L. R. Parenti, A phylogenetic analysis and taxonomic revision of ricefishes, p.437, 2008.

, Oryzias and relatives (Beloniformes, Adrianichthyidae), Zool J Linn Soc, vol.154, pp.438-494

K. Inoue and Y. Takei, Diverse adaptability in oryzias species to high 440 environmental salinity, Zool. Sci, vol.19, pp.727-734, 2002.

K. Inoue and Y. Takei, Asian medaka fishes offer new models for studying 442 mechanisms of seawater adaptation, Comp. Biochem. Physiol. B, Biochem, 2003.

, Mol. Biol, vol.136, pp.635-645

D. F. Mokodongan and K. Yamahira, Origin and intra-island diversification 445 of Sulawesi endemic Adrianichthyidae, Mol. Phylogenet. Evol, vol.93, pp.150-160, 2015.

J. Wittbrodt, A. Shima, and M. Schartl, Medaka--a model organism from the 447 far East, Nat. Rev. Genet, vol.3, pp.53-64, 2002.

S. Kirchmaier, K. Naruse, J. Wittbrodt, and F. Loosli, The genomic and 449 genetic toolbox of the teleost medaka (Oryzias latipes), Genetics, pp.905-450, 0199.

T. Myosho, H. Takahashi, K. Yoshida, T. Sato, S. Hamaguchi et al., , p.452

M. Sakaizumi, Hyperosmotic tolerance of adult fish and early embryos 453 are determined by discrete, single loci in the genus, Oryzias. Sci Rep, vol.8, p.6897, 2018.

K. Tanaka, Y. Takehana, K. Naruse, S. Hamaguchi, and M. Sakaizumi, , p.455, 2007.

, Evidence for different origins of sex chromosomes in closely related Oryzias 456 fishes: substitution of the master sex-determining gene, Genetics, vol.177, pp.2075-457

Y. Takehana, K. Naruse, S. Hamaguchi, and M. Sakaizumi, , p.459, 2007.

X. X. Zz/zw, XY sex-determination systems in the closely related medaka 460 species, Oryzias hubbsi and O. dancena, Chromosoma, vol.116, pp.463-470

Y. Takehana, D. Demiyah, K. Naruse, S. Hamaguchi, and M. Sakaizumi, 462 Evolution of different Y chromosomes in two medaka species, Oryzias 463 dancena and O. latipes, Genetics, vol.175, pp.1335-1340, 2007.

A. Herpin and M. Schartl, Molecular mechanisms of sex determination and 465 evolution of the Y-chromosome: insights from the medakafish (Oryzias 466 latipes), Mol. Cell. Endocrinol, vol.306, pp.51-58, 2009.

T. Myosho, H. Otake, H. Masuyama, M. Matsuda, Y. Kuroki et al., , p.468

K. Naruse, S. Hamaguchi, and M. Sakaizumi, Tracing the emergence of 469 a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics, vol.191, pp.470-163, 2012.

Y. Takehana, M. Matsuda, T. Myosho, M. L. Suster, K. Kawakami et al., , p.472

Y. Kohara, Y. Kuroki, A. Toyoda, and A. Fujiyama, Co-option of 473 Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias 474 dancena, Nat Commun, vol.5, p.4157, 2014.

Y. Takehana, K. Naruse, and M. Sakaizumi, Molecular phylogeny of the 476 medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on 477 nuclear and mitochondrial DNA sequences, Mol. Phylogenet. Evol, vol.36, pp.417-478, 2005.

S. Yusof, A. Ismail, T. Koito, M. Kinoshita, and K. Inoue, Occurrence of 480 two closely related ricefishes, Javanese medaka (Oryzias javanicus) and Indian 481 medaka (O. dancena) at sites with different salinity in Peninsular Malaysia, 2012.

, Environ Biol Fish, vol.93, pp.43-49

S. Z. Zulkifli, F. Mohamat-yusuff, A. Ismail, and N. Miyazaki, Food 484 preference of the giant mudskipper Periophthalmodon schlosseri (Teleostei : 485 Gobiidae), Knowl. Managt. Aquatic Ecosyst, 2012.

