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SUMMARY 16 

The ecology of microbes frequently involves the mixing of entire communities 17 

(community coalescence), for example flooding events, host excretion and soil tillage 18 

[1,2], yet the consequences of this process for community structure and function are 19 

poorly understood [3–7]. Recent theory suggests that a community, due to coevolution 20 

between constituent species, may act as a partially cohesive unit [8–11], resulting in 21 

one community dominating following community coalescence. This dominant 22 

community is predicted to be the one that uses resources most efficiently when grown 23 

in isolation [11]. We experimentally tested these predictions using methanogenic 24 

communities, for which efficient resource use, quantified by methane production, 25 

requires coevolved cross-feeding interactions between species [12]. Following 26 

propagation in laboratory-scale anaerobic digesters, community composition 27 

(determined from 16S rRNA sequencing) and methane production of mixtures of 28 

communities closely resembled that of the single most productive community grown 29 

in isolation. Analysis of each community’s contribution towards the final mixture 30 

suggests that certain combinations of taxa within a community might be co-selected 31 

as a result of coevolved interactions. As a corollary of these findings, we also show 32 

that methane production increased with the number of inoculated communities. These 33 

findings are relevant to the understanding of the ecological dynamics of natural 34 
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microbial communities, as well as demonstrating a simple method of predictably 35 

enhancing microbial community function in biotechnology, health and agriculture [13]. 36 

 37 

RESULTS AND DISCUSSION 38 

We wanted to determine if coalesced methanogenic communities were dominated by the 39 

community that used resources most efficiently in isolation. We used methanogenic 40 

communities primarily because methane production is a useful proxy for the ability of an 41 

anaerobic community to fully exploit available resources: Methanogenesis results from the 42 

conversion of H2, CO2 and short chain fatty acids produced by hydrolysis and fermentation of 43 

more complex organic material, and is often the only thermodynamically feasible way of 44 

actively removing inhibitory end-metabolites [12]. Moreover, methanogenic communities are 45 

characterized by complex cross-feeding interactions [12, 14, 15]; hence, the importance of 46 

community cohesion in shaping community performance is likely to be particularly important 47 

[9]. To provide insight into the temporal dynamics of compositional and functional change 48 

following community mixing, we first measured the methane production and composition of 49 

two methanogenic communities derived from industrial Anaerobic Digesters (ADs) (Table 1) 50 

grown in isolation or as a mixture in laboratory scale ADs. Both the individual communities 51 

and mixes were grown in four replicates. To remove any potentially confounding effects 52 

caused by differences in starting density of tested communities, we standardized microbial 53 

density based on qPCR-estimated counts of 16S rRNA gene copies. We found that the 54 

methane production of the mixed community was initially intermediate between the two 55 

individual communities, but after 5 weeks propagation started to produce gas at a rate 56 

indistinguishable from the more productive of the individual communities (Figure 1A). We 57 

examined both the starting point and the endpoint composition of the single and mixed 58 

communities by Illumina sequencing 16s rRNA gene amplicon libraries. Consistent with the 59 

phenotypic data, the composition of the mixture was much more similar to the better than the 60 

worse performing community at the endpoint (Figure 1B). This was despite the single 61 

endpoint communities changing considerably from their ancestral composition over the 5 62 

weeks (Figure 1B). 63 

 64 

We next determined if a single community dominated when multiple communities were mixed. 65 



To this end, we propagated 10 single communities (from either industrial ADs or sewage or 66 

agricultural waste AD feedstocks, with each replicated three times), and ten replicates of a 67 

mixture of all ten communities (Table 1). The results were consistent with those from the two-68 

community mixture. First, methane production in mixtures of ten communities was higher than 69 

the average of the individual communities. However, methane production of the mixtures did 70 

not differ from the best performing single community, P13, (Figure 2A), which, like each of the 71 

single communities used, was a constituent of all the mixtures. Second, the community 72 

composition of mixtures (which varied very little between replicates, presumably because they 73 

all had the same 10 community starting inocula) most closely resembled the best performing 74 

community, P13 (Figure 2B). More generally, the more compositionally similar an individual 75 

community was to the replicated 10-community mixtures, the greater the gas production of 76 

the community when grown in isolation (Figure S1). Other community characteristics that 77 

positively correlated with methane production were bacterial cell densities and within-78 

community (alpha) diversity, but not methanogen density (Figure S2). In summary, the results 79 

demonstrate that the community most efficient at using resources (which in these 80 

experiments was also the most diverse) dominates when multiple communities are mixed 81 

together, thus enhancing mixed community productivity beyond the average of the 82 

component communities.  83 

 84 

We next explored the ecological mechanism(s) underpinning the observed dominance by the 85 

community that produced the most methane. One explanation is that multiple taxa from the 86 

same community act as semi-cohesive units and are selected together. This might arise as a 87 

result of coevolved mutualistic (or unidirectional) cross-feeding interactions, notably between 88 

methanogenic Archaea and hydrogen/acetate producers, where each organism both provides 89 

essential resources and removes damaging waste products for each other [12,15,16]. 90 

Moreover, coevolved resource partitioning can result in taxa being selected together, because 91 

species are expected to coevolve to minimise competition with co-occurring taxa [17–19]. 92 

Note that the selection of multiple taxa together in these contexts does not require any form of 93 

group selection [11, 20], but simply selection of particular individuals from a key taxon whose 94 

presence provides an advantage for individuals from taxa they have coevolved with. This 95 



process can be described as ecological co-selection, equivalent to genetic co-selection, 96 

where a gene can hitchhike to high frequency purely as consequence of being linked to 97 

genes under positive selection [21].  98 

 99 

An alternative explanation is that coevolved interactions within individual communities are 100 

relatively unimportant, and the dominant community simply contains more competitive taxa 101 

