Dynamic games applied to common resources: modeling and experimentation

Anmina Murielle Djiguemde, Dimitri Dubois, Mabel Tidball, Alexandre Sauquet

To cite this version:

Anmina Murielle Djiguemde, Dimitri Dubois, Mabel Tidball, Alexandre Sauquet. Dynamic games applied to common resources: modeling and experimentation. 18. International Symposium on Dynamic Games and Applications, International Society of Dynamic Games (ISDG). INT., Jul 2018, Grenoble, France. hal-02791021

HAL Id: hal-02791021
https://hal.inrae.fr/hal-02791021
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dynamic games applied to common resources: modeling and experimentation - preliminary analysis

Murielle Djiguemde, Dimitri Dubois, Mabel Tidball and Alexandre Sauquet

18th International Symposium on Dynamic Games and Applications - Grenoble

July 9-12, 2018
Without regulation, Common Pool Resources (CPR) are subject to overexploitation (Hardin, 1968)

Ex: forest, earth, groundwater, fish stocks.

To correctly anticipate the effect of regulation, we need to understand how agents take decisions.
Objectives

- Clarify some ambiguities between discrete and continuous time, and the time horizon chosen for lab experiments

- What type of behavior will the experimental subjects exhibit: feedback, myopic, open-loop or social optimum?

- Continuous time can be approached by discrete time \Rightarrow confront theory with experimentation
Literature

- Theoretical article: Rubio & Casino (2003) ⇒ continuous time, infinite horizon

- Lab experiment: Janssen & al. (2010) ⇒ spatial aspect

- Theoretical with lab experiment:
 - Herr & al. (1997) ⇒ discrete time, finite horizon
 - Oprea & al. (2014) ⇒ compares continuous and discrete time
 - Tasneem & al. (2017) ⇒ continuous time, infinite horizon
Model

- Infinite horizon framework

- Study the exploitation behavior of a renewable groundwater table by 2 identical and symmetrical farmers ⇒ optimal control and game

- the continuous time problem:

\[
\max_{w_i(t)} \int_0^\infty e^{-rt} \left[\begin{array}{c}
aw_i(t) - \frac{b}{2}w_i(t)^2 - c_t(H(t))w_i(t) \\
\text{Gross profit}
\end{array} \right] dt
\]

\[
\begin{cases}
H(t) = R - \alpha w_i(t) & : \text{the optimal control} \\
H(t) = R - \alpha \sum w_i(t) & : \text{the game} \\
w_i(t) \geq 0 \\
H(t) \geq 0
\end{cases}
\]

\[H(0) = H_0, \text{ and } H_0 \text{ given}\]
The theoretical model

Infinite horizon modeling

Model

- Calibration:
 \[a = 2.5; b = 1.8; \alpha = 1; R = 0.56; c_0 = 2; c_1 = 0.1; r = 0.005; H_0 = 15 \]

- The unitary cost is such that:
 \[
 c_t(H(t)) = \begin{cases}
 (c_0 - c_1 H(t)) & \text{if } 0 \leq H(t) < 20 \\
 0 & \text{if } H(t) \geq 20
 \end{cases} \Rightarrow \begin{cases}
 (2 - 0.1 H(t)) & \text{if } 0 \leq H(t) < 20 \\
 0 & \text{if } H(t) \geq 20
 \end{cases}
 \]
The theoretical model

Infinite horizon modeling

illustrations: extraction behaviors

Figure – The game: feedback, myopic, open-loop and social optimum
Theoretical model
Infinite horizon modeling

Model

- the **discrete time** problem:

\[
\max_{w_{i,n}} \sum_{n=0}^{\infty} \left(1 - r\tau \right)^n \left[aw_{i,n} - \frac{b}{2} w_{i,n}^2 - c_n(H_n)w_{i,n} \right] \beta^n \tau
\]

\[
\begin{cases}
H_{n+1} = H_n + \tau \left(R - \alpha w_{i,n} \right): \text{the optimal control} \\
H_{n+1} = H_n + \tau \left(R - \alpha \sum w_{i,n} \right): \text{the game} \\
w_i(t) \geq 0 \\
H(t) \geq 0
\end{cases}
\]

\[
H(0) = H_0, \text{ and } H_0 \text{ given}
\]

- Continuous & discrete time: availability of all formulas for the optimal control and the game
Feedback: groundwater table $H(t)$ convergence for $\tau = 1$
Experimental design

2 treatments

- Continuous time
 - 2 parts in each treatment
 - Optimal control
 - 2 five minutes training
 - The experiment
 - Game
 - 2 five minutes training
 - The experiment

- Discrete time
Experimental design

- No contextualization
- common knowledge experimentation with full information

Subject were informed that...

« You initially have 15 resource units. At any time, you can take a quantity between 0 and 2.8 resource units, with a precision of two decimal places. You are free to choose the quantity you want to take, namely 0, 0.01, 0.02... 2.79, 2.8 »
Preliminary results - continuous time

<table>
<thead>
<tr>
<th>Game</th>
<th>Feedback</th>
<th>Myopic</th>
<th>Optimal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Optimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myopic</td>
<td>19</td>
<td>2</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Optimal</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>3</td>
<td>11</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure – Behavior in the optimal control and the game
Discussion and conclusion

We found that:

- Continuous time model \(\equiv\) discrete time model when \(\tau \to 0\)
- But \(\tau = 1\) also works \(\Rightarrow\) easy to understand in experimentation

The question is...

Which model best represents the reality?

- Subjects who were myopic in optimal control mostly played feedback in the game
- Econometric analysis not complete \(\Rightarrow\) correct time-series treatments
Further works

First of all:

- Discrete time lab experiment

- Experimentation: continuous time vs discrete time model

Then:

- Test the game without the optimal control

- Modify the given information \Rightarrow dynamics of the resource vs dynamics of costs
Thank you for your attention!!