature. Indeed,

the inclusion of human capital has been motivated not only because it affects productivity and

the ability of firms to absorb information but also because it is likely to be correlated with

R&D and estimating the model without human capital should bias the coefficient associated

with R&D upward. In some previous studies (see e.g. Barrio-Castro et al., 2002; Frantzen,

2000; Engelbrecht, 1997), within the parametric framework under the linearity and additiity

assumptions, this bias has been estimated to be approximately 20% to 30%. The results are

presented in figure 4, which shows the joint effect of the R&D variables on TFP for a level of

human capital fixed to the first, fifth (the median) and ninth decile. As depicted in the first

graph, for low levels of human capital and irrespective of the level of domestic R&D, foreign

R&D has almost no effect on TFP. In terms of policy implications, these findings suggest that

foreign R&D spillovers cannot be effective if the level of human capital in a country remains

low. Moreover, the effect of domestic R&D on TFP seems not to be linked to the level of foreign

R&D, which implies an additive pattern when the level of human capital is low. Similar to

the additive model presented above, there is a threshold above which domestic R&D becomes

effective.

The second and third graphs in figure 4 show the effect on TFP when human capital is

fixed to the median and to the ninth decile, respectively. The results in both graphs suggest

a complementarity between domestic R&D and foreign R&D. Indeed, while for low levels of

domestic R&D, the effect of foreign R&D on TFP is low, and vice versa, domestic and foreign

R&D become more and more effective when the levels of both domestic and foreign R&D are

increasing. These findings have interesting policy implications; in countries with intermediate

or high levels of human capital, investments in R&D are not very effective if the level of foreign

R&D is low. Further, the benefits of foreign R&D spillovers cannot be exploited unless both

human capital and domestic R&D are above a critical mass. The above results contrast with

results from some previous studies such as in Coe et al. (2009), who report that their estimations

considering interactions between human capital and domestic and foreign R&D do not yield

correctly signed and significant results.
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In summary, these results clearly suggest that parametric estimates conceal an important

part of the story and that the underlying DGP is not correctly approximated by adopting

the classical parametric framework. The relationship under study is is not linear and presents

relevant thresholds and complex interactions, which are better modeled by adopting a nonpara-

metric approach.

4 Concluding remarks

In this paper, we revisit the analysis of international technology diffusion. Because the high

degree of uncertainty surrounding the DGP and the likely presence of nonlinearities and latent

common factors, we consider alternative nonparametric panel specifications which extend the

Common Correlated Effects approach and then contrast the out-of-sample performance of them

with those of more common parametric models. To do so, we adopt an approach recently

proposed within the literature of nonparametric regression. This approach is based on a pseudo

Monte Carlo experiment that takes its roots on cross validation. Fitted econometric models

are view as approximations and the goal is to test whether one approximate model performs

better than another on data drawn from the same DGP. While it is common adopting a sample-

splitting mechanism whereby one splits the full sample into two sub-samples where one sub-

sample is used for estimation and the other for out-of-sample evaluation, to avoid that the

results reflect a particular division of the data into two sub-samples, the main idea by Racine

and Parmeter (2014) is to repeat this process a large number of times becausee this can provide

significant power improvements over existing single-split techniques.

We first show that a shift from a parametric to a nonparametric framework provides a

significant improvement in terms of predictive ability. Moreover, we also documented that

penalized regression splines perform significantly better than their unpenalized counterparts,

especially in the case of a non-additive model, when the curse of dimensionality is a concern.

To the best of our knowledge this is the first paper contrasting penalized and unpenalized

regression splines in terms of their predctive ability.

Turning to the estimation results, our findings suggest the presence of threshold effects and

nonlinearities, while the adoption of a non-additive specification provides further insights into

the interactions among explanatory variables without imposing any parametric restrictions and

definitively indicating that a critical mass of human capital is necessary to benefit from R&D

spillovers and to observe an interactive effect between domestic and foreign R&D. In general,

our findings strongly highlight that the presence of nonlinearities and complex interactions is

an important feature of the data; these are obviously hidden within a parametric framework

and have relevant implications for policy.

Finally, it is worth mentioning that a further extension of the present study may account

for heterogeneous relations across countries. Given the relatively small time dimension, such an

extension is outside the realm of the nonparametric estimators presented in this paper, where

heterogeneity is addressed by adopting a Mean Group approach, and could be accomplished,
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for instance, by resorting to Bayesian modeling (Kiefer and Racine, 2017; Parmeter and Racine,

2018) to address the additional curse of dimensionality problem raised by heterogeneity.
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Figure 1: Out-of-sample average square prediction error (ASPE) box plots for different factor models:

the parametric, the additive and the non-additive.
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Figure 2: Empirical Cumulative Distribution Functions (ECDFs) of the ASPE for different factor

models: the linear, the additive and the non-additive models for the OECD data.

21



Figure 3: Additive Model. Estimated smooths (top panel) and corresponding derivatives (bottom

panel) for the additive penalized regression model. Component smooths are shown with confidence

intervals obtained by computing a Bayesian posterior covariance matrix.
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Figure 4: Non-additive model. The effect of domestic and foreign R&D on TFP for different levels of

human capital. The log of human capital is fixed to the first, fifth and ninth decile, respectively.
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TABLE 1 - Paired t-tests of factor models

models
Additive

unpenalized
Additive
penalized

Non-additive
unpenalized

Non-additive
penalized

Parametric 43.683∗∗∗ 45.461∗∗∗ 27.042∗∗∗ 47.992∗∗∗

Additive
unpenalized 9.849∗∗∗ -18.493∗∗∗ 13.138∗∗∗

Additive
penalized -20.492∗∗∗ 10.697∗∗∗

Non-additive
unpenalized 32.642∗∗∗

Null hypothesis: The true difference in means of the ASPEs of the compared models is zero.

The training sample is 90% of the data-sample; number of resampling iterations B: 1.000

Classification of p-value: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
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