(for any functional task/interaction) than other communities. This does not imply that 102 

coevolved cross-feeding interactions are unimportant for methanogenic communities, but that 103 

these co-evolved interactions are no more specific for taxa isolated from within a community 104 

than taxa isolated from different communities. In other words, functionally equivalent taxa are 105 

interchangeable between communities. These different scenarios, selection for the best 106 

individual taxa and co-selection, are two extremes of a continuum. The distinction is important 107 

because dominance by a single community is necessarily a more likely consequence of 108 

community coalescence when co-selection operates. Figure 3 (ABC) provides an illustration 109 

of the two extreme scenarios, no co-selection and co-selection of the entire community, and 110 

an intermediate case where there are two groups of interacting taxa, or modules, and co-111 

selection occurs within each. 112 

 113 

The most direct way to demonstrate a role of co-selection would be to show that the outcome 114 

of competition between single taxa from different communities does not predict the outcome 115 

of competition at the community level [11]. Unfortunately, this is not feasible for such complex 116 

communities, in which many taxa are very difficult to grow in isolation. However, there are 117 

other testable predictions associated with the operation of co-selection or otherwise. If the 118 

success of an individual taxon is independent of whether they are in the presence of taxa 119 

from the same community (i.e. co-selection does not occur), communities that use resources 120 

most efficiently and hence achieve the highest biomass per unit of time (productivity) will 121 

contain the highest number of the best-performing taxa. It then follows that there will be a 122 

positive relationship between the productivity of a community and the proportion of taxa it 123 

contributes to the mixture (Figure 3A). If instead taxa are co-selected as modules, the 124 

correlation between individual community contribution and productivity is likely to break down. 125 



This is best illustrated by the extreme scenario whereby all taxa within a mixed community 126 

are co-selected from a single community: the mixture will be entirely dominated by a single 127 

constituent community, hence the contribution of all other communities will be independent of 128 

their individual productivity (i.e. they will contribute null to the mixture’s composition, even 129 

though they have non-zero productivity individually; Figure 3B). The intermediate scenario, 130 

where co-selection occurs within two independent modules can also break down this 131 

correlation if one module contributes much more to community productivity than the other 132 

(Figure 3C).  133 

 134 

To determine if co-selection contributed to our findings, we first estimated the contribution of 135 

each community to the 10-community mixtures using a non-negative least squares (NNLS) 136 

approach. The community that had the most similar composition to the mixtures (and 137 

produced the most methane) contributed an estimated 40% of its taxa to the mixtures, with 138 

only two other communities contributing more than 10% of their taxa to the mixtures (Figure 139 

3D). We then correlated the contribution each community made to the mixtures with two 140 

measures of community productivity: methane production and cell densities (based on 16s 141 

rRNA gene copy number), which themselves were positively correlated (Figure S2A). We 142 

found no suggestion of a positive correlation between either measure of productivity and 143 

contribution to the community (Figure 3D and E). These results suggest that co-selection of 144 

taxa played an important role in dominance by the community that produced the most 145 

methane. 146 

 147 

That community coalescence results in the most productive individual community dominating 148 

the mixed community has direct implications for biotechnological uses of microbial 149 

communities. Given that the best performing community in isolation largely determined both 150 

the composition and performance of mixtures of communities, methane production should 151 

increase with increasing number of communities in a mixture. We therefore inoculated 152 

laboratory-scale anaerobic digesters with 1, 2, 3, 4, 6 or 12 communities, ensuring that each 153 

of the 12 starting communities was used an equal amount of times at each diversity level 154 

([22]; see Table S1). Cumulative methane production over a five-week period increased with 155 



increasing number of communities used as an inoculum (Figure 2C). The positive correlation 156 

between community function and the number of inoculating communities is analogous to the 157 

commonly observed finding that community productivity increases with increasing species 158 

diversity [23]. In this case, the mechanism underlying this positive relationship between the 159 

number of communities and productivity is a “sampling effect”: inoculating more communities 160 

increases the chance that the best performing community will be present in the mix [24]. 161 

However, given that domination of mixtures by one community was not complete (Figure 3D 162 

and E), it is possible that mixing communities could increase performance beyond that of the 163 

maximum of single communities in some circumstances (transgressive over-yielding, [25]).  164 

 165 

Here, we have shown that coalescence of microbial communities results in dominance of a 166 

single community, the identity of which can be predicted from its efficiency of resource use in 167 

isolation. This dominance is likely to be driven in part by co-selection of interacting taxa within 168 

coevolved communities, which is likely to greatly increase the magnitude of dominance 169 

following mixing [11]. It is unclear whether such effects would be apparent for aerobic 170 

communities where cross-feeding interactions are less important for efficient resource use 171 

[26], although studies to date [4] suggest asymmetric outcomes, although less extreme, may 172 

be common. Our study has also identified a simple method to significantly improve methane 173 

yield during anaerobic digestion: inoculate digesters with a broad range of microbial 174 

communities, and the best performing community will dominate. However, further work under 175 

a range of conditions is clearly required to determine the generality of these findings. Given 176 

that resource use efficiency is often a desirable property of microbial communities, this 177 

approach could be applied to a range of biotechnological processes driven by microbial 178 

communities, as well as to manipulate microbiomes in clinical and agricultural contexts [13].  179 

 180 
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 279 

FIGURE LEGENDS 280 

Figure 1: Temporal dynamics of methane production and composition when two 281 

communities are mixed. A) Cumulative methane production in ml (±SEM) over time of: 282 

community P01 (white circles), community P05 (black circles) and their mixes (grey circles). 283 

Cumulative methane production differed between treatments (ANOVA: F2,9 = 23.2, P < 284 

0.001), but did not differ between the mixed community and P05 (Tukey-Kramer HSD: P = 285 

0.5). P01 was lower than both other treatments (Tukey-Kramer HSD: P < 0.001 in both 286 

cases). B) NMDS plot of unweighted UniFrac of communities P01 (white), P05 (black) and 287 

their mixes (grey). Ancestral samples are represented by squares with samples from the 288 

endpoint of the experiment by circles. At the endpoint, P05 was compositionally more similar 289 

to the mixtures than P01, based on both unweighted (t-tests of mean distance to each mixture 290 

for each replicate single community: t6 = 8.3, P < 0.001) and weighted (t6 = 2.3, P = 0.03) 291 

UniFrac distances.  292 

 293 

Figure 2: Methane production and community composition when multiple communities 294 

are mixed. A) Total methane production of mixed (grey) and individual communities (white), 295 

with mean values shown as horizontal lines. Mean total methane production was greater for 296 

mixtures than for individual communities (t-test: P < 0.001 in 9 cases), except when measured 297 

against community P13 (the best performer). B) NMDS plot of unweighted unifrac of 10 298 

mixtures (grey) and 9 individual communities (white). Numbers in circles refer to individual 299 

community identifiers (Table 1). Community P13 was significantly closer in composition to the 300 