J. Koyama, M. Kawamata, S. Imai, M. Fukunaga, S. Uno et al., , p.487, 2008.

, Java medaka: a proposed new marine test fish for ecotoxicology, Environ. 488 Toxicol, vol.23, pp.487-491

Y. Horie, N. Kanazawa, T. Yamagishi, K. Yonekura, and N. Tatarazako, , p.490, 2018.

, Ecotoxicological Test Assay Using OECD TG 212 in Marine Java Medaka 491 (Oryzias javanicus) and Freshwater Japanese Medaka (Oryzias latipes), Bull 492 Environ Contam Toxicol, vol.101, pp.344-348

S. Yasumasu, M. Kawaguchi, S. Ouchi, K. Sano, K. Murata et al., , p.494

T. Akema and I. Iuchi, Mechanism of egg envelope digestion by 495 hatching enzymes, HCE and LCE in medaka, Oryzias latipes, J. Biochem, vol.496, pp.439-448, 2010.

M. Kawaguchi, S. Yasumasu, A. Shimizu, N. Kudo, K. Sano et al., , p.498

M. Nishida, Adaptive evolution of fish hatching enzyme: one amino 499 acid substitution results in differential salt dependency of the enzyme, J. Exp. 500 Biol, vol.216, pp.1609-1615, 2013.

Y. Takehana, S. Hamaguchi, and M. Sakaizumi, Different origins of ZZ/ZW 502 sex chromosomes in closely related medaka fishes, Oryzias javanicus and O. 503 hubbsi, Chromosome Res, vol.16, pp.801-811, 2008.

N. A. Baird, P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver et al., , p.505

E. U. Selker, W. A. Cresko, and E. A. Johnson, Rapid SNP discovery and 506 genetic mapping using sequenced RAD markers, PLoS ONE, vol.3, p.3376, 2008.

G. Marçais and C. Kingsford, A fast, lock-free approach for efficient 508 parallel counting of occurrences of k-mers, Bioinformatics, vol.27, pp.764-770, 2011.

G. W. Vurture, F. J. Sedlazeck, M. Nattestad, C. J. Underwood, and H. Fang, , p.510

J. Gurtowski and M. C. Schatz, GenomeScope: fast reference-free 511 genome profiling from short reads, Bioinformatics, vol.33, pp.2202-2204, 2017.

, Animal Genome Size Database

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., Canu: scalable and accurate long-read assembly via adaptive k-mer 515 weighting and repeat separation, Genome Res, vol.514, pp.722-736, 2017.

J. Ruan, Ultra-fast de novo assembler using long noisy reads. 517 ruanjue/smartdenovo, 2018.

B. J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel et al., , p.519

C. A. Cuomo, Q. Zeng, J. Wortman, and S. K. Young, Pilon: an 520 integrated tool for comprehensive microbial variant detection and genome 521 assembly improvement, PLoS ONE, vol.9, p.112963, 2014.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with 523 BWA-MEM, 2013.

S. Yeo, L. Coombe, J. Chu, R. Warren, and I. Birol, ARCS: Assembly 525 Roundup by Chromium Scaffolding, BioRxiv, 2017.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. Zdobnov, BUSCO: assessing genome assembly and annotation completeness 528 with single-copy orthologs, Bioinformatics, vol.527, pp.3210-3212, 2015.

, Babraham Bioinformatics -Trim Galore!, vol.530

M. Martin, Cutadapt removes adapter sequences from high-throughput 531 sequencing reads, EMBnet.journal, vol.17, pp.10-12, 2011.

H. Li, A statistical framework for SNP calling, mutation discovery, 533 association mapping and population genetical parameter estimation from 534 sequencing data, Bioinformatics, vol.27, pp.2987-2993, 2011.

P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks et al., , p.536

R. E. Handsaker, G. Lunter, G. T. Marth, and S. T. Sherry, The variant 537 call format and VCFtools, Bioinformatics, vol.27, pp.2156-2158, 2011.

P. Rastas, Lep-MAP3: robust linkage mapping even for low-coverage 539 whole genome sequencing data, Bioinformatics, vol.33, pp.3726-3732, 2017.

W. J. Kent, BLAT--the BLAST-like alignment tool, Genome Res, vol.12, pp.656-541, 2002.

H. Tang, X. Zhang, C. Miao, J. Zhang, R. Ming et al., , p.543

E. Lyons and J. Lu, ALLMAPS: robust scaffold ordering based on 544 multiple maps, Genome Biol, vol.16, p.3, 2015.

, Babraham Bioinformatics -FastQC A Quality Control tool for High Throughput 546 Sequence Data, p.39

C. Cabau, F. Escudié, A. Djari, Y. Guiguen, J. Bobe et al., , p.548, 2017.

, Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies

, PeerJ, vol.5, 2988.