10 mixed communities than any other community (weighted and unweighted UniFrac 301 

distances; Paired t-tests; P < 0.001, in all cases). There was also a significant link between 302 

the community composition and the difference in gas production between the communities 303 

(see Figure S1). Note: DNA yield from community P06, which had the lowest gas production 304 



of all communities, was insufficient for sequencing, therefore it is excluded from this and 305 

following graphs. C) Individual communities (white circles) and their average methane 306 

production (white line); mixes of communities (grey circles) and their averages (grey line). 307 

There was a monotonic increase in methane production with number of communities used 308 

(Regression: F1,26 = 5.4, P = 0.03). For community composition of the mixes, see Table 1 and 309 

Table S1. 310 

 311 

 312 

Figure 3: The role of co-selection in explaining dominance by a single community. A-C) 313 

The top panels illustrate three hypothetical scenarios describing how communities contribute 314 

to a mixture of communities, while the bottom panels show the expected relationships 315 

between a community’s contribution and its methane production. The letters within the top 316 

panels indicate taxa that drive two biochemical processes (abcd and ef); capitalised letters 317 

are the best representatives of a taxon among all the communities. A). No co-selection. B). 318 

Co-selection of all taxa within a community. C). Co-selection of taxa within two independent 319 

modules. D). Mean estimated relative contribution of each individual community (numbered) 320 

towards the 10 coalesced communities calculated using the NNLS method, plotted against 321 

mean cumulative methane production for each community; there is no significant relationship 322 

(Regression; F1,7 = 1.7, P > 0.2). E) As D, but relative contribution is plotted against number of 323 

bacterial and archaeal cells calculated based on the 16S rRNA gene copy number 324 

(Regression; F1,7 = 1.7, P > 0.5. Note the relative contribution is not a fractional contribution 325 

because some OTUs present in the mixture were not detected in the constituent 326 

communities. This is presumably because they only reached detected frequencies in the 327 

mixture, but we can’t rule out that the community that we failed to get sufficient reads from 328 

contributed to the composition of the mixtures. Mind that the cell densities of Archaea and 329 

bacteria do not significantly correlate with the gas production (see Figure S2). 330 

 331 

Table 1: List of individual communities used in this analysis and their source. All 332 

Anaerobic Digester (AD) communities were derived from industrial ADs in the South West of 333 



England. Specific locations cannot be provided because of commercial sensitivity. Note that 334 

experiment numbers correspond with figure numbers. 335 

 336 
Sample 
name 

Feed/Type Temperature  Used in 
experiments 

P01 Silage and Foodwaste Anaerobic 
Digester (AD) 

44 - 42.5°C 1,2,3 

P02 Silage + Food waste AD 44 - 42.5°C 2,3 
P03 Maize/Cow Slurry/Chicken Manure AD 45°C 3 
P04 Maize/Cow Slurry/Chicken Manure AD 45°C 2,3 
P05 Sewage Sludge AD 36°C 1,2,3 
P06 Raw Sewage Ambient 2,3 
P08 Thickened Sewage Sludge Ambient 2,3 
P09 Sewage Based AD 36°C 2,3 
P10 Food Waste AD 36°C 2,3 
P11 Cow Slurry Ambient 3 
P12 Silage, Slurry and Manure Pre-Digestate Ambient 3 
P13 Silage, Slurry and Manure AD 40°C 2,3 
P15 Food waste AD 36°C 2 

 337 

 338 

 339 

 340 

STAR METHODS 341 

CONTACT FOR REAGENT AND RESOURCE SHARING 342 

 343 

The authors are happy to share any further resources linked to the research involved with 344 

qualified third parties. Further information and requests for resources and reagents should be 345 

directed to and will be fulfilled by the Lead Contact, Pawel Sierocinski 346 

(p.sierocinski@exeter.ac.uk).  347 

 348 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 349 

 350 

Methanogenic communities 351 

The communities used were collected from anaerobic digesters (AD plants: communities 352 

P01,P02, P03, P04, P05, P09, P10, P13 and P15) and communities present in nature used to 353 

seed the AD plants (communities P06, P08, P11, P12, see the details in Table 1). All the 354 

communities have been collected in the South West area of United Kingdom from operating 355 

Anaerobic Digesters and the seeding communities they use for the reactors. The 356 

mailto:p.sierocinski@exeter.ac.uk


communities were operating at temperatures between ambient and 45°C in their places of 357 

origin. Communities were stored at 4°C prior to use.  358 

 359 

METHOD DETAILS 360 

 361 

Cultivation details 362 

For all experiments, communities were grown in 500 ml bottles (600ml total volume with 363 

headspace; Duran) using the commercially available Automated Methane Potential Test 364 

System (AMPTS, Bioprocess Control Sweden AB) to measure CO2-stripped biogas 365 

production (referred to as methane in this paper). Samples were fed weekly with 25 ml of 366 

defined medium in a fed-batch mode using a defined medium (see below for media 367 

composition).  368 

 369 

The communities used in experiment 1 were equalised in terms of bacterial cells per gram of 370 

sample before inoculation using M9 salts to dilute them to the community with the lowest cell 371 

density, based on qPCR enumeration of 16S rRNA gene copies. For experiments 2 and 3, 372 

starting 16S rRNA copy number was determined (but not equalised between communities) 373 

and did not correlate with methane production. The fermenters were inoculated with 275 g of 374 

sample and fed with 25 ml of defined medium: meat extract 111.1 gl-1, cellulose 24.9 gl-1, 375 

starch 9.8 gl-1 glucose 0.89 gl-1, xylose 3.55 gl-1 (carbon to nitrogen ratio of 15:1) every week, 376 

starting with t0. Before the start of the fermentation, 0.3 mL of 1000x Trace Metal stock (1 gl-1 377 

FeCl2 . 4H2O, 0.5 gl-1 MnCl2 . 4H2O, 0.3 gl-1 CoCl2 . 4H2O, 0.2 gl-1 ZnCl2, 0.1 gl-1 NiSO4 . 378 

6H2O, 0.05 gl-1 Na2MoO4 . 4H2O, 0.02 gl-1 H3BO3, 0.008 gl-1 Na2 WO4 . 2H2O, 0.006 gl-1 379 

Na2SeO3 . 5H2O, 0.002 gl-1 CuCl2 . 2H2O) was added to each fermenter.  380 

 381 

Experiment structure 382 

In Experiment 1 (results shown in Figure 1) we cultivated community P01 (four replicates) and 383 

community P05 (four replicates) and a 1:1 mix of the two. It ran for 5 weeks before samples 384 

were harvested for sequencing (see below). The initial community was sequenced at the 385 

same time. In Experiment 2 (results shown in Figure 2), we cultivated 10 individual 386 



communities (listed in Table 1), in triplicate, and 10 mixes of all 10 communities mixed in 387 

equal volumes, at the same total volume as the single communities. After 6 weeks samples 388 

were harvested for sequencing. In Experiment 3 (results shown in Figure 2C) we used 12 389 

communities (detailed in Table 1). They were grown in isolation as well as pseudo-randomly 390 

combined to create a gradient of number of starting communities, with each community used 391 

only once for each number of communities. This resulted in 12 single communities, 6 pairs, 4 392 

triplets, 3 quadruplets, 2 mixes of 6 and one mix of 12 communities. Specific details of mixing 393 

can be seen in Table S1. The cultures were propagated for 5 weeks.  394 

 395 

Measuring methane content of Biogas 396 

All resulting lab-scale reactors inoculated with the samples were run at 37°C using the 397 

Automatic Methane Potential Test System (AMPTS). The AMPTS is a setup of 15 simple 398 

fermenters using a 0.5L lab bottle as the vessel with its own stirring system provided with a 399 

butyl rubber stopper and sampling ports. It is connected to an online gas measuring system to 400 

allow continuous gas measurements. The AMPTS system measures the volume of biogas 401 

produced following stripping of CO2 (by passing the gas through 50 ml of 3M NaOH solution) 402 

from the produced gas. To reproduce our results, however, there is no need for a 403 

sophisticated setup, some pilot experiments yielding similar results in terms of gas production 404 

were conducted using anaerobic serum flasks. We confirmed that the measured biogas was 405 

>95% methane using Gas Chromatography with Flame Ionisation Detection optimized for 406 

methane detection.  407 

 408 

DNA extraction and qPCR quantification  409 

DNA for 16S rRNA gene amplicon sequencing was extracted using QIAamp DNA Stool Mini 410 

Kit (QIAGEN) or FastDNA™ SPIN Kit for Soil (MP), depending on the experiment. Note that 411 

DNA extraction for mixed community P06 from experiment 2 failed. The DNA for qPCR was 412 

extracted with the QIAamp DNA Stool Mini Kit (QIAGEN), protocol for pathogen detection 413 

with the 95ºC incubation step and the Powerlyzer Powersoil DNA KIT (MOBIO). DNA from 414 

Acinetobacter baylyi, Pseudomonas fluorescens SBW25 for Bacteria and from Halobacterium 415 

salinarum DSM 669 for Archaea was used as standards. The primers [27] used to quantify 416 



Bacteria were 16S rRNA 338f - ACT CCT ACG GGA GGC AGC AG, 518r - ATT ACC GCG 417 

GCT GCT GG for Archaea: 931f - AGG AAT TGG CGG GGG AGC A, m1100r - BGG GTC 418 

TCG CTC GTT RCC. The reagents used were: 1x Brilliant III Ultra-Fast SYBR® Green QPCR 419 

Master Mix; 150nM 338f and 300nM 518r or 300nM 931f and 300 nM m1100r; ROX 300nM; 420 

and BSA 100 ng/µl final concentration. All samples were run in triplicate on a StepOnePlus 421 

(Applied Biosystems) qPCR machine using a program with 3 minutes 95ºC initial denaturation 422 

followed by 40 cycles of 5 seconds at 95ºC and 10 seconds at 60ºC, followed by a melting 423 

curve 95ºC for 15 seconds; 60ºC for 1 minute ramping up to 95ºC in steps of 0.3ºC for 15 424 

seconds each. The melting curve analysis and the confirmation of the negative controls was 425 

done using StepOne Software v.2.3 (life technologies). The Cq values and the efficiencies of 426 

the samples and standards was determined as previously using LinRegPCR version 427 

2016.0[28]. The quantities were calculated using the one point calibration method as 428 

described earlier[29]. 429 

 430 

Amplicon library construction and sequencing 431 

16S rRNA gene libraries were constructed using primers designed to amplify the V4 region 432 

and multiplexed [30]. Amplicons were generated using a high-fidelity polymerase (Kapa 2G 433 

Robust) and purified using the Agencourt AMPure XP PCR purification system and quantified 434 

using a fluorometer (Qubit, life technologies). The purified amplicons were then pooled in 435 

equimolar concentrations by hand based on Qubit quantification. The resulting amplicon 436 

library pool was diluted to 2 nM with sodium hydroxide and 5 μl transferred into 995 μl HT1 437 

(Illumina) to give a final concentration of 10 pM. 600 μl of the diluted library pool was spiked 438 

with 10% PhiX Control v3 and placed on ice before loading into Illumina MiSeq cartridge 439 

following the manufacturer’s instructions. The sequencing chemistry utilised was MiSeq 440 

Reagent Kit v2 (500 cycles) with run metrics of 250 cycles for each paired end read using 441 

MiSeq Control Software 2.2.0 and RTA 1.17.28.  442 

 443 

Analyses of sequenced samples 444 

MiSeq amplicon reads were merged using Illumina-utils software [31]. We quality-filtered only 445 

the mismatches in the overlapping region between read pairs using a minimum overlap (--446 



min-overlap-size) of 200 nt and a minimum quality Phred score (--min-qual-score) of Q20. We 447 

allowed no more than five mismatches per 100 nt (-P 0.05) over the 200 nt overlapping 448 

region. 449 

 450 

Reads that fulfilled the quality criteria were analysed using Quantitative Insights Into Microbial 451 

Ecology (QIIME v.1.7) [32]. We removed chimera using the identify_chimeric_seqs.py script, 452 

UCHIME reference 'Gold' database and USEARCH [33,34], which we also used to select 453 