M. H. Zerbino, D. R. Vingron, M. Birney, and E. , Oases: robust de 551 novo RNA-seq assembly across the dynamic range of expression levels, 2012.

, Bioinformatics, vol.28, pp.1086-1092

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., , p.554

M. Chaisson and T. R. Gingeras, STAR: ultrafast universal RNA-seq 555 aligner, Bioinformatics, vol.29, pp.15-21, 2013.

C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan et al., , p.557

S. L. Salzberg, B. J. Wold, and L. Pachter, Transcript assembly and 558 quantification by RNA-Seq reveals unannotated transcripts and isoform 559 switching during cell differentiation, Nat. Biotechnol, vol.28, pp.511-515, 2010.

, RepeatMasker Home Page, p.44

A. Morgulis, E. M. Gertz, A. A. Schäffer, and R. Agarwala, A fast and 562 symmetric DUST implementation to mask low-complexity DNA sequences, J, vol.563, 2006.

, Comput. Biol, vol.13, pp.1028-1040

, Tandem repeats finder: a program to analyze DNA sequences. 565, Nucleic Acids Res, vol.27, pp.573-580, 1999.

A. F. Smit and R. Hubley, , 2010.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for 568 comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

C. Holt and M. Yandell, MAKER2: an annotation pipeline and genome-570 database management tool for second-generation genome projects, BMC 571 Bioinformatics, vol.12, p.491, 2011.

G. S. Slater and E. Birney, Automated generation of heuristics for 573 biological sequence comparison, BMC Bioinformatics, vol.6, p.31, 2005.

K. J. Hoff, S. Lange, A. Lomsadze, M. Borodovsky, and M. Stanke, BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with 576, p.575, 2016.

A. Genemark-et, Bioinformatics, vol.32, pp.767-769

K. Eilbeck, B. Moore, C. Holt, and M. Yandell, Quantitative measures for 578 the management and comparison of annotated genomes, BMC Bioinformatics, p.67, 2009.

B. Buchfink, C. Xie, and D. H. Huson, Fast and sensitive protein alignment 581 using DIAMOND, Nat. Methods, vol.12, pp.59-60, 2015.

D. H. Setiamarga, M. Miya, Y. Yamanoue, Y. Azuma, J. G. Inoue et al., , p.583

K. Mabuchi and M. Nishida, Divergence time of the two regional 584 medaka populations in Japan as a new time scale for comparative genomics of 585 vertebrates, Biol. Lett, vol.5, pp.812-816, 2009.

M. Bernt, A. Donath, F. Jühling, F. Externbrink, C. Florentz et al., , p.587

M. Middendorf and P. F. Stadler, MITOS: improved de novo metazoan 588 mitochondrial genome annotation, Mol. Phylogenet. Evol, vol.69, pp.313-319, 2013.

D. M. Emms and S. Kelly, OrthoFinder: solving fundamental biases in 590 whole genome comparisons dramatically improves orthogroup inference 591 accuracy, Genome Biol, vol.16, p.157, 2015.

M. Suyama, D. Torrents, and P. Bork, PAL2NAL: robust conversion of 593 protein sequence alignments into the corresponding codon alignments, Nucleic 594 Acids Res, vol.34, pp.609-612, 2006.

S. Capella-gutiérrez, J. M. Silla-martínez, and T. Gabaldón, trimAl: a tool 596 for automated alignment trimming in large-scale phylogenetic analyses, 2009.

, Bioinformatics, vol.25, pp.1972-1973

M. L. Borowiec, AMAS: a fast tool for alignment manipulation and 599 computing of summary statistics, PeerJ, vol.4, p.1660, 2016.

L. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: a 601 fast and effective stochastic algorithm for estimating maximum-likelihood 602 phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

D. T. Hoang, O. Chernomor, A. Von-haeseler, B. Q. Minh, and L. S. Vinh, , p.604, 2018.

, UFBoot2: Improving the Ultrafast Bootstrap Approximation, Mol. Biol. Evol, vol.605, pp.518-522

M. Kawaguchi, S. Yasumasu, J. Hiroi, K. Naruse, T. Suzuki et al., , p.608, 2007.

, Analysis of the exon-intron structures of fish, amphibian, bird and mammalian 609 hatching enzyme genes, with special reference to the intron loss evolution of 610 hatching enzyme genes in Teleostei, Gene, vol.392, pp.77-88