OTUs. We assigned the taxonomy of our reads with QIIME pick_open_reference_otus.py 454 

function, using the Greengenes database version v13_8[35] as a reference with a minimum 455 

cluster size of 2 (i.e., each OTU must contain at least two sequences). We collapsed the 456 

technical replicates and filtered out the low abundance OTUs (<0.01% total, 457 

filter_otus_from_otu_table.py) and samples rarefied to an even depth of 26702 for both 458 

experiments where sequencing data is available. QIIME was used to calculate alpha and beta 459 

diversity data and produce NMDS plots. 460 

 461 

QUANTIFICATION AND STATISTICAL ANALYSIS 462 

MacQiime was used to calculate alpha and beta diversity data and produce NMDS plots. 463 

Data obtained with MacQiime was later combined with the gas production data and analysed 464 

using JMP Pro 13 software (SAP) as described in the Figure legends.  465 

 466 

For the NNLS analysis, following removal of low abundance OTUs and cumulative sum 467 

scaling transformation, the resulting biom file was used to create a matrix 𝐴 ∈ ℤ ≥0
 𝑚 × 𝑛 (m rows 468 

of OTUs by n sample columns) for all of the single communities, and a column vector 𝑏 ∈  ℤ ≥0
 𝑚  469 

for each of the mixed communities; both  𝐴  and 𝑏  hold non-negative integers of OTU 470 

abundances. Note that one of the individual samples contained a negligible number of reads 471 

and was discarded from the analysis. The contribution, or weight, of each seed sample to the 472 

pattern of OTUs observed in each of the mixed communities is given by the column vector 𝑥 ∈473 

ℝ 𝑛  when solving a system of linear equations  𝐴𝑥 = 𝑏. Written out this equation (𝐴𝑥 = 𝑏) 474 

looks like this for each mixture: 475 

 476 



 477 

(

OTU1,S1 ⋯ OTU1,Sn

⋮ ⋱ ⋮
OTUm,S1 ⋯ OTUm,Sn

)x(
𝑥𝑆1

⋮
𝑥𝑆𝑚

)= (
𝑂𝑇𝑈𝑚𝑖𝑥_1

⋮
𝑂𝑇𝑈𝑚𝑖𝑥_𝑚

) 478 

 479 
________________________________________________ 480 
where S refers to each single community. 481 
 482 

When modelling count data for environmental samples the fitted parameters of 𝑥 will 483 

also be non-negative and the number of OTUs will usually exceed the number of samples (m 484 

> n). The task is to solve an over-determined system of linear equations where there are 485 

more equations than unknowns. It is likely that some of the linear equations will ‘disagree’ and 486 

there will be no exact solution. Geometrically, this may be interpreted as 𝑏 not lying in the 487 

column space of 𝐴, a (hyper)plane holding the column vectors of 𝐴, or 𝐴𝑥 − 𝑏 ≠ 0. A least-488 

squares approach may find the non-negative vector �̅� = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 which is the projection of 489 

𝑏 back onto the column space of 𝐴 that minimises the least-squares error ‘distance’ ‖𝐴�̅� − 𝑏‖. 490 

For our study the non-negative least-squares (NNLS) solution, �̅�, and least-squares errors 491 

were computed via the R packages ‘nnls’ [36] and ‘limSolve’ [37] for each of the mixed 492 

samples, with the mean relative contribution of each community to the 10 mixtures shown in 493 

Figure 2C (relative to the gas production)..  494 

 495 

DATA AND SOFTWARE AVAILABILITY 496 
 497 
The raw sequences obtained from our experiments are available at the European Nucleotide 498 

Archive and may be accessed at http://www.ebi.ac.uk/ena/data/view/PRJEB21193 499 

(Experiment 1) and http://www.ebi.ac.uk/ena/data/view/PRJEB21187 (Experiment 2). We also 500 

included the R code that allows the user to calculate the contribution a single community has 501 

in a mix of communities (see Method S1). Using this code, a NNLS analysis can be 502 

conducted with the input of a pre-filtered OTU table.  503 

 504 
 505 

http://www.ebi.ac.uk/ena/data/view/PRJEB21193
http://www.ebi.ac.uk/ena/data/view/PRJEB21187


 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

   

   

   

   

   

Bacterial and Virus Strains  

   

   

   

   

   

Biological Samples   

   

   

   

   

   

Chemicals, Peptides, and Recombinant Proteins 

Brilliant III Ultra-Fast SYBR (R) Green QPCR Master 
Mix  

Agilent Technologies 
 

600882-51 
 

meat extract Sigma-Aldrich Co. LLC. 
 

70164-500G 

Xylose 
 

Sigma-Aldrich Co. LLC. 
 

W360100-1KG 
 

Cellulose Sigma-Aldrich Co. LLC. 
 

C6288 
 

Starch Sigma-Aldrich Co. LLC. 
 

33615-1KG 
 

Glucose Sigma-Aldrich Co. LLC. 
 

G8270-1KG 
 

   
Critical Commercial Assays 

QIAamp DNA Stool Mini Kit (QIAGEN) Qiagen ID: 51504 

FastDNA™ SPIN Kit for Soil  
 

MP Biomedicals, LLC 
 

116560200 
 

PowerLyzer® PowerSoil® DNA Isolation Kit  
 

MO BIO Laboratories, 
Inc.  

12855-100  
 

   

   

Deposited Data 

Sequencing data Experiment 1 European Nucleotide 
Archive 

http://www.ebi.ac.uk/
ena/data/view/PRJEB2
1193 

KRT

http://www.ebi.ac.uk/ena/data/view/PRJEB21193
http://www.ebi.ac.uk/ena/data/view/PRJEB21193
http://www.ebi.ac.uk/ena/data/view/PRJEB21193


 

Sequencing data Experiment 2 European Nucleotide 
Archive 

http://www.ebi.ac.uk/
ena/data/view/PRJEB2
1187 

   

   

   

Experimental Models: Cell Lines 

   

   

   

   

   

Experimental Models: Organisms/Strains 

Community P01 Silage and Foodwaste 
Anaerobic Digester 
(AD) 

This paper 

Community P02 Silage + Food waste 
AD 

This paper 

Community P03 Maize/Cow 
Slurry/Chicken 
Manure AD 

This paper 

Community P04 Maize/Cow 
Slurry/Chicken 
Manure AD 

This paper 

Community P05 Sewage Sludge AD This paper 

Community P06 Raw Sewage This paper 

Community P08 Thickened Sewage 
Sludge 

This paper 

Community P09 Sewage Based AD This paper 

Community P10 Food Waste AD This paper 

Community P11 Cow Slurry This paper 

Community P12 Silage, Slurry and 
Manure Pre-Digestate 

This paper 

Community P13 Silage, Slurry and 
Manure AD 

This paper 

Community P15 Food waste AD This paper 

Oligonucleotides 

338f - ACT CCT ACG GGA GGC AGC AG [27]  

518r - ATT ACC GCG GCT GCT GG [27]  

931f - AGG AAT TGG CGG GGG AGC A [27]  

m1100r - BGG GTC TCG CTC GTT RCC [27]  

   

Recombinant DNA 

   

   

   

   

   

Software and Algorithms 

http://www.ebi.ac.uk/ena/data/view/PRJEB21187
http://www.ebi.ac.uk/ena/data/view/PRJEB21187
http://www.ebi.ac.uk/ena/data/view/PRJEB21187


 

StepOne Software v.2.3 life technologies https://www.thermofisher.
com/uk/en/home/technical
-resources/software-
downloads/StepOne-and-
StepOnePlus-Real-Time-
PCR-System.html# 

LinRegPCR version 2016.0 [28] linregpcr.nl 
 

R version 3.4.0 R Core Team (2013).  Mac: https://cran.r-
project.org/bin/macosx/  
PC: https://cran.r-
project.org/bin/windows/b
ase/old/ 

macQIIME [32] http://www.wernerlab.org/
software/macqiime/downl
oad 

   

Other 

NNLS Method for assessing community contribution in a 
mix 

This paper,  Method S1 

   

   

   

   

 

https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/macosx/
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Figure S1: The relationship between the difference in composition of single 

communities from the mixtures and the difference in gas production of single 

communities from the mixture related to Figures 2A, 2B.. The Y-axis shows the 

difference in gas production between the mean of three replicates of each individual 

community and the mean gas production of the mixes (the smaller the value, the more similar 

the gas production to the mixtures). The X-axis shows the mean unweighted UniFrac distance 

between individual communities and each of the ten mixtures (the smaller the value, the more 

similar the community composition to the mixtures). These two variables are positively 

correlated (Spearman ρ = 0.86, P < 0.001)). Qualitatively similar results were obtained using 

weighted UniFrac distances (Spearman ρ = 0.75, P < 0.02).  
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Figure S2: Within-community predictors of methane production from Experiment 2 

related to Figure 3D, 3E. Relationships between methane production [ml] and: A) Archaeal 

densities [log10 cells/g] (Regression: F1,15 = 0.32, P > 0.2); B) Bacterial densities [log10 cells/g] 

(Regression: F1,16 = 16.5, P < 0.001); and C) number of OTUs (Regression: F1,16 = 51.6, P < 

0.001). The reported statistics are based on combined mixed (grey circles) and individual 

(white circles) communities, but the same qualitative relationships were found when mixed 

communities were excluded form the analyses (Archaeal density: F1,7 = 0.07, P > 0.2; 

Bacterial density: F1,7 = 92, P < 0.02; OTUs: F1,7 = 16.4, P < 0.01).  

 

Sample consisting of 
community(ies) 

No. of 
communities 

in the mix 

Gas 
production 

after 4 weeks 

Gas production of the 
best component of the 

mix after 4 weeks 

Average gas 
production of all 
components of a 
mix after 4 weeks 

Difference in gas 
production 

between a mix 
and its best 
component 

Difference in 
gas 

production 
between a mix 

and the 
average of its 
components 

P06 1 494.9 N/A N/A N/A N/A 

P08 1 584.3 N/A N/A N/A N/A 

P09 1 600.8 N/A N/A N/A N/A 

P12 1 1626.2 N/A N/A N/A N/A 

P11 1 2262.8 N/A N/A N/A N/A 

P03 1 2776.8 N/A N/A N/A N/A 

P01 1 2935.5 N/A N/A N/A N/A 

P02 1 3640.8 N/A N/A N/A N/A 

P05 1 4243.0 N/A N/A N/A N/A 

P10 1 5490.1 N/A N/A N/A N/A 

P04 1 5891.3 N/A N/A N/A N/A 

P13 1 6060.3 N/A N/A N/A N/A 

P01+P11  2  4231.70  2935.50  2599.15  1296.20  1632.55  

P02+P09  2  5018.40  3640.80  2120.80  1377.60  2897.60  

P12+P03 2  604.70  2776.80  2201.50  -2172.10  -1596.80  

P08+P05  2  4383.00  4243.00  2413.65  140.00  1969.35  

P04+P06 2  5543.40  5891.30  3193.10  -347.90  2350.30  

P13+P10 2 6081.40  6060.30  5151.65  21.10  929.75  

P03+P12+P01 3  3276.30  2935.50  2446.17  340.80  830.13  

P08+P02+P06 3  4980.60  3640.80  1573.33  1339.80  3407.27  

P04+P11+P13  3  6429.10  6060.30  4738.13  368.80  1690.97  

P05+P09+P10 3  4894.80  5490.10  3444.63  -595.30  1450.17  

P01+P13+P10+P05 4  5834.60  6060.30  4682.23  -225.70  1152.38  

P02+P04+P11+P06  4  6401.90  5891.30  3072.45  510.60  3329.45  

P03+P08+P09+P12 4  1086.50  2776.80  1397.03  -1690.30  -310.53  

P12+P02+P01+P09 6  5065.90  4243.00  2271.77  822.90  2794.13  



+P08+P05 

P03+P04+P06+P10
+P11+P13 6  5689.20  6060.30  3829.37  -371.10  1859.83  

All 12 communities' 
mix 12  6620.00  6060.30  3050.57  559.70  3569.43  

AVERAGE FOR ALL 
MIXES   4758.8 4672.9 3011.6 85.9 1747.2 
 

Table S1: Community mixing setup and detailed results of Experiment 3 related to 

Figure 2C. The details of the communities used can be found in Table 1.  

 
 



Method	S1:		
	 
##################################################################### 
## Solving a system of linear equations for a non-square [m > n]   ## 
## matrix via the use of non-negative least squares [NNLS].        ## 
## Return the solution 'weights' and residual sum of squares.      ## 
##                                                                 ##  
## Mark Alston, Earlham Institute: mark.alston@earlham.ac.uk       ## 
##################################################################### 
 
 
## ========================================================================================================= ## 
## Install the R packages phyloseq, biomformat, nnls and limSolve. 
## Now load as required...   
## ========================================================================================================= ## 
 
library("phyloseq") 
packageVersion("phyloseq") 
 
library("biomformat") 
packageVersion("biomformat") 
    
library("nnls") 
packageVersion("nnls") 
 
 
## ========================================================================================================= ## 
## READ IN THE OTU table 
## ========================================================================================================= ## 
## MAPPING FILE TO BE USED: 'mappingFile.txt'  
## OTU TABLE TO BE USED:    'CSS_norm_rawValues.biom'  
 
## SET YOUR WORKING DIRECTORY, e.g. point to where your files are located 
setwd("/path/to/the/data") 
 
 
## Quick look at the OTU table which is in biom format 
read_biom("CSS_norm_rawValues.biom")    
 
 
## load the biom file into phyloseq 
data = import_biom("CSS_norm_rawValues.biom")  
data 
 
 
## ========================================================================================================= ## 
## Give meaningful names to the Taxon Column Headers and create a phyloseq object 
## ========================================================================================================= ## 
myTaxTable <- tax_table(data) 
colnames(myTaxTable) <- c("Kingdom","Phylum", "Class", "Order", "Family", "Genus","Species") 
 
### take a look ### 
head(myTaxTable) 
rank_names(myTaxTable) 
 
OTU = otu_table(data) 
TAX = tax_table(myTaxTable) 
 
myPhyloSeq_allData <- phyloseq(OTU,TAX)    
myPhyloSeq_allData 
 
 
## ========================================================================================================= ## 
## Incorporate some metadata about the samples ### i.e. first create a mappingFile.txt in a text editor 
## ========================================================================================================= ## 
SAMPLES = import_qiime_sample_data("mappingFile.txt") 
class(SAMPLES) 
 
 
 
## ========================================================================================================= ## 
## MERGE the bits and bobs into a new phyloseq object 
## ========================================================================================================= ## 
myPhyloSeq <- merge_phyloseq(myPhyloSeq_allData, SAMPLES) 
myPhyloSeq 
 
 
## inspect the OTU table 
otu_table(myPhyloSeq) 
 
## Checking the column headers and looking at the mapping file we see that  
## columns 3,2,1,6,18,17,4,7,5 correspond to the 9 SINGLE communities [SAM11640-SAM11649] 
## columns 11,12,10,19,15,16,13,14,8,9 correspond to the 10 MIXED communities [SAM11630-SAM11639] 
 
 
## ========================================================================================================= ## 
## collapse OTU table at the 'family' level, and generate matrix 'A' [A.X = b] 
## ========================================================================================================= ## 
 
bacteria_family <- tax_glom(myPhyloSeq, taxrank="Family") 
bacteria_family_df <- as.data.frame(get_taxa(otu_table(bacteria_family))  ) 
bacteria_family_singleComm_df  <-  bacteria_family_df[,c(3,2,1,6,18,17,4,7,5)]       
 
row.names(bacteria_family_singleComm_df) <- NULL 
colnames(bacteria_family_singleComm_df) <- NULL 
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## ========================================================================================================= ## 
## get matrix 'A'  
## ========================================================================================================= ## 
bacteria_family_matrix_A <- as.matrix(bacteria_family_singleComm_df) 
 
 
   
## ========================================================================================================= ## 
## get vector 'b' [A.X = b], one for each of the 'mixed' samples [OTU table columns 11,12,10,19,15,16,13,14,8,9] 
## ========================================================================================================= ## 
b_M01_bac_family_df  <- bacteria_family_df[,c(11)]  
bf_M01  <-  as.matrix(b_M01_bac_family_df)  
 
b_M02_bac_family_df  <- bacteria_family_df[,c(12)]  
bf_M02  <-  as.matrix(b_M02_bac_family_df)  
 
b_M03_bac_family_df  <- bacteria_family_df[,c(10)]  
bf_M03  <-  as.matrix(b_M03_bac_family_df)  
 
b_M04_bac_family_df  <- bacteria_family_df[,c(19)]  
bf_M04  <-  as.matrix(b_M04_bac_family_df)  
 
b_M05_bac_family_df  <- bacteria_family_df[,c(15)]  
bf_M05  <-  as.matrix(b_M05_bac_family_df)  
 
b_M06_bac_family_df  <- bacteria_family_df[,c(16)]  
bf_M06  <-  as.matrix(b_M06_bac_family_df)  
 
b_M07_bac_family_df  <- bacteria_family_df[,c(13)]  
bf_M07  <-  as.matrix(b_M07_bac_family_df)  
 
b_M08_bac_family_df  <- bacteria_family_df[,c(14)]  
bf_M08  <-  as.matrix(b_M08_bac_family_df)  
 
b_M09_bac_family_df  <- bacteria_family_df[,c(8)]  
bf_M09  <-  as.matrix(b_M09_bac_family_df)  
 
b_M10_bac_family_df  <- bacteria_family_df[,c(9)]  
bf_M10  <-  as.matrix(b_M10_bac_family_df)  
 
 
 
## ========================================================================================================= ## 
## 'weights' can be negative  
## So try to solve giving only NON-NEGATIVE weights via non-negative least-squares (NNLS) 
## see: 'nnls'  from  https://cran.r-project.org/web/packages/nnls/nnls.pdf 
## ========================================================================================================= ## 
 
 
## ========================================================================================================= ## 
## FIRST: Inspect the 'Residual Sum of Squares' [RSS] values  
## ========================================================================================================= ## 
 
soln_M01 <- nnls(bacteria_family_matrix_A,bf_M01) 
soln_M02 <- nnls(bacteria_family_matrix_A,bf_M02) 
soln_M03 <- nnls(bacteria_family_matrix_A,bf_M03) 
soln_M04 <- nnls(bacteria_family_matrix_A,bf_M04) 
soln_M05 <- nnls(bacteria_family_matrix_A,bf_M05) 
soln_M06 <- nnls(bacteria_family_matrix_A,bf_M06) 
soln_M07 <- nnls(bacteria_family_matrix_A,bf_M07) 
soln_M08 <- nnls(bacteria_family_matrix_A,bf_M08) 
soln_M09 <- nnls(bacteria_family_matrix_A,bf_M09) 
soln_M10 <- nnls(bacteria_family_matrix_A,bf_M10) 
 
solution <- cbind(soln_M01, soln_M02, soln_M03, soln_M04, soln_M05, soln_M06, soln_M07, soln_M08, soln_M09, soln_M10) 
 
solution[2,]    ### Row 2 holds the values for the 'deviance', or 'Residual Sum of Squares' [RSS] values,   
   ### that is the 'distance' of the solution vector from the projected vector, b   
    
 
 
## ========================================================================================================= ## 
## SECOND: Grab the solution 'weight' values, or 'X' from [A.X = b]  
## pass matrix 'A' and each vector 'b' in turn to the NNLS function   
## ========================================================================================================= ## 
 
library("limSolve") 
packageVersion("limSolve") 
 
soln_M01 <- nnls(bacteria_family_matrix_A,bf_M01, verbose = TRUE) 
soln_M02 <- nnls(bacteria_family_matrix_A,bf_M02, verbose = TRUE) 
soln_M03 <- nnls(bacteria_family_matrix_A,bf_M03, verbose = TRUE) 
soln_M04 <- nnls(bacteria_family_matrix_A,bf_M04, verbose = TRUE) 
soln_M05 <- nnls(bacteria_family_matrix_A,bf_M05, verbose = TRUE) 
soln_M06 <- nnls(bacteria_family_matrix_A,bf_M06, verbose = TRUE) 
soln_M07 <- nnls(bacteria_family_matrix_A,bf_M07, verbose = TRUE) 
soln_M08 <- nnls(bacteria_family_matrix_A,bf_M08, verbose = TRUE) 
soln_M09 <- nnls(bacteria_family_matrix_A,bf_M09, verbose = TRUE) 
soln_M10 <- nnls(bacteria_family_matrix_A,bf_M10, verbose = TRUE) 
 
solution <- cbind(soln_M01$X, soln_M02$X, soln_M03$X, soln_M04$X, soln_M05$X, soln_M06$X, soln_M07$X, soln_M08$X, soln_M09$X, soln_M10$X) 
 
 
## name columns and rows ## 



########################### 
dimnames(solution) = list( c("P1","P4","P5","P8","P9","P10","P12","P13","P15"),c("M1","M2","M3","M4","M5","M6","M7","M8","M9","M10") ) 
 
solution  ## view the solution 'weights' for each mixed sample 
   
write.table(solution, sep="\t", "solutionWeights.txt") 
 
 
## ========================================================================================================= ## 
## THIRD: plot out the 'weights'          
## Plot the weight of contribution for each of the single 'seed' samples to a mixture 
## ========================================================================================================= ## 
 
 
## view weights for each mixed sample as barcharts  ## 
## munge solution vectors into one vector           ##   
## the following was adapted from: http://www.r-bloggers.com/using-the-svd-to-find-the-needle-in-the-haystack/ ## 
 
 
library(lattice) 
b_clr <- c("steelblue", "darkred") 
b1 <- barchart(as.table(solution[,1]), 
               main="M_01", 
               horizontal=FALSE, col=ifelse(solution[,1] > 0,  
                                            b_clr[1], b_clr[2]), 
               ylab="Weight",  
               scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
               ) ###key = key) 
      print(b1, split=c(1,1,3,4), more=TRUE)    ### 'split' is used to lay out the barchart lattice 
      ### e.g. split=c(1,1,3,2) means place plot b1 in col. 1, row 1 
   
b2 <- barchart(as.table(solution[,2]), 
                main="M_02", 
                horizontal=FALSE, col=ifelse(solution[,2] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b2, split=c(2,1,3,4), more=TRUE)  ### 'split' is used to lay out the barchart lattice 
      ### e.g. split=c(2,1,3,2) means place plot b2  in col. 2, row 1   
      ### where the layout has 3 columns and 2 rows x O x 
      ###      x x x      
 
b3 <- barchart(as.table(solution[,3]), 
                main="M_03", 
                horizontal=FALSE, col=ifelse(solution[,3] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b3, split=c(3,1,3,4), more=TRUE) 
 
 
b4 <- barchart(as.table(solution[,4]), 
                main="M_04", 
                horizontal=FALSE, col=ifelse(solution[,4] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b4, split=c(1,2,3,4), more=TRUE) 
 
 
b5 <- barchart(as.table(solution[,5]), 
                main="M_05", 
                horizontal=FALSE, col=ifelse(solution[,5] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b5, split=c(2,2,3,4), more=TRUE) 
 
 
b6 <- barchart(as.table(solution[,6]), 
                main="M_06", 
                horizontal=FALSE, col=ifelse(solution[,6] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b6, split=c(3,2,3,4), more=TRUE) 
 
 
 
b7 <- barchart(as.table(solution[,7]), 
                main="M_07", 
                horizontal=FALSE, col=ifelse(solution[,7] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b7, split=c(1,3,3,4), more=TRUE) 
 
 
b8 <- barchart(as.table(solution[,8]), 
                main="M_08", 



                horizontal=FALSE, col=ifelse(solution[,8] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b8, split=c(2,3,3,4), more=TRUE) 
 
 
b9 <- barchart(as.table(solution[,9]), 
                main="M_09", 
                horizontal=FALSE, col=ifelse(solution[,9] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b9, split=c(3,3,3,4), more=TRUE) 
 
 
b10 <- barchart(as.table(solution[,10]), 
                main="M_10", 
                horizontal=FALSE, col=ifelse(solution[,10] > 0,  
                                             b_clr[1], b_clr[2]), 
                ylab="Weight",  
                scales=list(x=list(rot=55, labels=rownames(solution), cex=1.1)), 
                ) ###key = key) 
      print(b10, split=c(1,4,3,4))    

    
	
Method S1: Code for the Non-Negative Least Squares (NNLS) analysis related to STAR 
Methods. This annotated code can be run using R in order to obtain the contribution of 
individual communities towards the community mix. The input files needed are the .biom file 
containing the compositions of communities analysed and their phylogeny, preferably 
prepared using Cumulative Sum Scaling normalisation (see STAR methods). It also requires 
a mapping file as described in http://qiime.org/documentation/file_formats.html. The version of 
the code is suited for analysis of our dataset but can be readily adapted for any dataset 
containing multiple communities amplicon data.  
 
The script was run in RStudio v1.0.143 using R version 3.4.0 (2017-04-21) and the following 
R package versions: limSolve_1.5.5.2, nnls_1.4, biomformat_1.4.0, Phyloseq_1.20.0. 
 
 


